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Objective: Kirsten rat sarcoma (K-Ras) protein is a member of Ras family belonging to the small 

guanosine triphosphatases superfamily. The members of this family share a conserved structure 

and biochemical properties, acting as binary molecular switches. The guanosine triphosphate-

bound active K-Ras interacts with a range of effectors, resulting in the stimulation of downstream 

signaling pathways regulating cell proliferation, differentiation, and apoptosis. Efforts to target 

K-Ras have been unsuccessful until now, placing it among high-value molecules against which 

developing a therapy would have an enormous impact. K-Ras transduces signals when it binds 

to guanosine triphosphate by directly binding to downstream effector proteins, but in case of 

guanosine diphosphate-bound conformation, these interactions get disrupted.

Methods: In the present study, we targeted the nucleotide-binding site in the “on” and “off” state 

conformations of the K-Ras protein to find out suitable lead compounds. A structure-based virtual 

screening approach has been used to screen compounds from different databases, followed by a 

combinatorial fragment-based approach to design the apposite lead for the K-Ras protein.

Results: Interestingly, the designed compounds exhibit a binding preference for the “off” state 

over “on” state conformation of K-Ras protein. Moreover, the designed compounds’ interac-

tions are similar to guanosine diphosphate and, thus, could presumably act as a potential lead 

for K-Ras. The predicted drug-likeness properties of these compounds suggest that these com-

pounds follow the Lipinski’s rule of five and have tolerable absorption, distribution, metabolism, 

excretion and toxicity values.

Conclusion: Thus, through the current study, we propose targeting only “off” state conforma-

tions as a promising strategy for the design of reversible inhibitors to pharmacologically inhibit 

distinct conformations of K-Ras protein.

Keywords: antitumor agent, K-Ras, molecular docking, molecular modeling, virtual screening

Introduction
Guanosine triphosphatases (GTPases) are a class of proteins that include the Ras pro-

teins. These related proteins are mainly involved in signal transduction, cell growth, 

motility, differentiation, and cell death.1 During the signaling process, Ras proteins 

act as molecular switches and bind to guanosine triphosphate (GTP) in the active 

state and revert to inactive form upon hydrolysis of GTP to guanosine diphosphate 

(GDP).2,3 Two flexible regions, switch-I that involves residues 32–38 and switch-II 

that involves residues 60–75, mediate the transition from one form to another.4 This 

change is catalyzed by guanine nucleotide exchange factors and GTPase-activating 

proteins (GAPs). In the last decade, numerous mutations, which reflect the oncogenic 

potential of Ras, have been reported in these two regions; most notably, the regions 
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involving Gly12 and Gly13 in the G1 box and Gln61 in the 

G3 box are important. Point mutation in these coding regions 

hinders the activity of GTPase and makes Ras insensitive 

to GAP action. This initiates multiple signaling pathways 

with various downstream effectors, such as the Raf kinase 

and phosphatidylinositol 3-kinase-related protein families.5,6 

Mutations in these regions are reported in almost all types of 

human cancer. Of these, 60%–90% are in pancreatic cancer 

and 30%–50% in colorectal cancers, with Kirsten rat sarcoma 

(K-Ras) being the most frequently mutated RAS gene.7–10 

Weinstein reported that survival of cells depends on the 

activated RAS oncogene function and inhibition of activated 

RAS would lead to tumor regression and cell death.11,12 The 

guanine nucleotide (GN)-binding pocket dictates the switch 

conformation; therefore, developing compounds binding to 

this region will have a likelihood of modulating K-Ras sig-

naling. Small molecules targeting the GN-binding site have 

been disregarded due to the pM affinity of GTP and GDP 

to K-Ras and their high intracellular concentration. SML-8-

73-1 was shown to covalently bind K-Ras G12C mutant at 

the “off” state conformation, even in the presence of 1 mM 

concentration of GTP and GDP.13,14 K-Ras protein plays a key 

role in the signal transduction cascade. Mutation in Gly12, 

Gly13, and Gln61 residue of K-Ras leads to permanent “on” 

state results in tumorigenesis due to failed interaction with 

the GAPs. Three crucial residues, Tyr32, Thr35, and Gly60, 

show interaction with γ-phosphate of GTP. The inactive GDP-

bound structure of K-Ras reveals the absence of these key 

interactions and increased distance between these residues 

and position of the γ-phosphate coinciding with large confor-

mational change in both switch regions15–17 (Figure 1).

