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Abstract: The indications for post-prostatectomy radiotherapy have evolved over the last 

decade, although the optimal timing, dose, and target volume remain to be well defined. The 

target volume is susceptible to anatomical variations with its borders interfacing with the rectum 

and bladder. Image-guided intensity-modulated radiotherapy has become the gold standard for 

radical prostate radiotherapy. Here we review the current evidence for image-guided techniques 

with intensity-modulated radiotherapy to the prostate bed and describe current strategies to 

reduce or account for interfraction and intrafraction motion.
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Introduction
Over the last three decades, external beam radiotherapy has evolved as a result 

of improvements in radiotherapy planning software, delivery, and introduction of 

 computed tomography (CT)/magnetic resonance imaging (MRI)-based planning. 

 Prostate radiotherapy has also evolved with these technological advancements, enabling 

dose escalation.1–3 Comparative data suggest that intensity-modulated radiotherapy 

(IMRT) reduces particularly gastrointestinal (GI) toxicity compared with three-

 dimensional conformal radiotherapy (3D-CRT).4 IMRT allows not only sparing of 

organs at risk, but also irradiation of different tumor targets at various dose levels, 

known as simultaneous integrated boost techniques.5 Optimizing the conformality of 

radiation dose requires increased set-up precision. Therefore, methods to improve 

precision of planned dose delivery have been developed with image guidance, in 

addition to ways to stabilize the target volume.

Prostate cancer is the second most common cancer in men worldwide, and more 

than 1.1 million cases of prostate cancer were recorded in 2012. This accounts for 

15% of the cancers diagnosed in men, with almost 70% of the cases occurring in the 

more developed regions.6

Radical prostate radiotherapy and radical prostatectomy (RP) are considered the 

mainstay of management for localized prostate cancer. The number of RPs performed 

worldwide is increasing.7,8 This increase is due to more patients being diagnosed with 

localized prostate cancer as a result of increased availability of prostate-specific antigen 

(PSA) testing,9 reduced morbidity associated with RP performed by “high volume” 

surgeons,10 and the developing role of RP as part of multi-modality treatment for 

patients with high-risk prostate cancer.11–13
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Recurrent disease occurs within 10 years in  approximately 

one third of patients who have an RP.14–16 Recurrence risk 

is greatest among men with adverse pathological features 

such as positive surgical margins, seminal vesicle  invasion, 

extraprostatic extension, and higher Gleason scores.17 There 

are established descriptions for adjuvant radiotherapy (ART) 

and salvage radiotherapy (SRT) post-prostatectomy. ART is 

given to patients with an undetectable PSA at high risk of 

recurrence because of adverse pathological features. Whereas 

SRT is given to patients with biochemical  recurrence, defined 

as PSA $0.2 ng/mL with a second confirmatory level 

of .0.2 ng/mL, but with no evidence of distant metastatic 

disease.18

Three randomized trials have addressed the significance 

of ART, demonstrating a near 20% absolute benefit for 

biochemical progression-free survival at 5 years after ART 

compared with a “wait and see” policy for patients with 

pT3± involved surgical margins.19–21 Systematic reviews22–25 

have confirmed the benefit of ART. There are no randomized 

prospective studies available to prove the benefit of SRT for 

biochemical progression-free survival, local or systemic 

failure, or survival. However, observational studies using 

multivariate analyses have identified factors predictive of 

PSA recurrence and disease outcome.26–30

The definitive answer as to whether immediate adjuvant 

treatment is superior to early SRT is currently unknown, but 

is being evaluated in prospective randomized trials. These 

trials include the international Medical Research Council 

RADICALS trial (NCT00541047)31 where patients can be 

randomized to either early postoperative radiotherapy or 

deferred radiotherapy given at the time of biochemical failure. 

This is defined as either two consecutive rising PSA levels and 

a PSA .0.1 ng/mL or three consecutive rising PSA levels. 

In the RAVES study (NCT00860652)32 led by the Trans-

Tasman Radiation Oncology Group, patients with adverse 

prognostic factors were randomized to either receive ART or 

early SRT triggered by PSA rising to .0.2 ng/mL. A further 

trial, currently recruiting in France (NCT00667069), is 

randomizing patients to receive either immediate ART or 

delayed radiotherapy until biochemical relapse (defined as 

PSA .0.2 ng/mL but #2 ng/mL), with both arms  receiving 

6 months of triptorelin, a luteinizing hormone releasing 

hormone analog.

Although the clinical indications for radiotherapy post 

prostatectomy are becoming established, there are many 

aspects of post-prostatectomy radiotherapy where evidence 

needs to be considered and consensus gained. In this review, 

we consider how to define the post-prostatectomy clinical 

target volume (CTV) and evidence to guide the selection 

of appropriate dose, radiotherapy planning, and delivery 

techniques.

Post-prostatectomy clinical  
target volume
To determine the optimal CTV, it is important to appreciate 

the most common sites of local relapse post-prostatectomy. 

Nearly two thirds of local relapses identified on imaging and/

or biopsy occur at the vesicourethral anastomosis, with the 

bladder neck and retrotrigone area making up the significant 

remainder.33–35 A recent study using 1.5 or 3 Tesla (T) MRI 

scans from 113 patients with local recurrence assessed the 

locations of their recurrences to suggest an optimal target 

volume.36 The CTV proposal included 97% of suspected 

tumor recurrences, which were found at the anastomotic site 

(78.8%), bladder neck (15.3%), and retrovesical area (5.9%). 

In the cranial direction, 106 (87.3%) lesions were located 

within 3 cm of the inferior border of the pubic symphysis, 

with 12 (10.2%) lesions located below this anatomical point. 

In the transverse plane, 112 lesions (94.9%) were located 

within 10 mm of the midline.

