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Abstract: The prevalence of airway dysfunction in elite swimmers is among the highest in 

elite athletes. The traditional view that swimmers naturally gravitate toward swimming because 

of preexisting respiratory disorders has been challenged. There is now sufficient evidence that 

the higher prevalence of bronchial tone disorders in elite swimmers is not the result of a natu-

ral selection bias. Rather, the combined effects of repeated chlorine by-product exposure and 

chronic endurance training can lead to airway dysfunction and atopy. This review will detail the 

underpinning causes of airway dysfunction observed in elite swimmers. It will also show that 

airway dysfunction does not prevent success in elite level swimming. Neither does it inhibit 

lung growth and might be partially reversible when elite swimmers retire from competition.
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Introduction
Athletes born free from airway disease, such as asthma, are not exempt from develop-

ing respiratory disorders over the course of their competitive careers. The International 

Olympic Committee recognizes that endurance exercise itself is capable of increas-

ing the risk of airway dysfunction.1 While this is true of elite endurance athletes in 

general,2 it is also true that the sport of swimming displays a comparatively high rate 

of airway dysfunction.3,4

The traditional explanation for this higher prevalence rate is one of selection bias. 

The suggestion that swimming is a more suitable activity compared to both cycling 

and running in asthmatics5 is not surprising. For example, the hydrostatic compres-

sion effect of water can reduce the effort required to generate expiratory flow, while 

the natural hypoventilation and increase in central blood volume reduce inspiratory 

tract heat loss6; however, the hydrostatic pressure also increases the resistance during 

exhalation when exhaling into the air. On top of this, the aquatic environment is associ-

ated with a lower pollen count.6 Coupled with the inhalation of warm humid air, this 

reduces the risk of asthma exacerbation.5,6 It is therefore unsurprising that swimming 

does not adversely affect the control of asthma in children or adolescents.7,8

Despite these aquatic environment advantages, a recent Cochrane review concluded 

that there is insufficient evidence to suggest that aquatic-based exercise is superior to 

comparative nonaquatic exercise in asthmatics.9 Moreover, it has been shown that ado-

lescent elite swimmers do not necessarily begin their competitive careers with airway 

dysfunction.10 There is now sufficient evidence that repeated exposure to chlorinated 

swimming pool water predisposes swimmers to develop airway dysfunction.11–17 This 
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Table 1 V
. O2 peak, V

.
E, breathing frequency, and tidal volume 

measured during all-out front crawl, back stroke, or breast stroke 
swimming in trained swimmers

Parameter Range References

Breathing frequency  
(breaths/min)

39–57 21b, 22b, 37a, 74a

Tidal volume (L) 1.43–3.53 21b, 22b, 23c, 37a, 74a

V
.
 E (L/min) 68–152 20a, 21b, 22b, 23c, 37a, 74a

V
.
 O2 peak (L/min) 2.49–5.08 19a, 20a, 21b, 22b, 23c, 37a, 

74a, 75c, 76a, 77a, 78a, 79a

V
.
 O2 peak (mL/kg/min) 49.8–69.9 19a, 23c, 24a, 37a, 76a, 78a, 79a

Notes: Measured during: aprogressive intensity swimming; ball-out swimming until 
exhaustion; call-out 400 m or 400 yard swim.

Abbreviations: V
.
 O2, oxygen uptake; V

.
E, minute ventilation.

implies that the exercise environment leads to bronchial 

tone disorders10 and contradicts the traditional view that 

asthmatic individuals naturally gravitate toward the sport 

of swimming. Consequently, the high prevalence of airway 

dysfunction in elite swimmers can no longer be attributed 

to a selection bias.10,16

The aim of this review is to examine 1) the reasons why 

elite swimmers are particularly susceptible to the develop-

ment of airway dysfunction and 2) the impact and challenges 

of diagnosing airway dysfunction. It is appropriate to begin 

by reviewing how the uniqueness of an aquatic environment 

challenges the lung.