Despite many attempts, there has not been much success in 

finding drugs for K-Ras. Therefore, it still remains a very chal-

lenging therapeutic target for the modelers to design inhibitors. 

In an attempt to identify new leads to inhibit K-Ras, we looked 

at the interaction18 of the tertiary structures of K-Ras with 

existing US Food and Drug Administration (FDA)-approved 

drugs and compounds from different databases by using 

structure-based virtual screening (VS). We utilized fragment-

based approach and combinatorial library design strategy from 

screened library of different small molecule databases to find 

out better interacting molecules with favorable interaction fol-

lowed by absorption, distribution, metabolism, excretion and 

toxicity property prediction to ensure the pharmacokinetic and 

toxicity profile of designed molecules. We further performed 

induced fit docking calculation in order to confirm protein 

ligand interactions in the binding site.

Materials and methods
Dataset collection and preparation
Compounds were selected from six different databases 

(Asinex, BindingDB, DrugBank, National Cancer Institute 

[NCI], PubChem, and Chembridge database) of varying size 

(numbers of molecules) and type (divers scaffolds) as a starting 

point for VS.19 In this study, 1 13,962 diverse small molecules 

from Asinex platinum collection, 1,602 FDA-approved small 

molecules drugs from DrugBank,20–22 408 Ras protein inhibi-

tors from BindingDB,23–26 4,000 lead-like small molecules 

from KinaCore library and 10,000 drug-like compounds from 

KinaSet library of Chembridge database,27 1,990 compounds 

of NCI diversity set from NCI database,28 155 kinase inhibi-

tors from PubChem compound databases,29 and 267 active 

molecules from PubChem bioassay (AID-759) entitled HTS 

were taken to identify specific small molecule inhibitors of 

Ras and Ras-related GTPases, specifically Ras wild type. The 

entire set of molecules was subjected to ligand preparation. 

Ligands were submitted to the LigPrep module of Schrödinger 

(Schrödinger Release 2015-1; Schrödinger, LLC, NY, USA) to 

generate ionization states populated at crystallized condition of 

K-Ras protein pH 8.5 by using epik, enumerating isomers and 

tautomers and generating three-dimensional conformations.

Protein preparation
The crystal structure of K-Ras protein complex with GDP (Pro-

tein Data Bank [PDB] ID: 4OBE) and GTP (PDB ID: 4DSO) 

was downloaded from PDB.30 4OBE is wild-type GDP-bound 

structure of K-Ras having a resolution 1.24 Å, and 4DSO is 

a G12D GTP-bound structure of K-Ras having a resolution 

1.85 Å. 4DSO mutant is converted into wild-type structure by 

mutated Asp12 to Gly12. The mutation was incorporated into 

the structure by homology modeling of K-Ras sequence, for 

which 4DSO was used as a template. Both proteins were pre-

pared by using protein preparation wizard panel of Schrödinger 

Figure 1 Superposition of GDP (green) and GTP (magenta)-bound conformation 
of K-Ras protein.
Abbreviations: GDP, guanosine diphosphate; GTP, guanosine triphosphate.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


OncoTargets and Therapy 2016:9 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2577