During the last decade, MRI has become commonly 

used in the planning of prostate radiotherapy, and compared 

with planning CT provides improved soft tissue resolution, 

 allowing more consistent delineation of the prostate apex, 

anterior rectal wall,37 and penile bulb.38 These last two 

 structures are also important when outlining the  prostate bed. 

Additionally, identification of the vesicourethral  anastomosis 

is better on T2-weighted MRI sagittal slices, where it is 

recognized as the disruption in the high signal of urine 

immediately below the urethral sphincter.39

Choline positron emission tomography (PET) has been 

evaluated in patients with biochemical recurrence post- 

prostatectomy.40–42 In a study comparing multi- parametric 

MRI (mp-MRI) at 3 T with endorectal coil (EC) and 
18F-choline PET/CT for detecting local recurrence after RP, 

84 patients were allocated into two groups dependent on PSA 

and maximal transverse dimension of local  recurrence.43 The 

superiority of mp-MRI was greater in group A (lesion size 

range 5–7.2 mm; PSA level range 0.8–1.4 ng/mL) than in 

group B (lesion size range 7.6–19.4 mm; PSA level range 

1.3–2.5 ng/mL); the areas under the receiver  operating charac-

teristic curves for mp-MRI and PET/CT were 0.833 and 0.562 

in group A and 0.971 and 0.837 in group B, respectively.

CTV definition in the postoperative setting is complicated 

due to changes in anatomy caused by surgery and the limited 

information on the preoperative location of the prostate. 
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The pelvic anatomy after robotic-assisted RP has been shown 

to be considerably different from that after open prostatec-

tomy, with the size of the trigonal musculature defect being 

more pronounced, total urethral length statistically longer, 

and larger separation for the vesicorectal distance after 

robotic-assisted RP.44

Substantial interphysician variation in CTV delinea-

tion for post-prostatectomy radiotherapy exists, but this 

can be reduced by use of a contouring protocol.45 To date, 

four consensus articles have been published,39,46–48 and 

Table 1 summarizes their guidelines on CTV delineation. 

A comparison of these guidelines found that treatment 

volumes differed significantly between guidelines and that 

the European Organisation for Research and Treatment of 

Cancer (EORTC) volume was significantly smaller than the 

other guideline-produced target volumes.49

Use of multi-parametric MRI in 
CTV delineation
These consensus guidelines have been assessed in relation to 

the preoperative MRI contour of the prostate and gross vis-

ible tumor. CTVs according to the four consensus guidelines 

were applied and expanded to create a planning target volume 

(PTV).50 Irrespective of the guideline used, the consensus 

CTVs did not completely cover the pre-resection extent of the 

prostate seen on the MRI in any of the 20 patients evaluated. 

On average, 38% of the prostate volume and 41% of the gross 

tumor volume (GTV) on preoperative MRI were not included 

in the CTV. The Radiation Therapy Oncology Group (RTOG) 

and Princess Margaret Hospital guidelines are similar with 

respect to prostate and tumor coverage and yielded the best 

overall results. The EORTC guidelines provided the least 

overall coverage. The prostate base and mid zones were the 

predominant site of inadequate coverage.

A further appraisal by the same group compared a CTV 

based upon each patient’s co-registered preoperative MRI 

and a CTV produced using RTOG guidelines, with respect 

to target volumes and doses to the rectum and bladder.51 

The CTV produced using the preoperative MRI volume 

was a mean 18.6% larger than the CTV produced using the 

RTOG guidelines. The mean Jaccard Index, representing the 

intersection volume between CTVs, was 0.72 and 0.84 for 

PTVs, with both methods achieving similar rectal and blad-

der constraints as defined by the MRC RADICALS trial31 

and QUANTEC criteria.52

In post-prostatectomy patients, mp-MRI has been 

shown to be an effective tool for evaluation of the prostatic 

fossa, with the addition of dynamic contrast-enhanced MRI 

improving the diagnostic performance in detecting local 

recurrence.53,54 However, these studies were conducted with 

a 1.5 T MRI scanner using an EC. MRI with EC causes 

a distortion of local anatomy and does not allow image 

fusion with the radiotherapy planning CT. A study assessing 

dynamic contrast-enhanced MRI scans acquired on 1.5 T 

system without EC has shown that it can detect local recur-

rence with an estimated accuracy of 83% at low PSA levels 

(mean 0.74±0.64 ng/mL).

A pre-radiotherapy PSA cut-off value of $0.54 ng/mL 

predicted a positive result on dynamic contrast-enhanced 

MRI.55 This has been further supported by a recent trial 

using 3 T MRI without EC, which showed that the prob-

ability of radiographic local recurrence was significantly 

higher in patients with PSA .0.5 ng/mL.56 However, 

these are retrospective studies, and no histopathological 

confirmation was undertaken to confirm the interpretation 

of the mp-MRI findings. Additionally, to our knowledge, 

there are no comparative studies evaluating the value of 

increasing the field strength of the magnet and using an 

EC in detecting local recurrence. Barchetti and Panebianco 

have published a thorough appraisal of the data regarding 

mp-MRI in identification of local recurrence after RP.57 The 

further development of MRI and more widespread utiliza-

tion of higher strength magnets may improve the precision 

of localization of recurrence and comprehensive studies are 

awaited with interest.

Boost to GTV
The finding of local relapse on mp-MRI enables a GTV to 

be defined and this has enabled a dose-adapted approach to 

treating the prostate bed with a boost to the GTV.58

The principle of a boost to the dominant nodule in radi-

cal prostate radiotherapy has been evaluated, and mp-MRI 

for SRT planning purposes has the potential to identify the 

suspected residual disease or locoregional recurrence. The 

ability to boost the suspected site of relapse has been evalu-

ated in a retrospective study where patients received a boost 

of 10 Gy, with a median dose of 64 Gy to the prostatic bed. 