The trouble with water
The most obvious difference between swimming and exercise 

of a terrestrial nature is that the former takes place with the 

body horizontal while immersed in water. As the density of 

water is ~800 times greater than that of air,18 these factors 

collectively have a marked effect on the cardio-pulmonary 

responses to exercise. For example, maximum heart rate,19–24 

maximum cardiac output, and maximum oxygen uptake  

(V
.
 O

2
) 19–22,24 are lower during swimming compared with 

walking, running, or cycling, although this also reflects the 

smaller muscle mass recruited in swimming.

The hydrostatic load created by the water limits the 

expansion of the chest wall and lungs25 pushing the chest 

wall inwards26 and reducing residual gas volume.27 It also 

narrows airways larger than 2 mm in diameter, which is where 

90% of flow resistance occurs.28 Because of the hydrostatic 

compression and the horizontal body position,29 blood flow is 

shifted from the extremities into the chest.26,30 The increased 

hydrostatic load (which counteracts inspiratory muscle force) 

and pulmonary engorgement (which reduces lung compli-

ance by filling spaces in the thoracic cavity with blood rather 

than air) reduces total lung capacity,31 vital capacity, and 

the expiratory reserve volume.26,30,32,33 Nonetheless, trained 

swimmers have a higher forced vital capacity, forced expired 

volume in the first second of exhalation, total lung capacity, 

vital capacity, inspiratory capacity, and pulmonary diffusion 

capacity and chest surface area compared with runners.34–36

Additionally, tidal volume tends to be higher and breath-

ing frequency lower and with a more rapid inhalation phase34 

in swimming (Table 1) compared with spontaneously breath-

ing submaximal19,22 and maximal22,23 walking, running, and 

cycling exercise. This is because breathing must be coordi-

nated with stroke mechanics, meaning that it cannot occur ad 

libitum.22,34,37 The one exception to this is back stroke. As the 

face is not immersed in water during back stroke, breathing 

is not physically impeded. However, this also means that the 

mouth and nose spend more time exposed to the water–air 

interface compared with front crawl, breast stroke, and but-

terfly. Importantly, chlorine by-products reside here.38

Chlorination is the most widely used method to dis-

infect pool water.39  It involves adding small amounts of 

chlorine to water in various forms, all of which release 

weak hypochlorous acid.38 The most common disinfectant 

used in public pools in the UK is hypochlorite.40 The World 

Health Organization39 suggests that the concentration of free 

(available to disinfect) chlorine should not exceed 3 mg/L 

in public pools. In the UK where hypochlorite is typically 

used, a minimum of 0.5 mg/L and maximum of 1 mg/L is 

recommended.40

When reacting with organic or inorganic matter, a num-

ber of chlorinated oxidants or derivatives (by-products) 

are produced which can be inhaled, ingested, or absorbed 

via the skin.38,39 The concentration of chlorine by-products 

at or above the water surface is not simply a matter of the 

chlorine dosage. By-product level will vary with factors, 

such as chlorine dosing, air temperature, adequacy of pool 

area ventilation, and swimmer/bather load.38 Swimmers are 

exposed to such by-products (eg, trichloramine, hypochlo-

rous acid, and mono- and dichloramine) when inhaling air 

and aerosols floating just above the water surface. This is 

particularly problematic during exercise because of the shift 

from nasal breathing at rest to oral nasal breathing during 

exercise. Consequently, the air inhaled undergoes less filtra-

tion by the nasal cavity and chlorinated by-products are able 

to travel further into the lungs.38

A shift from nasal to mouth breathing occurs at venti-

lations as low as 22 L/min,41 which is substantially lower 

than the minute ventilation (V
.
E
)

 
observed during maximal 

swimming (see Table 1). Such a ventilation is exceeded 
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when swimming below 50% of maximal (max) or peak 