Lead identification for the K-Ras protein

Suites 2015.1 (Schrödinger Release 2015-1). Hydrogens were 

added to its corresponding carbon atom and crystallized water 

molecules were removed from the structures. Protonation 

states of the titratable residues were assigned at 8.5 pH. The 

structures were minimized by using Optimized Potentials for 

Liquid Simulations 2005 force field. The grid was generated 

by considering cocrystallized GDP/GTP molecule as a grid 

center using glide for docking calculations.31

VS of chemical database
VS approach has been widely used in drug discovery pro-

cess for lead identification and optimization.32 It provides an 

inexpensive and fast alternative to high-throughput screening 

for discovering new drugs.33 There are two broad categories 

of computational techniques for VS: 1) ligand-based drug 

design (eg, ligand similarity); and 2) structure-based drug 

design (ligand docking) methods. In this study, structure-

based drug design (ligand docking) method was used.34–36 

VS was performed by using glide module of Schrödinger 

suites 2015.1. In VS, prepared ligands from different data-

bases were used as a ligand input and filter criterion based 

on Lipinski’s rule of five and removal of reactive functional 

groups were applied to the dataset and docked to the protein 

by using high-throughput VS.37–39 Molecules obtained from 

high-throughput VS were docked using the standard preci-

sion method, and the standard precision docked poses were 

further docked by using extra precision method.40,41 The top 

100 molecules were finally selected out of 7,894 screened 

molecules from 113,962 molecules of Asinex platinum 

library, 16 hits out of 408 molecules obtained from the 

BindingDB database, 1,320 hits out of 4,000 molecules from 

KinaCore library and 1,006 hits from total 10,000 molecules 

from KinaSet of Chembridge database, 83 hits out of 1,480 

FDA-approved drugs from Drug Bank database, 150 hits 

from 1,990 total molecules of NCI diversity set of NCI, and 

eight hits from 155 kinase inhibitors of PubChem Compound 

database and 26 hits out of 267 molecules from PubChem 

Bioassay of H-Ras in VS. Top-ranked molecules based on 

docking score and poses from each database were analyzed 

and selected for further study (Figure 2).

Generation of fragment library
New lead molecules for K-Ras were designed from the 

screened molecules by analyzing their interactions with 

the binding site residues.42,43 The binding-site occupancy of 

screened molecules from VS, particularly FDA-approved 

drugs, Ras inhibitors from BindingDB, kinase and H-Ras 

inhibitors from PubChem database, have been used as a 

starting point to formulate a dictionary of keys. To optimize 

the chemotype requirements for the GDP/GTP-bound 

conformations, fragment library was generated by pruning 

screened molecules from these databases on the basis of 

binding interactions and were further suggested according 

to the (or) part of the pocket occupied.44

Design of combinatorial library
Combinatorial library was generated by using CombiGlide 

workflow of Schrödinger. These workflows can be used 

either as a prelude to combinatorial libraries’ design that 

may be screened for leads and identifying novel scaffolds, 

or generate focused libraries in support of lead discovery 

and optimization process. To design lead molecule for the 

K-Ras GN-binding pocket, combinatorial library design 

strategy was utilized. The fragments were substituted into 

a common template core (guanine) at a defined attachment 

point to graft structural features that are present in different 

structures (Figure 3). All possible combinations of fragments 

and linker with the core were explored. The core, linker, and 

fragments were assembled into about 260 molecules.

Results
active site analysis
The catalytic GN-binding site in the Ras family is conserved 

in spite of the variations in protein function and cellular 

localizations.45 The conformational changes are witnessed 

in the switch-I and switch-II loop region of GN-binding 

site on the conversion of GTP to GDP, which facilitates 

to address the specificity issue in the design of lead in the 

reactive and product two-state conformations. The binding 

pockets of different Ras are similar in sequence and size, 

whereas they vary in the conformation of protein in the “on” 

state and “off” state.

The Ras inhibitors developed over the years are mainly 

for the “on” state and failed to address the selectivity issue. 

The binding site and inhibitor surfaces are complementary 

to each other; therefore, it is essential to comprehend and 

investigate the properties of the binding pockets to add cog-

nizance to the lead design. The active site of Ras has been 

divided into three subpockets, namely, guanine-binding 

pocket (GBP), ribose-binding pocket (RBP), and phosphate-

binding pocket (PBP). In the GDP-bound conformation, one 

extended cavity was also observed (Figure 4). This cavity 

was formed by the residues Tyr32, Thr35, Gly60, which 

interact with the γ-phosphate in the presence of GTP. These 

interacting residues are exposed to the surface after phosphate 

hydrolysis, which creates a cavity. The backbone of Asp33 
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and Ile36 residues orients and exposes itself inside this 

cavity, which were inaccessible at GTP-bound conformation. 