Boost and grade $2 acute genitourinary (GU) toxicity were 

independently correlated with late grade $2 GU toxicity on 

multivariate analysis. However, no significant difference in 

3-year biochemical recurrence-free survival was observed 

between the boost and no-boost groups.59

Low dose rate brachytherapy in the salvage treatment of 

local recurrence after RP has been shown to be technically 

feasible, either as single modality treatment60 or to deliver 

a boost to the macroscopic disease within the prostate 
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bed.61 High dose rate (HDR) brachytherapy with or with-

out IMRT has also been evaluated as a treatment option 

for patients with local recurrence. Five patients were 

treated with IMRT to 45–50.4 Gy in 25–28 fractions to the 

prostate bed followed by two 9.5 Gy HDR brachytherapy 

fractions separated by 1–2 weeks, with the remaining 

patient treated with HDR brachytherapy (38 Gy in four 

fractions over 3 days). No patients had late grade 2 GI 

toxicity, with one patient developing late grade 2 urinary 

incontinence. It must be noted, however, that the median 

follow-up in this study was 9 months.62 These studies do 

demonstrate the potential use of brachytherapy for biopsy, 

ultrasound, or MRI-proven local recurrence; however, they 

are single-center experiences. With improving diagnostic 

capabilities for local recurrence and MRI-ultrasound 

fusion brachytherapy techniques, comprehensive stud-

ies with brachytherapy in the salvage setting should be 

undertaken with long-term effectiveness, toxicity, and 

quality of life endpoints.

Radiotherapy dose and toxicity
Dose escalation
Among observational studies, radiotherapy doses ranged 

from 50 to 78 Gy, with SRT doses being somewhat higher 

than for ART.63 Although radiotherapy dose escalation 

improves freedom from biochemical recurrence (BCR) in 

radical prostate radiotherapy,64 the optimal post-prostatec-

tomy dose has not yet been determined from a randomized 

trial. The predominant treatment failure site in patients post-

prostatectomy is local.65 The American Society for Radia-

tion Oncology and American Urological Association panel 

view is that 64–65 Gy is the minimum dose that should be 

delivered post-prostatectomy, but decisions regarding dose 

should be made by the treating physician.17

Table 1 Summary of the four consensus guidelines and guidance from the RADiCALS trial for post-prostatectomy target delineation

Guideline Inferior Superior Lateral Anterior Posterior CTV49 (cm3), 
mean ± SD

PTV49 
(cm3), 
mean ± SD

Princess Margaret Hospital 
wiltshire et al39 

8 mm below the vUA or  
the top of the PB, whichever  
is most superior

Superior surgical clips if present, or 5 mm  
above the inferior border of the vas deferens.  
Retained Sv included when pathologically  
involved

Caudal: medial border 
of the levator ani and 
obturator internus. 
Cranial: Sacrorecto-
genitopubic fascia

Caudal: posterior edge of the symphysis  
pubis up to the top of the symphysis pubis 
Cranial: posterior 1.5 cm of the bladder wall

Caudal: anterior border of the rectal wall and  
levator ani 
Cranial: mesorectal fascia

104±25 350±50

Australian and New Zealand  
Radiation Oncology  
Genito-Urology Group 
Sidhom et al46

5–6 mm below the vUA, but  
should include all surgical clips 
inferiorly.  
If VUA not clearly defined, then  
slice above the PB

Encompass all of the SV bed as defined  
by non vascular clips and should include  
distal portion of the vas deferens. 
if Sv pathologically involved,  
include any residual Sv

Medial border of the 
levator ani muscle or 
obturator internus muscle

Lower border of CTv to 3 cm superior,  
posterior aspect of the symphysis pubis 
More superiorly: posterior 1.5 cm of the  
bladder

Levator ani and anterior rectal wall. More  
superiorly, anterior mesorectal fascia

88±16 325±32

Radiation Therapy  
Oncology Group 
Michalski et al47 

8–12 mm below vUA, may include 
more if concern for apical margin. 
Can extend to slice above PB if  
vUA not well visualized

Level of cut end of vas deferens or 3–4 cm  
above top of symphysis. include Sv remnants  
if pathologically involved

Below superior edge of 
symphysis pubis: levator ani 
muscles, obturator internus 
Above superior edge of 
symphysis pubis: 
Sacrorecto-genitopubic 
fascia*

Below superior edge of symphysis pubis:  
posterior edge of pubic bone 
Above superior edge of symphysis pubis: 
posterior 1–2 cm of bladder wall

Below superior edge of symphysis pubis: Anterior  
rectal wall 
Above superior edge of symphysis pubis:  
Mesorectal fascia

102±24 351±46

eORTC (#identified areas of 
greatest risk of relapse)** 
Poortmans et al48

Apex# -15 mm cranially  
from the PB +5 mm in all 
directions***

Bladder neck# +5 mm in all directions***  
Original  site of the base of Sv should be  
included. if  Sv involved, include original  
position ± the remnants

Up to the neurovascular 
bundles (if removed up to 
the ilio-obturatic muscles) 
+5 mm in all directions***

Anastomosis and urethral axis +5 mm in  
all directions***

Up to but not including the outer rectal wall,  
cranially including the most posterior part of the  
bladder neck +5 mm in all directions***

60±17 254±53

RADiCALS guidance 
2007
Parker et al31

5 mm cranial to the  
superior border of the PB

if Sv low risk and pathology uninvolved:  
base of Sv 
if Sv low risk and pathology involved: tips of Sv 
if Sv absent, superior border determined  
with reference to the estimated position  
of the pre-op Sv

Medial border of obturator 
internus and levator ani 
muscles

Caudal (less than 2 cm above anastomosis):  
posterior aspect of symphysis pubis 
Cranial (more than 2 cm above anastomosis):  
posterior one third of bladder wall