V
.
 O

2
. Considering that an economical technique may require 

a pace equivalent to at least 40% of V
.
 O

2max
,22 swimmers 

do not need to be exercising particularly hard before their 

airway epithelium is subjected to increased oxidant stress 

arising from less air filtration. This raises an interesting and 

unexamined question. Are back stroke swimmers more at 

risk from airway dysfunction? First, because the mouth and 

nose spend longer at the water–air interface per stroke cycle 

and second, because V
.
E
 tends to be higher (because breathing 

frequency is greater) compared with the other strokes.20,37

Airway injury and dysfunction
The problem with endurance exercise
The greater prevalence of airway dysfunction in nonaquatic 

elite endurance athletes compared with nonaquatic elite 

nonendurance athletes2–4 suggests that it is not just chlorine 

by-products that are responsible for increasing the suscepti-

bility of elite swimmers to airway dysfunction. For example, 

Bonsignore et al42 found that high weekly swimming vol-

umes (32±15 km) completed in an outdoor heated (typi-

cally 27°C) pool were associated with airway neutrophilia, 

indicating increased airway inflammation. In the absence of 

any detectable chlorine irritants, the observed neutrophilia 

likely reflected the impact of chronic endurance exercise on 

airway health. In support of this, Martin et al43 were unable to 

find any difference in the level of eosinophilic inflammation 

between 118 aquatic-based (swimmers, water polo players, 

and triathletes) and nonaquatic-based (rowers, cyclists, run-

ners, and football players) elite athletes. They found more 

epithelial cells in sputum and greater eosinophilic airway 

inflammation in athletes demonstrating a positive eucapnic 

voluntary hyperpnea (EVH) test compared with those who 

did not. Whether or not the athlete was pool-based proved 

irrelevant.

Sustaining high flow rates and hence high levels of 

ventilation during exercise cause dehydration and cooling 

of the airways.44 For example, it has been shown that when 

V
.
E
 increases from 7.5 to 60 L/min, total water loss from the 

airways per minute increases from 0.164 to 1.205 mL, and 

heat loss increases from 0.0160 to 0.0567 kcal.45 Airway 

dehydration and cooling will lead to the release of inflamma-

tory mediators44 and the accompanying hyperpnea changes 

the viscosity, tonicity, and volume of airway surface lining.46 

Hyperpnea will therefore expose the airway epithelium to 

increased sheer stress and transmural pressure gradients,46–48 

which in adolescents may not yet be fully matured.16 This in 

turn can lead to sloughing or total detachment of the dehy-

drated epithelial airway cells.46–48 As the airway epithelium 

provides a physical barrier between inhaled air and internal 

body structures protecting the sensory nerves and smooth 

muscle cells from inhaled irritants,44,49 these cells are now at 

risk of penetration by pathogens.46 Additionally, disruption 

to the airway epithelium will lead to an increase in vascular 

leakage of inflammatory cells, for example, eosinophils and 

neutrophils, into the airways.50

The airway epithelium does repair itself.47,48 In the 

absence of heavy training loads, it is estimated that the upper 

respiratory epithelium is replenished every 30–50 days.49 

However, the repeated injury–repair process induced by 

chronic endurance training will over time cause structural 

and functional changes termed airway remodeling.47,48 This 

in turn can lead to airway hyperresponsiveness (AHR).44,51,52 

Table 2 presents an overview of airway disorders experienced 

by endurance athletes.

There are a number of airway changes contributing to 

the negative remodeling. They include epithelial metapla-

sia, proliferation of airway smooth muscle cells, thickened 

reticular basement membrane, goblet cell hyperplasia, and 

the deposition of plasma-derived adhesive proteins.15,52,53 

Moreover, if the airways experience sufficient exposure to 

allergens (including chlorine by-products), allergic diseases 

may develop as the airways undergo remodeling.16

Importantly, environmental stressors will add to the 

hyperpnea-induced epithelial stress. For example, cold 

environments require the inspired air to be subjected to extra 

conditioning leading to an increase in airway dehydration. 

Postexercise, rewarming of the airway adds a thermal stress47 

resulting in mucosal edema and bronchoconstriction.48 This 

may be more relevant to swimmers who train or compete 

in cold temperatures and, in the case of sea swimmers, are 

exposed to a hypertonic environment.42 Of greater relevance 

to this review, however, is the impact of chlorine and its 

by-products.

