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Abstract: As titanium (Ti) continues to be utilized in great extent for the fabrication of artificial 

implants, it is important to understand the crucial bacterium–Ti interaction occurring during the 

initial phases of biofilm formation. By employing a single-cell force spectroscopy technique, the 

nanoadhesive interactions between the early-colonizing Streptococcus sanguinis and a clinically 

analogous smooth Ti substrate were explored. Mean adhesion forces between S. sanguinis and 

Ti were found to be 0.32±0.00, 1.07±0.06, and 4.85±0.56 nN for 0, 1, and 60 seconds contact 

times, respectively; while adhesion work values were reported at 19.28±2.38, 104.60±7.02, 

and 1,317.26±197.69 aJ for 0, 1, and 60 seconds, respectively. At 60 seconds surface delays, 

minor-rupture events were modeled with the worm-like chain model yielding an average 

contour length of 668±12 nm. The mean force for S. sanguinis minor-detachment events was  

1.84±0.64 nN, and Poisson analysis decoupled this value into a short-range force component 

of -1.60±0.34 nN and a long-range force component of -0.55±0.47 nN. Furthermore, a solution 

of 2 mg/mL chlorhexidine was found to increase adhesion between the bacterial probe and 

substrate. Overall, single-cell force spectroscopy of living S. sanguinis cells proved to be a 

reliable way to characterize early-bacterial adhesion onto machined Ti implant surfaces at the 

nanoscale.

Keywords: atomic force microscopy, biophysics, bacterial adhesion, dental implants, 

titanium

Introduction
Amidst rising efforts to combat biofilm-mediated diseases, the prevalence of orthopedic 

and dental implant infections continues to increase in the population.1 Although many 

biomaterials (such as stainless steel and cobalt–chromium alloys) have been introduced 

into the clinical setting, titanium (Ti) continues to be considered the “gold standard” 

material for the elaboration of artificial implants mainly due to its highly biocompatible 

properties.2,3 Ti dental implants have shown excellent survival rates in the past years,4 

however, the issue of bacterial colonization remains a problem as biofilm formation 

on the implant surface can lead to loss of osseointegration with subsequent treatment 

failure.5–7 Thus, many chemical disinfection protocols have been developed to try and 

clean implants after surface infection, in hopes of avoiding surgical intervention and 

increase the survival rates of affected implants.8

Biofilm formation comprises of a series of stages, starting with the initial adhe-

sion of early colonizing species9 and continued by the attachment of secondary and 

increasingly pathogenic bacteria that can lead to disease.10 In this context, Streptococcus 

sanguinis has been consistently reported as an initial colonizer in the process of oral 
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biofilm and Ti implant colonization,11 with the ability of 

adhering directly to the surface of biomaterials, giving place 

to the attachment of secondary bacterial strains. Attachment 

of S. sanguinis to substrates is mostly mediated by adhesins 

present on the bacterial cell wall surface,12 with some studies 

even describing the existence of bacterial appendages such 

as pili as contributing factors in adhesion.13

In order to understand the initial bacteria–substrate 

interaction, the process of bacterial adhesion has been 

characterized according to biophysical models into a 

“docking phase” and a “locking phase”.14 During the docking 

phase, a planktonic bacterium comes into close proximity to 

a substrate; and the interplay of long-range interactions such 

as van der Waals and electrostatic forces dictate attraction 

or repulsion between cell and surface.15 This phase can be 

explained by the Derjaguin, Landau, Vervey, and Overbeek 

colloidal theory.16 In the subsequent locking phase, bacterial 

receptors attach to the surface in an irreversible manner and 

secure the bacterium into place.17 Bacterial appendages such 

as pili and capsule are also thought to be involved in this irre-

versible locking phase stage, where surface de-adhesion can 

only be obtained by mechanical or chemical removal.13,18

Although several methodologies have previously been 

employed to study bacterial adhesion and colonization to 

biomedical substrates, the use of atomic force microscopy 

(AFM) opens new possibilities to characterize the nanoadhe-

sion of bacteria to surfaces with nanonewton and piconewton 

sensitivity.19 In this context, functionalized live-bacterium 

probes allow the possibility to explore bacterium-surface 

nanoadhesive interactions by employing techniques such as 

single-cell force spectroscopy (SCFS).20 Currently, one of the 

preferred approaches for SCFS includes immobilizing bacteria 

onto colloidal probes to better control the probing contact 

between bacterial cells and sample surface.21 By utilizing 

bio-based adhesives, it is possible to effectively immobilize 

bacterial cells to an AFM cantilever and ensure viability for 

enough time to carry out force measurements.22 This approach 

has been utilized with many different Gram-positive and 

Gram-negative bacterial species.20,22–24 In addition of probing 

the adhesion force and adhesion work of bacteria against a 

surface of interest, it is possible to utilize force-extension data 

to model single-detachment events according to several biopo-

lymer stretching models.25 Additionally, values for short-range 

and long-range forces can be obtained by applying a Poisson 

analysis to the unbinding data observed at specific contact 

times.26 Utilizing this approach, it is possible to quantify the 

values for both nonspecific and specific forces driving bacteria 

toward a surface of interest, and thus gain more insight on the 

underlying nature of bacteria–substrate interactions.