Anterior rectal wall

Notes: *if there is concern that extraprostatic disease at base may extend to the obturator internus; **supplementary 5 mm in the posterior and lateral directions in the 
presence of incompletely resected extracapsular nodal extension, but excluding the rectal wall; supplementary 5 mm in the direction of microscopically involved tumor 
margins as reported by the pathologist (except the rectal wall). ***except the rectal wall.
Abbreviations: CTv, clinical target volume; eORTC, european Organisation for Research and Treatment of Cancer; PTv, planning target volume; PB, penile bulb; vUA, 
vesicourethral anastomosis; Sv, seminal vesicles; SD, standard deviation.
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Table 1 Summary of the four consensus guidelines and guidance from the RADiCALS trial for post-prostatectomy target delineation

Guideline Inferior Superior Lateral Anterior Posterior CTV49 (cm3), 
mean ± SD

PTV49 
(cm3), 
mean ± SD

Princess Margaret Hospital 
wiltshire et al39 

8 mm below the vUA or  
the top of the PB, whichever  
is most superior

Superior surgical clips if present, or 5 mm  
above the inferior border of the vas deferens.  
Retained Sv included when pathologically  
involved

Caudal: medial border 
of the levator ani and 
obturator internus. 
Cranial: Sacrorecto-
genitopubic fascia

Caudal: posterior edge of the symphysis  
pubis up to the top of the symphysis pubis 
Cranial: posterior 1.5 cm of the bladder wall

Caudal: anterior border of the rectal wall and  
levator ani 
Cranial: mesorectal fascia

104±25 350±50

Australian and New Zealand  
Radiation Oncology  
Genito-Urology Group 
Sidhom et al46

5–6 mm below the vUA, but  
should include all surgical clips 
inferiorly.  
If VUA not clearly defined, then  
slice above the PB

Encompass all of the SV bed as defined  
by non vascular clips and should include  
distal portion of the vas deferens. 
if Sv pathologically involved,  
include any residual Sv

Medial border of the 
levator ani muscle or 
obturator internus muscle

Lower border of CTv to 3 cm superior,  
posterior aspect of the symphysis pubis 
More superiorly: posterior 1.5 cm of the  
bladder

Levator ani and anterior rectal wall. More  
superiorly, anterior mesorectal fascia

88±16 325±32

Radiation Therapy  
Oncology Group 
Michalski et al47 

8–12 mm below vUA, may include 
more if concern for apical margin. 
Can extend to slice above PB if  
vUA not well visualized

Level of cut end of vas deferens or 3–4 cm  
above top of symphysis. include Sv remnants  
if pathologically involved

Below superior edge of 
symphysis pubis: levator ani 
muscles, obturator internus 
Above superior edge of 
symphysis pubis: 
Sacrorecto-genitopubic 
fascia*

Below superior edge of symphysis pubis:  
posterior edge of pubic bone 
Above superior edge of symphysis pubis: 
posterior 1–2 cm of bladder wall

Below superior edge of symphysis pubis: Anterior  
rectal wall 
Above superior edge of symphysis pubis:  
Mesorectal fascia

102±24 351±46

eORTC (#identified areas of 
greatest risk of relapse)** 
Poortmans et al48

Apex# -15 mm cranially  
from the PB +5 mm in all 
directions***

Bladder neck# +5 mm in all directions***  
Original  site of the base of Sv should be  
included. if  Sv involved, include original  
position ± the remnants

Up to the neurovascular 
bundles (if removed up to 
the ilio-obturatic muscles) 
+5 mm in all directions***

Anastomosis and urethral axis +5 mm in  
all directions***

Up to but not including the outer rectal wall,  
cranially including the most posterior part of the  
bladder neck +5 mm in all directions***

60±17 254±53

RADiCALS guidance 
2007
Parker et al31

5 mm cranial to the  
superior border of the PB

if Sv low risk and pathology uninvolved:  
base of Sv 
if Sv low risk and pathology involved: tips of Sv 
if Sv absent, superior border determined  
with reference to the estimated position  
of the pre-op Sv

Medial border of obturator 
internus and levator ani 
muscles

Caudal (less than 2 cm above anastomosis):  
posterior aspect of symphysis pubis 
Cranial (more than 2 cm above anastomosis):  
posterior one third of bladder wall

Anterior rectal wall

Notes: *if there is concern that extraprostatic disease at base may extend to the obturator internus; **supplementary 5 mm in the posterior and lateral directions in the 
presence of incompletely resected extracapsular nodal extension, but excluding the rectal wall; supplementary 5 mm in the direction of microscopically involved tumor 
margins as reported by the pathologist (except the rectal wall). ***except the rectal wall.
Abbreviations: CTv, clinical target volume; eORTC, european Organisation for Research and Treatment of Cancer; PTv, planning target volume; PB, penile bulb; vUA, 
vesicourethral anastomosis; Sv, seminal vesicles; SD, standard deviation.

Despite early ART at a standard dose of 60–64 Gy in 

2 Gy per fraction, 20.9%–34.9% of patients showed BCR 

during follow-up.19–21 In a retrospective cohort, around 75% 

of patients received a dose .66 Gy and BCR was seen at 

a median of 26.4 months in 19.7% of patients. Univariate 

analysis showed that T4 tumor stage, a preoperative PSA 

value .10 ng/mL, and a radiotherapy dose ,70 Gy were 

significant factors for BCR.66 Cozzarini et al undertook a 

retrospective analysis where patients were grouped according 

to dose delivered to the prostate bed, ie, ,70.2 Gy (median 

66.6 Gy) or $70.2 Gy (median 70.2 Gy in 1.8 Gy fractions). 

Multivariate analysis confirmed that a dose $70.2 Gy was 

independently related to both BCR-free survival and disease-

free survival, with similar results obtained after exclusion of 

patients receiving any androgen deprivation.67

A further analysis evaluated the association between SRT 

dose and BCR, and their results suggested a dose response, 

with doses higher than 66.6 Gy resulting in decreased risk 

of BCR.68

Following SRT, reported 5-year biochemical control 

rates range from 25% to 70%.69 Retrospective analyses 

have identified a number of factors that may influence the 

efficacy of SRT, including dose.70,71 A systematic review by 

King72 included 41 published SRT studies, with a median 

dose of 64.6±3.1 Gy (range 60–74.8 Gy). There was a sig-

nificant association between dose and relapse-free survival 

(rho =0.42, P=0.0052), with an observed improvement in 

relapse-free survival of 2% for each incremental Gy of 

dose.