Such conformational rearrangement in the “off” state allowed 

us to gaze extended cavity for the inhibitor design aspects 

which was not explored earlier. Its relatively big volume and 

varying nature of the inner lining in “off” state conformation 

enabled us to use different combinations of fragments that 

were selective for the subpocket.

The tightly packed guanine base at the GBP accommodates 

and forms hydrogen bonds (H-bonds) with active site residues 

Figure 2 Combinatorial library: core, linkers, and fragments.
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Asn116, Lys117, Asp119, and Ala146. The residues Phe28 and 

Lys117 are positioned in such a way that it can form additional 

π–π and cation–π interactions, respectively, with guanine base. 

Asp30 shows H-bonds with ribose sugar. Residues Gly13, 

Val14, Gly15, Lys16, Ser17, and Ala18 form very strong 

H-bond network with phosphates in PBP. The superimposed 

GTP-bound conformation over GDP-bound conformation was 

showing considerably significant conformational changes in 

switch-I and -II regions of active site. GTP and GDP share 

common interaction with the GBP residues, but due to the 

presence of γ-phosphate in GTP, it forms an additional H-bond 

interaction with Val29, Tyr32, Thr35, and Gly60.

Database screening
VS methods are central to many problems of chemoinfor-

matics in design, selection, and analysis of small molecules. 

VS is a useful technique to rapidly assess a large library of 

compounds in order to identify those molecules that most 

likely bind to a drug target. The docking protocol for VS has 

been validated by redocking cocrystallized GDP molecule to 

its own receptor-binding site. The lowest energy-docked con-

formation corroborated well with the cocrystallized GDP in 

the protein showing root mean square deviation of 0.4185 Å,  

which indicates that this docking protocol is predicting 

the pose correctly. The results were analyzed on the basis 

Figure 3 The workflow of implemented chemical database VS and combinatorial fragment-based approaches to design leads for the K-Ras protein.
Abbreviations: ADMET, absorption, distribution, metabolism, excretion and toxicity; FDA, Food and Drug Administration; HTVS, high-throughput virtual screening; NCI, 
National Cancer Institute; SP, standard precision; VS, virtual screening; XP, extra precision.
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of poses, interactions, and binding score obtained after 

screening the datasets. Based on our interests, we sorted out 

the top ten molecules from each database after screening. NCI 

database molecules showed better binding interaction energy 

with K-Ras, when compared with other databases (Table S1). 

However, these molecules were not able to explore the entire 

binding cavity for the interaction. The top-ranked molecule 

(NSC_1945) from NCI diversity set database had −9.215 

docking score, and was found to interact with PBP residues 

Gly13, Gly15, Lys16, Val29, and Tyr32 and was unable 

to approach the other two pockets. The compound (Code: 

70014) from Asinex Platinum collection database show-

ing −8.663 docking score occupies GBP and PBP partially 

and interacts with Gly13, Gly15, Lys16, Ala146, and Lys147. 

The interactions of other database molecules are not men-

tioned here because of their insignificant contributions in 

the binding.

Binding-site occupancy and interactions 
with the screened compounds
The molecules from different datasets were found to be 

poor binders on their own, so combinatorial and knowledge-

based approach of drug design has been employed. The 260 

designed molecules have been docked on the “on” and 

“off” state conformations of K-Ras protein. The molecules 

 having .10 kcal/mol interaction docked energy were selected 

and discussed as potential lead molecules. Molecules 13 and 

18 (Figure S1) were found to be within the cut-off energy 

of the “off” and “on” state conformations, respectively, and 

their corresponding docking score and energy decomposition 

are given in Tables S2 and S3.