Currently, there is limited literature regarding the use of 

AFM to study the adhesion of early implant-colonizing bac-

teria onto clinically analogous Ti implant surfaces. Therefore 

in this study, we utilize SCFS to characterize the adhesion 

of an early implant colonizer, S. sanguinis, onto machined 

Ti surfaces at the nanoscale.

Materials and methods
Titanium substrates
Sterile 15 mm diameter industrially labeled “smooth” Ti discs 

provided by Straumann (Basel, Switzerland) were employed 

throughout this research, which are analogous to smooth 

implants utilized in the clinical setting. Surface morphology 

of Ti discs was characterized with a Philips XL30 FEG-SEM 

(FEI, Eindhoven, the Netherlands) scanning electron micro-

scope (5 kV acceleration voltage). AFM characterization 

(NanoWizard II; JPK Instruments, Berlin, Germany) was per-

formed in contact mode employing NP-S10 probes (Bruker, 

Santa Barbara, CA, USA) with a spring constant of 0.3 N/m at 

a scanning rate of 1.0 Hz and scanning size of 10×10 μm. Sur-

face roughness values (R
a
) were obtained both by conventional 

profilometry (Proscan 1000, Scantron, Somerset, UK) and 

AFM profilometry (Gwyddion 2.31 software, n=9, 256×256 

pixel scans) for 10×10 μm size scans for three independent 

samples. Surface wettability was calculated by employing an 

optical contact angle meter with a deionized water droplet 

(KSV Instruments, CAM 200, Monroe, CT, USA).

Bacterial cultures
S. sanguinis (ATCC-10556) cells were obtained by growth in 

brain heart infusion (BHI) broth (Oxoid Ltd, Basingstoke, UK) 

for 16 hours at 37°C and aeration. Previous to AFM experi-

ments, a 20-fold dilution of bacterial cells was obtained by 

centrifugation for 1 minute at 5,000 rpm (Eppendorf 5417R, 

Eppendorf, Stevenage, UK), washing three times and resus-

pending in TRIS-buffer pH 7.4 (Sigma-Aldrich, Dorset, UK). 

Finally, a 50 μL aliquot of resulting bacterial dilution was 

transferred to a sterile glass slide for cell probe preparation.

cell probe fabrication
For construction of S. sanguinis functionalized colloidal 

probes, an adaptation of a previously reported approach 

was employed.27 Briefly, ~10 μm diameter glass micro-

spheres (Whitehouse Scientific, Chester, UK) were attached 

to NP-O10 tip-less cantilevers (Bruker) by employing a 

thin layer of ultraviolet (UV)-curable glue (Loctite, Hemel 

Hempstead, UK). Optical microscopy and scanning electron 

microscope (SEM) confirmed adequate attachment of a single 

microsphere on each cantilever. Thermal calibration yielded 
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spring constant values of ~0.3 N/m (nominal spring constant 

values =0.35 N/m). Subsequently, colloidal probes were coated 

with a poly-dopamine (poly-DOPA) solution for 1 hour, rinsed 

and dried under N
2
. Probes were then placed into contact with 

isolated bacterial cells for ~3 minutes until attachment was 

observed, and subsequently positioned over the Ti substrate for 

force measurements. All constructed cell probes were utilized 

immediately for force-spectroscopy experiments. A minimum 

of three independent probes were utilized for analysis.

scFs force measurements
SCFS of S. sanguinis was performed with a NanoWizard 

AFM system (JPK Instruments) mounted on an Olympus 

IX71 (Olympus, Tokyo, Japan) inverted microscope. A 

minimum of three independent experiments from different 

bacterial cultures were carried out. Measurements were per-

formed with reduced surface delays of 0 and 1 seconds and an 

increased surface delay of 60 seconds, with a loading force of 

500 pN and a constant speed rate of 2.0 μm/s. To minimize 

the impact of surface topography, measurements were taken 

on different areas of the sample. Force-curves for DOPA-

coated microspheres were employed as controls. As a model 

to evaluate the effect of a commonplace implant disinfection 

solution, a 2 mg/mL concentration of chlorhexidine (CHX) 

(Sigma-Aldrich, Dorset, UK) in TRIS buffer was added to 

the system, immersing the probe for 5 minutes before force-

curves were recorded at 60 seconds surface delays.