A systematic review and regression meta-analysis from 

25 studies including 3,828 patients, generated tumor con-

trol probability and normal tissue complication probability 

models.69 They estimated that with a pre-SRT PSA level of 0.4 

ng/mL, an approximately 50% chance of 5-year biochemical 
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progression-free survival could be achieved with an SRT dose 

of 60 Gy. However, if the PSA level before SRT was 1.0 ng/

mL, a dose of approximately 70 Gy was required to achieve 

similar disease control, with severe late toxicity rates at that 

dose potentially reaching 10%. There are many confounding 

factors, including the use of hormonal therapy and a variety 

of treatment planning and delivery techniques, that preclude 

high quality evidence level guidance to be drawn.

A randomized Phase III trial (SAKK 09/10) for SRT is 

currently recruiting, where patients are randomized to either 

receive 64 Gy or 70 Gy.73 The target volume delineation is to 

be performed according to EORTC guidelines and patients 

are excluded if they have macroscopic local recurrence.

Hypofractionation
Radiobiological studies have suggested that the estimated α/β 

ratio of prostate carcinoma is lower than for most other solid 

tumors, and around 1.5–3 Gy.74–77 Hypofractionated regi-

mens may therefore give tumor control advantages over the 

more traditional 2 Gy per fraction schedules. This has been 

investigated internationally in several large Phase III trials in 

radical prostate radiotherapy.78–80 A few studies have consid-

ered this in post-prostatectomy radiotherapy,81–86 and Table 2 

summarizes these data. However, most of these studies have 

only reported on acute toxicity, and hypofractionation does 

pose an increased risk for late toxicity as the fraction size and 

total dose increases. A recent retrospective analysis to assess 

predictors of severe (grade $3) late urinary toxicities after 

post-prostatectomy radiotherapy with conventional (1.8 Gy 

per fraction) and hypofractionated (median 2.5 Gy per frac-

tion) radiotherapy found on multivariate analyses, acute 

grade $2 toxicity and hypofractionation to independently 

predict late grade $3 toxicity. This was in both the adjuvant 

and salvage settings, with different radiotherapy techniques 

and non-standardized reporting of toxicity.87

Toxicity
GU toxicity remains the dose-limiting adverse effect of 

postoperative radiotherapy, even when delivered with IMRT 

techniques. IMRT has been shown to have no impact on late 

Table 2 Comparison of acute toxicity for hypofractionated and conventionally fractionated post-prostatectomy radiotherapy

Reference Patients (n) Trial design Total dose/single  
dose fractionation 
(EQD2)

Treatment technique Acute GI 
toxicity (%)

Acute GU 
toxicity (%)

Scoring 
system

Conventionally fractionated post-prostatectomy radiotherapy
De Meerleer 
et al27

135 Retrospective Median 75 Gy/2 Gy iMRT, regular iGRT G2: 15 
G3: 0

G2: 28 
G3: 3

in-house

Cozzarini  
et al67

153 
181

Retrospective Median 66.6 Gy/1.8 Gy 
Median 
70.2 Gy/1.8 Gy

Conventional non-
conformal, 3D-CRT

G2/3: 17.5 
G2/3: 14

G2: 10.5 
G3: 4 
G2: 11.5 
G3: 2

RTOG

Nath et al89 50 Retrospective Median 68 Gy/1.8–2 Gy iMRT, daily iGRT G2: 8 
G3: 0

G2: 14 
G3: 0

NCi CTCAe 
v. 3.0

Riou et al90 57 Retrospective Mean 68 Gy/2 Gy iMRT, iGRT G2: 4 
G3: 0

G2: 7 
G3: 0

NCi CTCAe 
v. 3.0

Bellavita  
et al66

182 Retrospective Median 66.6 Gy/ 
1.8–2 Gy

3D-CRT G2: 39 
G3: 1

G2: 21 
G3: 0

RTOG

Hypofractionated post-prostatectomy radiotherapy
Massaccesi  
et al81

49 Prospective, non-
randomized Phase ii

62.5 Gy/2.5 Gy 
(71.4 Gy)

SiB-iMRT G2: 32.6 
G3: 0

G2: 9.6 
G3: 0

RTOG

Cozzarini  
et al83

50 Prospective, non-
randomized 
Phase i/ii

58 Gy/2.9 Gy 
(72.9 Gy)

Tomotherapy, daily iGRT G2: 4 
G3: 0

G2: 10 
G3: 2

RTOG

Kruser  
et al84

108 Retrospective 65 Gy/2.5 Gy (74.3 Gy) Tomotherapy, daily iGRT, 
endorectal balloon

G2: 14 
G3: 0

G2: 7 
G3: 1

Modified 
RTOG

Katayama  
et al85

39 Prospective, non-
randomized Phase ii

54 Gy/3 Gy (69.4 Gy) Tomotherapy, daily iGRT G2: 18 
G3: 0

G2: 0 
G3: 0

NCi CTCAe 
v. 4.0

Gladwish  
et al86

30 Prospective, non-
randomized 
Phase i/ii

51 Gy/3 Gy 
(65.6 Gy)

iMRT, daily iGRT  
(fiducial-based)

G2: 0 
G3: 0

G2: 3 
G3: 3

NCi CTCAe 
v. 3.0

Note: eQD2, 2 Gy-equivalent dose (assumed α/β ratio of 1.5 Gy). 
Abbreviations: Gi, gastrointestinal; GU, genitourinary; iGRT, image-guided radiotherapy; iMRT, intensity modulated radiotherapy; NCi CTCAe, National Cancer institute 
Common Terminology Criteria for Adverse events; RTOG, Radiation Therapy Oncology Group; 3D-CRT, three-dimensional conformal radiotherapy; SiB-iMRT, simultaneous 
integrated boost intensity modulated radiotherapy; G, grade.
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urinary toxicity compared with 3D-CRT in patients treated at 

the same dose and to the same volume definition.88

A few retrospective studies have investigated the use of 

IMRT for post-prostatectomy radiotherapy.27,89,90 Bastasch 

et al91 reported the effects on erectile function of dose-

 escalated prostate bed IMRT in a retrospective series. 