Visual inspection of the docked poses of these molecules 

has shown similar binding as GDP and GTP when bound 

to their corresponding crystal structures of K-Ras protein, 

which may indicate that designed molecules were forming 

favorable interactions with the receptor (Tables S4 and S5). 

The guanine moiety of all designed molecules has shown 

similar binding mode and interaction at GBP as in the case 

of GDP (Figure S2) and GTP (Figure S3). The top-ranked 

molecule (M3) from the series of “off” state compound 

has shown similar docking score (−13.30) as its own GDP 

ligand (−13.33). However, the top-ranked molecule (M12) 

of “on” state has a lower docking score (−17.6) than GTP 

(−21.47). Such discrepancy in the energy between designed 

and GDP/GTP molecules arises mainly from the electrostatic 

component because GDP/GTP was docked in the presence 

Figure 4 Superimposed binding pocket of GDP and GTP bound conformation of K-Ras protein.
Notes: GTP/GDP-binding pocket are divided into three subpockets: GBP (green), RBP (blue), and PBP (orange). The other extended cavity (purple) was found in inactive 
conformation. Light colors of the respective pocket are GTP-interacting residues and dark colors of the respective pocket are GDP-interacting residues; red arrows show 
the direction of residues’ movement from inactive to active state.
Abbreviations: GBP, guanine-binding pocket; GDP, guanosine diphosphate; GTP, guanosine triphosphate; PBP, phosphate-binding pocket; RBP, ribose-binding pocket.
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of Mg2+ ion which adds more electrostatic component in the 

docking score, but the designed molecules were docked in 

the absence of Mg2+ ion. Therefore, it becomes very difficult 

to compensate such a large electrostatic component and 

replace GDP/GTP from its binding site. The cyclopentyl 

group of M3 (Figure 5A, B) molecule in “off” conformation 

is placed like ribose sugar at RBP. The 4-hydroxy and 2-oxo 

form H-bond interaction with Val29 and Lys117, respec-

tively. The 3-ammonio-1-hydroxy-1-(hydroxyphosphinato) 

propyl phosphonate group is positioned in such a way that 

it can go deep into the extended cavity and form strong 

H-bond interaction with the side chain of Lys16, Ser17, 

and backbone carbonyl oxygen of Val14, Asp33, and Ile36. 

In addition to H-bond interaction, a salt bridge interaction 

was also observed between phosphonate and carboxylate of 

Asp57. The lipophilic term derived from hydrophobic grid 

potential and fraction of the total protein ligand vdW energy 

(LipophilicEvdW) has shown less contribution in M3 docking 

score. The electrostatic energy term in the docking score of 

GDP has been compensated by ‘reward for hydrophobically 

packed correlated H-bond’ (PhobEnPairHB) and H-bond term 

in designed M3 molecule. The top-ranked docked molecule 

(M12) in “on” state is also found to occupy similar GTP 

conformation in the binding cavity. The interaction networks 

between the “on” conformation and M12 (Figure 5C, D) are 

made up of a closely knit circuit of noncovalent interactions, 

such as electrostatic and hydrophobic, in addition to H-bonds 

to achieve proper binding. The phenyl ring in M12 is perfectly 

positioned between RBP and PBP to form π–π interaction with 

Tyr32. Also, 2-(ammoniomethyl)-3-oxopropanoate occupies 

PBP, where it forms H-bonds with Gly13, Asp57, Thr58, 

and Gly60 and a salt bridge with Lys16. The electrostatic 

energy term in the docking score of GTP has been partially 

compensated by PhobEnPairHB and LipophilicEvdW terms 

in designed M12 molecule. Per residue H-bonding, vdW and 

Coulomb contributions in the binding of molecules have also 

been calculated in both the conformations and mentioned in 

the supporting information (Figures S4–S9).