Data extraction and statistical analysis
Maximum adhesion force and adhesion work values were 

collected from resulting force-curves and processed with 

the JPK Data Analysis software v4.2.61 (JPK Instruments). 

Results were expressed as mean ± standard error, and were 

further analyzed with the Kruskal–Wallis test for nonpara-

metric variables considering significance at P,0.05. Minor 

unbinding events observed at 60 seconds surface delays 

were fitted to predict contour lengths according to the pre-

viously described worm-like chain (WLC) model.28 Further 

decoupling of bacterial adhesion forces was performed 

with Poisson analysis according to a previously reported 

approach,29 obtaining values for both short-range (F
SR

) and  

long-range force (F
LR

) components.

Results and discussion
characterization of titanium substrates
Previous to any bacterial work, surface topographic and 

chemical characterization of smooth Ti discs was performed 

and is summarized in Figure 1. SEM and AFM demonstrate 

a Ti surface topography consistent with previous reports 

in literature.30 Conventional profilometry yielded R
a
 values 

of 0.61±0.01 μm and AFM nano-profilometry showed values 

of 0.17±0.02 μm. As the AFM is able to analyze smaller scan 

sizes compared to traditional laser profilometry, R
a
 values 

observed for AFM profilometry are more representative 

of the surface roughness to which bacterial cells will be 

exposed during adhesion. It has been previously mentioned 

that implant surfaces with R
a
 values ,1 μm can be consid-

ered smooth and therefore these surfaces are well within the 

expected parameters.31 Average contact angle measurements 

were found to be 67.0°±5.0°, and as surface wettability 

reflects surface energy, the employed Ti substrates can be 

considered to be slightly hydrophilic in nature.

S. sanguinis–Ti adhesive interactions
Functionalization of colloidal probes with S. sanguinis was 

possible with the use of poly-DOPA as an immobilization 

agent, similar to what has been previously reported for dif-

ferent strains of bacteria and yeast cells.32 It is important to 

consider, however, that as S. sanguinis is usually found in 

chain conformation, it is very difficult to immobilize a unique 

bacterium onto the microsphere. Nevertheless, this did not 

seem to affect SCFS measurements as all cell probes pre-

sented similar unbinding behavior that allowed for successful 

comparison and statistical analysis. As the colloidal geometry 

of the microsphere only allows a reduced area of contact to 

occur with the Ti surface, the probed adhesive interactions are 

limited only to a single or reduced number of bacterial cells 

and therefore similar behavior was observed for all probes. 

The selection of TRIS buffer maximized the immobilization 

of bacteria to the probe throughout measurements compared 

to higher ionic charged buffers like phosphate-buffer saline 

(PBS). S. sanguinis probes remained viable for approxi-

mately 1 hour during measurements, as observed by live/

dead fluorescence staining (data not shown). Experiments 

for each probe were carried out well under this time limit, 

and for this reason a reduced number of increased surface 

delay force-curves (60 seconds) were obtained compared to 

shorter contact times (0 and 1 seconds).

As observed in Figure 2, increasing contact time 

between the S. sanguinis probe and Ti surface generated 

important changes in the architecture of resulting force–

distance curves. Force-curves obtained at 60 seconds 

showed increased parameters for maximum adhesion, 

number of minor-unbinding events, and rupture lengths 

compared to shorter contact times. Adhesion forces for the 

S. sanguinis probe were found to be 0.32±0.00, 1.07±0.06, 

and 4.85±0.56 nN for 0, 1, and 60 seconds contact 

times, respectively. However, only 60 seconds contact 
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times demonstrated a significant difference in maximum 

adhesion forces when compared to the poly-DOPA con-

trol probe (P,0.05). Adhesion work, represented by the 

integrated area under the retraction curve, was found to be 

19.28±2.38, 104.60±7.02, and 1,317.26±197.69 aJ for 0, 1, 

and 60 seconds, respectively.

For both studied parameters, higher contact times resulted 

in increased values compared to decreased surface delays. 

As cells are compliant in nature, it is believed that longer 

contact times allow the bacterium to effectively adapt to the 

geometry and topography of the substrate, generating an 

increased contact area that allows a higher number of spe-

cific interactions to occur between bacteria and Ti surface. 

It is important to note that the maximum adhesion force 

value is determined by the magnitude of the major-unbinding 

peak, which corresponds to the difference between the 

baseline and the biggest dip in force during probe retraction. 