Despite the high dose (mean 69.6 Gy) to the prostate bed, 

this had no negative effect on erectile function for the patients 

who remained potent after nerve-sparing prostatectomy; the 

follow-up in this group was 19.5 months.

Ost et al92 reported the clinical results of adjuvant 

IMRT (median dose to PTV: 74 Gy in 2 Gy per fraction) in 

104 patients. With respect to acute and late toxicity, no patients 

developed grade 3 GI toxicity, with 8% and 4% of patients 

developing acute and late grade 3 GU toxicity respectively.

Toxicity with dose escalation in SRT has been retrospec-

tively evaluated, and with a median dose of 70.2 Gy, grade 3/4 

late GU and GI toxicity was 29.6% and 5.6%, respectively. 

There was a non-significant trend towards reduced late GI 

toxicity with IMRT.93

IMRT creates an opportunity to reduce side effects or 

attempt dose escalation to increase the probability of tumor 

control. A Phase II trial has recently been published, where 

patients who received 66Gy in 2Gy dose per fraction with 

IMRT were evaluated with health-related quality of life 

outcomes.94 Expanded Prostate Cancer Index Composite 

(EPIC) scores were collected prospectively and showed 

transient declines in the EPIC GI domain summary score 

and GU irritative subscale, with complete recovery occurring 

between 3 and 12 months after radiotherapy, and remaining 

stable compared with baseline at 5-year follow-up. Sexual 

health-related quality of life remained stable at 5 years, with 

an improving trend in bother subscale.

At the Memorial Sloan-Kettering Cancer Center, a ret-

rospective analysis of late toxicity (5-year actuarial rates) 

was undertaken of patients predominantly treated with 

either 3D-CRT or IMRT to a dose of $70 Gy with a median 

follow-up of 60 months.95 Two hundred and five patients 

(72%) were treated with doses $70 Gy. IMRT was indepen-

dently associated with a reduction in late grade $2 GI toxicity 

compared with 3D-CRT (1.9% versus 10.2%, respectively; 

P=0.02), despite the fact that those patients treated with 

IMRT were more likely to be treated with a higher dose 

than those receiving 3D-CRT. This supports the idea that 

IMRT improves the therapeutic ratio associated with SRT. 

However, IMRT was not associated with a reduction in risk 

of grade $2 GU toxicity, urinary incontinence, or grade 3 

erectile dysfunction.

Radiotherapy planning technique
The CTV has an irregular shape, with its borders associated 

with the rectum and bladder, making it particularly difficult 

to sculpt the dose away from the organs at risk (OAR). 

Koontz et al96 demonstrated that IMRT provides better high-

dose sparing of the OAR than 3D-CRT. In addition, Cozzarini 

et al83 demonstrated a benefit for helical tomotherapy com-

pared with 3D-CRT with regards to rectal sparing.

As previously discussed, there is no clear consensus regard-

ing CTV delineation for postoperative prostate radiotherapy. 

Analysis of dose volume histograms (DVH) was performed 

with the four published guidelines for CTV delineation39,46–48 

and the dose constraints proposed in QUANTEC52 and the 

RADICALS31 trial. Comparison between 3D-CRT and tomo-

therapy IMRT showed that the latter reduced OAR irradiation; 

however, despite using IMRT, a significant percentage of cases 

did not meet the OAR dose constraints.49 There is currently 

no agreement regarding the superiority of advanced forms of 

external beam radiotherapy.

A radiotherapy quality assurance program undertaken 

as part of the SAKK 09/10 trial had 43% of the centers 

using 3D-CRT, with the remaining centers using IMRT or 

volumetric modulated arc therapy (VMAT). CTVs were 

outlined using the EORTC guidelines, and the rectal and 

bladder wall DVH parameters with IMRT or VMAT versus 

3D-CRT plans were not significantly different.73 A study 

quantifying the differences in treatment delivery efficiency 

and dosimetry between step and shoot IMRT, VMAT, and 

helical tomotherapy has shown that VMAT improves the 

efficiency of delivery for equivalent dosimetric quality com-

pared with IMRT and helical tomotherapy in prostate bed ± 

whole pelvis radiotherapy.97

Image-guided radiotherapy
Variation in location of the prostate bed is significantly 

influenced by the changing shape and volume of the rectum 

and bladder during treatment. Rectal volumes can vary 

significantly throughout treatment from -40% to +60% 

compared with planning, with bladder volumes fluctuating 

up to 200 cm3.98 These day-to-day fluctuations can have a 

substantial dosimetric effect on both the prostate bed and 

OAR.99 The greatest potential for geographical miss has 

been seen when either the bladder increases in size or the 

rectum becomes smaller.100 Uncertainties due to patient set-up 

errors and prostate bed motion101 require a margin around the 

CTV to create the PTV. Minimizing these uncertainties can 

facilitate smaller CTV to PTV margins, thereby reducing 

the dose to OAR.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Cancer Management and Research 2015:7submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

338

Murray et al

The accuracy of bony anatomy as a surrogate for prostate 

bed position is inadequate to account for intrafraction motion. 

Relative to bony anatomy, prostate bed displacement exceeded 

5 mm in 21% of treatments of 20 patients in the superior–

inferior direction and 9% in the anterior–posterior position. 