Validation
The top-rank designed molecules were evaluated on the 

basis of their binding. The influence of induced conforma-

tion changes on docking results becomes apparent when the 

ligand is docked to a receptor cocrystallized with another 

inhibitor. Docking scores of molecules were compared with 

induced-fit docking score (Figure S10). The result of flexible 

docking corroborates the docking score obtained from Glide, 

but with a change in the ranking order, which suggests that 

small variations in the structure of the binding pocket also 

have a large impact on the interaction energy.

aDMeT property calculation
The shortlisted ligands were then screened for their ADME 

and toxicity properties using QikProp module of Schrödinger 

software.46,47 It predicts physically significant descriptor and 

pharmaceutically relevant properties of organic molecules. 

All compounds were found to be within the limit of approved 

drug parameter range (Tables S6 and S7).

Discussion
Our objective was to screen all kinase inhibitor libraries as 

well as some generalized libraries and identify the compounds 

that compete with cytosolic GDP/GTP, inhibit the interaction 

of Ras, and ultimately arrest the Ras signaling pathway. We 

extracted molecules from different databases, screened out 

molecules, and compared the poses of top-ranked molecules 

from each database with the GDP/GTP-bound K-Ras pro-

tein. We analyzed the pose of the molecules and found that 

molecules screened from databases were showing a poor 

docking score. Some of their docking scores were too low, 

resulting in unfavorable interactions, and in many others, the 

stereochemical orientation was very poor. Also, some of the 

molecules were found to bind to GBP and others were found 

to bind to PBP, and none of them was able to occupy the 

GDP/GTP-binding pocket completely. Therefore, this could 

be the possible reason for the poor binding or docking score, 

but some small molecular fragments from Ras-focused dataset 

were showing good interactions. To improve the interaction 

and docking score, we utilized the fragment-based combina-

torial library design strategies. We selected molecules that 

showed interactions, like GDP/GTP in PBP and RBP, and 

fragmented and divided them on the basis of RBP and PBP 

interacting and noninteracting part. We utilized the interacting 

parts of the molecules that can bind to both RBP and PBP. 

Guanine-containing molecules from the database showed the 

best docking score and interaction. Thus, we fixed guanine as a 

core molecule, as few FDA drugs also contain guanine,48,49 and 

selected the fragments that can bind to RBP and PBP, which 

were further used to design the combinatorial library.

Targeting RAS gene is not uncommon. There have been 

several reports showing small molecules getting bound to 

GDP and inhibiting the son of sevenless-mediated nucleotide 

exchange. We selected molecules from FDA-approved drugs, 

PubChem bioassay compounds that are active against H-Ras 

protein (isoform of K-Ras), kinase inhibitors from PubChem 

compounds, and Ras inhibitors from BindingDB for the 
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generation of fragment library. The reason for selecting these 

molecules is the availability of in vitro activity data, which 

would have less possibility of toxicity. The docking results 

of these molecules in “on” and “off” states of K-Ras were 

encouraging, and we found that these molecules were able to 

occupy the entire nucleotide-binding cavity with a knitting 

of noncovalent and H-bonding interactions. Our findings of 

designed molecular interactions with K-Ras might open new 

avenues in investigating its use in cancer therapy, where Ras 

pathway activation plays an important role. The predicted 

molecules from the studies may be synthesized and tested 

through in vitro and in vivo experiments and can also be 

further modified to achieve specificity.

Conclusion
Individual molecules from different datasets on its own 

has not been that salient, but blending of its fragments has 

significantly improved binding in the active site of K-Ras. 

The present study was conducted to identify small molecules 

as potent K-Ras inhibitors for the treatment of different 

cancers using in silico tools and techniques. The interac-

tions between K-Ras and designed ligands were studied 

by using Glide docking protocol. Based on the docking 

score and interactions, the docking results were analyzed. 

The results were compared with GDP/GTP to find out the 

best ligand that can inhibit GTPase activity of Ras. The 

shortlisted molecules in our study that bind at the GTP/

GDP-binding pocket of K-Ras might have the potential of 

inhibiting its activity, which will further strengthen this 

concept. While the docking scores for all compounds with 

K-Ras were comparable to GDP/GTP conformations, all 

the compounds exhibited significantly higher binding with 

K-Ras. With this study, we are trying to bring Ras back into 

focus as a drug target.
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