Thus, this value is mainly indicative of the nonspecific force 

interactions occurring between the bacterial probe and Ti 

substrate. Adhesion work, however, also takes into account 

the minor-unbinding events observed throughout the entire 

detachment process, and therefore this value is believed 

to reflect in a more effective manner the overall adhesive 

interaction between the bacterium probe and surface. Similar 

results have been previously observed for other streptococcal 

strains.26,33 It is important to note that Ti surfaces employed in 

this research are clinically analogous substrates and therefore, 

differences in force measurements caused by surface topo-

graphy were minimized by obtaining force-curves in several 

representative areas of the samples. Additionally, these 

results further demonstrate that bacteria, such as S. sanguinis, 

can attach directly onto Ti surfaces without the existence of 

a previously formed biological pellicle. This observation is 

in line with a recent study by Lorenzetti et al,34 which also 

×

Figure 1 Ti substrate characterization.
Notes: (A) representative seM image of the employed straumann machined Ti discs. (B) consistent with previous reports, contact angle measurements were found to 
be 67.0°±5.0°, demonstrating a slightly hydrophilic nature. (C) AFM surface profiles for two independent machined Ti discs, obtained from 10×10 μm scans. (D) aFM 3D 
reconstruction image showing the topography of machined Ti surfaces with high-resolution (Z=700 nm).
Abbreviations: aFM, atomic force microscopy; seM, scanning electron microscopy; Ti, titanium; 3D, three-dimensional.
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observed direct adhesion of Escherichia coli onto nontreated 

and treated Ti surfaces.

Wlc modeling predicts length of 
bacterial surface molecules
As it is hypothesized that S. sanguinis attaches to hard sur-

faces by means of cell wall surface adhesins, we modeled the 

minor-unbinding events found at increased dwelling times 

with the WLC model given by
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where F is force (N), k
b
 the Boltzmann constant (J/Kelvin), 

T is temperature (Kelvin), x is the molecular extension (m), 

l
p
 is persistence length, and L corresponds to the total con-

tour length of the molecule. In this case, l
p 
was considered 

as the length of a single amino acid at ~0.36 nm.23 Interest-

ingly, the average contour length predicted for S. sanguinis 

corresponds to 668±12 nm (n=661 unbinding events across 

three independent probes) (Figure 3A). This value is higher 

than the contour length reported for Staphylococcus aureus 

(314.06±9.27 nm) using a similar protocol.27

Not many reports are available in the literature regarding 

SCFS experiments with S. sanguinis. There are, however, 

some studies regarding nanoadhesion of other streptococcal 

strains that may allow for some discussion. Sullan et al35 

observed that the unbinding of S. mutans from surfaces coated 

in salivary agglutinin, fibronectin, and collagen had rupture 

lengths up to ~6,000, ~2,000, and ~5,000 nm, respectively. 

For our experiments, however, we observed lower detachment 

lengths between the S. sanguinis probes and smooth Ti. As the 

Ti substrates employed are uncoated and therefore noncom-

pliant, we believe that the values reported for the unbinding of 

S. sanguinis are mainly the result of the unfolding of cell wall 

proteins, accompanied in some extent by a minimal extension 

of the bacterial membrane. In another study, Francius et al36 

found the unbinding length between S. thermophilus and an 

abiotic surface to be up to 800 nm, which is comparable to 

the ones reported in the present study. 

Poisson analysis of unbinding events for 
force decoupling
To decouple the adhesion between S. sanguinis and Ti, a 

previously reported statistical method known as Poisson 

analysis was employed29 (Figure 3B and C). By plotting a 

linear regression between mean adhesion force (nN) and 

variance (nN2) of the minor unbinding peaks observed 

between four independent bacterial probes and substrate, it 

was possible to determine values for F
SR

 and F
LR

. It was found 

Figure 2 Streptococcus sanguinis–Ti adhesive interactions probed by atomic force microscopy. 
Notes: representative force-curves for the unbinding of S. sanguinis bacterial probes after 0, 1, and 60 seconds surface contact times. Insets show the comparison 
between bacterial probes and the poly-DOPa coated probes (controls) at each time point for both studied parameters (average of three independent probes) (*P,0.05, 
Kruskal–Wallis).
Abbreviation: Ti, titanium.
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that the mean value for S. sanguinis minor-detachment events 

was -1.84±0.64 nN, with an F
SR 

component of -1.60±0.34 nN 

and an F
LR

 component of -0.55±0.47 nN. The negative value 

observed for F
LR

 reflects an overall attractive nature of the 

long-range forces affecting S. sanguinis attachment to Ti. 