During treatment, the target exceeded the 5 mm tracking limit 

for at least 30 seconds in 11% of all fractions, generally in 

the anterior–posterior or superior–inferior direction. In the 

anterior–posterior direction, target motion was more likely to 

move posteriorly towards the rectum than anteriorly.102

A predominant source of intrafraction error is prostate 

bed motion, and there is an interest in determining the best 

treatment margin to account for daily set-up uncertainty and 

prostate bed motion. There is a lack of data regarding the best 

treatment margin to account for daily set-up uncertainty and 

organ motion. Surgical clips have been used as fiducial mark-

ers for the prostate bed, with their positional shifts captured 

and recorded by kV images.103,104 However, surgical clips 

have often been found to be positioned outside the prostate 

bed, poorly visualized, and closely clustered.105

Implantation of gold seeds106 and electromagnetic tran-

sponders107 into the prostate bed has been described and 

data regarding prostate bed motion published.102,108,109 The 

stability and interobserver variability of fiducial markers 

and position of surgical clips in the prostate bed has been 

considered, and fiducial markers were seen to give less 

interobserver variability in matching and less variation 

in position than surgical clips.105 The largest discrepancy in 

matching between surgical clips and fiducial markers was in 

the anterior–posterior axis. Migration of gold seed fiducials 

over a course of radiotherapy has been shown to be minimal, 

with the mean measured differences in inter-marker distance 

between the start and end of radiotherapy being 0.4 mm.110 

However, implantation of the fiducial markers is an invasive 

procedure with associated morbidity.106

Table 3 summarizes the findings from studies evaluat-

ing interfraction prostate bed motion, which is defined as 

the change in position of the prostate bed in relation to 

pelvic bony anatomy. There has been a suggestion from 

the data that an anisotropic PTV margin should be used in 

post-prostatectomy radiotherapy.111 A differential superior 

and inferior prostate bed motion has been reported, with 

the greatest movement occurring in the anterior–posterior 

plane in the upper prostate bed; however, in this study, only 

one surgical clip in the superior and in the inferior section 

was selected. The variability in movement between these 

clips implies that prostate bed tilt is a factor in interfraction 

motion and may not be easily corrected for with standard 

online matching techniques.

Signif icant intrafraction prostate bed motion and 

deformation has been found, as the boundaries are largely 

defined by the interfaces of the bladder and rectum, which 

are influenced by intrafractional variations in filling. Diot 

et al112 performed a study analyzing the effects of anatomical 

interventions, such as adjusting bladder filling, evacuation 

of stool, or insertion of a rubber catheter into the rectum to 

deal with excess gas. The indications for these interventions 

were determined on sagittal images when the anterior rectal 

wall displacement was greater than 5 mm or by a change in 

volume of the bladder by a factor of 2 compared with the 

planning CT. The comparison of pre and post intervention 

localization suggests that fluctuations in the volume and 

Table 3 interfraction prostate bed motion and calculated margins based on interfraction motion

Reference Patients/images 
IGRT method

Interfraction PBM Lateral 
mm (SD)

Superior–inferior  
mm (SD)

Anterior–posterior 
mm (SD)

Schiffner  
et al110

10/163 
Gold seeds, ePiD

Mean: 0.3 (0.9) 0.4 (2.4) -1.1 (2.1)

Sandhu  
et al116

26/692 
Surgical clips, kv

Mean magnitude: 1 (1.7) 2.4 (2.1) 2.7 (2.1)

Ost et al115 15/547 
Anterior rectal wall, CBCT

Mean: 
Calculated margin*

0.01
1.78

0.58
3.27

2.19
7.88

Huang  
et al103

14/420 
Surgical clips, CBCT

Mean: 
Calculated margin*

0
3.24

-0.9
5.49

1.9
8.36

Bell et al111 40/377 
Surgical clips, CBCT

Mean magnitude: 
Upper 
Lower

0.1 (0.12) 
0.08 (0.1)

0.28 (0.26) 
0.18 (0.17)

0.5 (0.5) 
0.18 (0.16)

Alander  
et al109

13/466 
Gold seeds, CBCT

Mean: 
Calculated margin**

0 (0.5) 
1.4

0.7 (2.1) 
5.9

0.8 (1.6) 
5.9

Notes: PBM, motion of the either the gold seeds, surgical clips, or anterior rectal wall in relation to bony pelvic anatomy and is the mean of the individual patient means, 
unless otherwise stated. Mean magnitude: average of absolute values of all measurements in a given plane. Margin recipe used: *2.5Σ + 0.7σ; **1.96Σ + 0.7σ. 
Abbreviations: PBM, prostate bed motion; CBCT, cone-beam computed tomography; CTv, clinical target volume; PTv, planning target volume; iGRT, image-guided 
radiotherapy; SD, standard deviation.
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shape of the rectum and bladder increase the variability of the 

localization data most significantly in the anterior–posterior 

direction, with lesser effect in the superior–inferior direction. 

The dosimetric impact on performing these interventions 

to reduce treatment volume deformations due to bladder 

and rectal filling showed no significant difference for PTV 

coverage, or rectal or bladder sparing. However, this concept 

should be re-examined for hypofractionated treatments, as 

the gains from correcting one fraction would contribute to a 

larger portion of the treatment, and therefore may be more 

dosimetrically relevant.113 Other studies have used the anterior 

rectal wall as a surrogate for prostate bed motion.27,114–117

Post-prostatectomy IMRT has enabled improved tox-

icity profiles compared with conventional radiotherapy 

techniques.118,119 With the increasing use of IMRT, enabling 

dose escalation and the associated steep dose gradients, it is 

critical to accurately localize the target for precise treatment 

delivery. Image-guided radiotherapy (IGRT) either using soft 

tissue, surgical clips, fiducial markers have been applied in 

prostate bed radiotherapy. The associated consequences in 

toxicity with IGRT have been evaluated in retrospective stud-

ies using 3D-CRT or IMRT.89 Rates of acute toxicity with 

cone beam CT-guided conformal radiotherapy to a median 

dose of 68.4 Gy were similar to treatment to 64.8 Gy without 

image guidance radiotherapy.120

Role of rectal stabilizers
Studies using cine-MRI to assess intrafraction motion iden-

tified rectal filling as a predictor of prostate motion.121,122 

A filled rectum is associated with mobile gas pockets, lead-

ing to rectal motion. Therefore, a device inserted into the 

rectum should minimize a change in rectal filling or gas 

position and hence stability of rectum and therefore prostate 

or prostate bed.

The use of endorectal balloons (ERBs) was first reported 

in prostate radiotherapy in 1979, and has been investigated 

regarding its potential immobilizing properties and dosimet-

ric consequences.123 Definite conclusions from a systematic 

review are difficult as there were many variables between the 

trials; however, it was felt that as the ERB is situated directly 

adjacent to the anterior rectal wall and is visualized on portal 

imaging, it can assist in localizing the prostate and thus in 

reducing the CTV to PTV margins. There was a rectal and 

anal wall sparing effect for the intermediate and high-dose 

regions even with IMRT, and the dosimetric consequence 

on the target volume of having an air-filled balloon in the 

rectum has been addressed and shown not to underdose the 

prostate.

In the last 5 years, reports of ERBs in the post-prostatectomy 

setting have been published. Improvement in DVH with ERB 

has been seen in a planning study by Smeenk et al.124 They 

found significantly reduced anal wall DVH and to a lesser 

extent rectal DVH with the ERB. The mean dose to the 

anal wall was reduced by 6 Gy. However, a study assessing 

dosimetric stability to the CTV with ERBs did not observe 

any improvement, although there was improved geometric 

stability of the rectum.125 This observation may be due to 

deformation of the CTV caused by the ERB.

A recently published study by the same group compared 

geometric variations in CTV and OAR during prostate bed 

radiotherapy with and without the use of ERB.126 Cone-beam 

CTs were reviewed and CTV contoured and subdivided into 

superior and inferior CTV with the whole rectal volume sub-

divided into superior and inferior rectum and anal volume. 

The concordance index of cone beam CT treatment volumes 

compared with planning volumes was calculated and dis-

placements measured. Rectal stability was improved with 

the use of ERB (concordance index improvement from 0.41 

to 0.71), which translated into greater CTV stability with the 

improved concordance index in the ERB group. However, 

displacements of the center of volumes (centroids) for the 

superior and inferior CTV were not significantly different 

between the two groups. This study also looked at bladder 

filling and found that the ERB negated the impact of bladder 

filling on CTV stability, postulating that this was due to the 

ERB physically compressing the bladder anteriorly against 

the pubic symphysis for the majority of the CTV. However, 

they did not report on centroid displacements in the superior–

inferior direction, which may be more susceptible due to 

positioning interfraction variation with the ERB.

A retrospective analysis of the largest reported cohort 

using ERBs after RP was by Ishiyama et al.127 They reported 

acceptable late RTOG GI and GU toxicity, with the highest 

late GU toxicity being grade 2 in 13% and grade 3 in 6% of 

patients. The highest late GI toxicity was grade 2 in 6% and 

grade 3 in 3% of patients. One hundred and seven patients 

were assessed, and the prescribed mean dose to the CTV was 

70 Gy in 32 fractions (EQD2 =73.9 Gy based on α/β =1.5). 

However, this study has not recorded patient-reported 

outcomes, which may be a better measure of treatment-related 

toxicities than physician-reported assessments.128,129

A novel rectal obturator, ProSpare™, has been developed 

at the Institute of Cancer Research, London, UK, as a single-

use device made from high impact polystyrene, which is 

inserted by the patient just prior to radiotherapy. It has radio-

opaque markers encased in the anterior and posterior wall of 
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the device, allowing clear identification of the anterior rectal 

wall. It has venting holes in the tip of the device and a vent-

ing line along the central join of the device to allow passage 

of rectal gas through the device and deflate any rectal gas 

bubbles on insertion. It has been evaluated in prostate radio-

therapy and shown to be an effective minimally invasive daily 

online image-guided tool and rectal spacer.130–132 A Phase II 

trial (POPS; Post-Operative ProSpare) randomizing patients 

to receive post-prostatectomy IMRT with or without ProSpare 

will start recruiting in the UK by the end of 2015.

Conclusion
Despite the publication of four guidelines, there is a lack of 

consensus on CTV definition. Information from imaging 

such as mp-MRI should be considered when defining the 

CTV and incorporated into the contouring guidelines, to 

enable a personalized approach to an optimal target volume. 

It is unclear whether a differential dose in ART and SRT is 

needed to improve biochemical failure-free survival and 

whether this translates into an overall survival benefit. The 

long-term efficacy and tolerability data for hypofractionated 

schedules are not yet established.

IMRT and IGRT enable dose escalation to the target vol-

ume and permit delivery of a simultaneous integrated boost 

to a GTV; randomized trials are needed to determine if there 

is a clinical outcome benefit with acceptable toxicity. More 

data in larger patient groups on IGRT post-prostatectomy and 

prostate bed motion are needed before CTV-to-PTV margins 

can be modified. Rectal stabilizing methods are available and 

should be considered, as this may result in a reduction in 

prostate bed deformation and motion during treatment.

Toxicity with dose escalation and IMRT techniques 

appears acceptable, although GU toxicity remains the dose-

limiting factor. Increased knowledge of the dose-response 

relationship is needed regarding OAR or specific regions 

within these organs associated with GU toxicity.

As the current randomized controlled trials mature, we 

shall have better information to determine the indications 

for radiotherapy and its timing and the need for androgen 

deprivation therapy. However, challenges remain to provid-

ing the evidence base to refine the definition of radiotherapy 

planning targets, optimal treatment planning, and delivery 

strategies.
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