Interestingly, F
SR

 values were higher than the ones observed 

for S. aureus when using the same substrate.27 Considering 

that bacterial attachment to hydrophilic surfaces has been sug-

gested to be predominantly mediated by hydrogen bonding, 

with an individual bond force of approximately -0.13 nN,37 

it is possible to hypothesize that a minimum of 12 hydrogen 

bonds are formed between the S. sanguinis cell probe and the 

surface during AFM probing. This increased bond formation 

capacity in S. sanguinis could help to explain the increased 

early-colonizing behavior of this strain toward hard surfaces 

in the oral cavity.

Disrupting minor-unbinding events 
between S. sanguinis and Ti with 2 mg/ml  
chX
CHX is one of the most widely used agents for the nonsurgical 

treatment of infected dental implant surfaces,6 and it has the 

property of remaining active for several hours by adsorbing 

onto surfaces.38 However, little is known about the effect 

this substance has on the early adhesive interaction of oral 

streptococci bacteria with surfaces. To evaluate the effect of 

CHX on the adhesion of S. sanguinis to Ti surfaces, the initial 

buffer was replaced by a solution of 2 mg/mL CHX in TRIS. 

Significant changes in attachment behavior were observed 

for both adhesion force and work, as values increased to 

47.93±5.26 nN and 10,473.10±1,472.59 aJ, respectively, 

after exposure to the CHX solution (Figure 4). The increase 

in adhesion observed after the application of CHX could be 

explained by two possible mechanisms. First, CHX is a posi-

tively charged molecule with the ability to bind to substrates 

and negatively charged bacterial surfaces,6 and therefore its 

presence may increase the binding affinity between the probe 

and Ti surface. Second, CHX exposure has been shown to 

alter the mechanical properties of the bacterial cell and cause 

membrane damage,38,39 which could also lead to increased 

adhesion due to increased compliance of the bacterium 

against the surface during probing. A similar increase in 

adhesion force and work was observed for S. aureus bacte-

rial probes when probed against smooth Ti surfaces in the 

presence of CHX, however, we found this effect to be more 

pronounced in the case of S. sanguinis. Nevertheless, further 

Figure 3 Worm-like chain modeling and Poisson analysis of Streptococcus sanguinis–Ti unbinding events. 
Notes: (A) histogram for the predicted contour length obtained for minor-detachment events across three independent S. sanguinis probes (n=661 events). Inset represents 
the fitting process carried out on the analysis software. (B) Force histogram for minor-detachment events observed at increased contact times. (C) By plotting average 
unbinding force against variance for each cell probe, it is possible to predict values for Fsr and Flr. The analysis for four independent S. sanguinis probes is shown (r2=0.92).
Abbreviations: Flr, long-range force; Fsr, short-range force; Ti, titanium.
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research is necessary to clarify the specific mechanism of 

CHX-mediated increase in S. sanguinis nanoadhesion to 

Ti surfaces, and to determine the clinical significance this 

effect could potentially have on biofilm formation post-

implant disinfection with CHX. Furthermore, as this AFM 

approach is not limited only to S. sanguinis and Ti surfaces, 

it can potentially be employed as a tool to evaluate the 

impact of antiadhesive surfaces, coatings, or solutions on 

the attachment of a diverse number of bacterial strains to 

implant surfaces, in hope of preventing surface colonization 

and infection.

Conclusion
SCFS of living S. sanguinis cells proved to be a reliable way 

to characterize the nature of their adhesion onto clinically 

analogous smooth Ti surfaces at different contact times. 

Within the limitations of this study, it was possible to charac-

terize and decouple adhesion forces between an S. sanguinis 

bacterial probe and a clinically analogous Ti implant surface. 

Values for both adhesion force and adhesion work were found 

to increase at higher surface delays and were significantly 

higher than the poly-DOPA controls, and thus believed 

to directly reflect the interaction between immobilized 

S. sanguinis cells and the Ti substrate. Predicted contour 

lengths for single-unbinding events are consistent with previ-

ous reports in literature for similar streptococcal strains, and 

force-decoupling at 60 seconds contact times demonstrated 

that S. sanguinis attaches to Ti surfaces predominantly 

though specific short-range adhesive forces. Therefore, 

as Ti substrates employed in this study were found to be 

hydrophilic, we suggest hydrogen bonding as the principal 

driving force in the initial phase of streptococcal adhesion 

to Ti surfaces. Finally, the addition of a CHX solution to the 

system generated increased values for both adhesion force 

and work parameters. Hopefully, these results will give new 

insight on the use of SCFS for the study of bacterial adhesion 

onto clinically representative biomaterial surfaces.
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