Biomarkers of airway dysfunction in 
swimmers
It has been found that induced sputum of elite swimmers 

contains increased proportions of eosinophils and neutrophils 

(markers of airway inflammation) and increased concentra-

tions of soluble cell markers compared with the sputum of 

healthy controls.54 In addition, in well-trained swimmers 

(mean age of 20–21 years), epithelial desquamation,44 sub-

epithelial fibrosis and mucin secretion, and goblet cell hyper-

plasia15 have been observed following an average of 10–11 

years of training. Additionally, sputum  bronchoprotective 
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Table 2 Overview of respiratory disorders observed in endurance-based athletes

Disorder Explanation

Bronchial tone disorders
Asthma Reversible narrowing of the airways. Manifested by inflammation and widespread narrowing.
AHR Allergen exposure enhances the response to exercise in asthmatics and increases the responsiveness to 

pharmacological agents. The airways over-respond to various stimuli causing reversible airway obstruction.
BHR Positive response to direct (eg, methacholine or histamine) and indirect (eg, exercise, EVH, or hypertonic aerosols) 

stimuli.
EIA Occurs in individuals who have underlying asthma and exercise is an exacerbation trigger.
EIB Transient narrowing of the airways (bronchospasm) that follows vigorous exercise in individuals with no history of asthma.
Other disorders
EFL Occurs in nonasthmatics when the tidal flow-to-volume envelope loop encroaches on the maximal loop. A V

.
 E in excess 

of 120–130 L/min is required. More prevalent in females.
Rhinitis Prevalence of rhinitis in competitive swimmers is high and thought to reflect irritation of nasal mucosa by chlorinated 

water. Symptoms include nasal obstruction, rhinorrhea, nasal burning, sneezing, and nasal itching.
Swimming-induced pulmonary 
edema

Occurs in response to a single heavy swimming session. More prevalent than nonaquatic pulmonary edema.
Reflects pulmonary capillary stress failure brought about by immersion.

VCD Associated with inspiratory wheeze. Occurs during maximal exercise. Symptoms disappear once hyperpnea or 
hyperventilation stops. Often misdiagnosed as asthma or EIB. More prevalent in females.

Note: Adapted from references.2,48,51,52,65,80–86 
Abbreviations: AHR, airway hyperresponsiveness; BHR, bronchial hyperresponsiveness; EIA, exercise-induced asthma; EIB, exercise-induced bronchoconstriction; EFL, 
expiratory flow limitation; EVH, eucapnic voluntary hyperpnea; V

.
 E, minute ventilation; VCD, vocal cord dysfunction.

prostaglandin E
2
, which inhibits mast cell activation and 

induces relaxation of airway smooth muscle,49 is higher in 

elite pool-based aquatic athletes than nonaquatic athletes 

following an EVH test.43 The increased concentration of spu-

tum prostaglandin E
2
 was thought to reflect the added stress 

placed on the airways by exposure to chlorine by-products.43

Attendance at chlorinated pools during childhood has been 

associated with a decrease in Club cell protein 16 (CC16) 16,55  

and the CC16/surfactant-associated protein D ratio.16 CC16 

is an anti-inflammatory protein secreted exclusively by the 

Clara cells in the bronchioles.16,49,56 Surfactant-associated 

protein D is a marker of epithelial permeability16,56 and it has 

been shown that 11.9% of the variance observed in serum 

surfactant-associated protein D in swimmers can be explained 

by pool attendance.56

An increase in CC16 to a bronchial challenge is indicative 

of respiratory epithelial stress. Elevated urinary CC16 levels 

have been observed in adolescent and young adult (mean 

age of 16 years, range of 12–23 years) swimmers following 

an exercise challenge.57 Romberg et al57 found that out of 

101 competitive swimmers with a weekly training duration 

of 10–30 hours, urinary CC16 was greater following a 6–8 

minute swim challenge in 90% of those sampled. Addition-

ally, baseline CC16 was weakly correlated with the fraction 

of exhaled nitric oxide (FeNO)  (r=0.26, P<0.010). As FeNO 

is a surrogate biomarker of eosinophilic inflammation, this 

suggests a role of CC16 in airway inflammation.57

In contrast, a reduction in baseline CC16 likely indicates 

epithelial dysfunction.55,57 A fall in the production of CC16 

could also mask an increase in the intravascular leakage of 

CC16 into the airways.55 Such a leakage has been reported in 

elite asthmatic and elite nonasthmatic swimmers undertak-

ing high training volumes (12±15 and 15±8 hours per week, 

respectively) with 6±5.5 years of competitive experience.50 

Interestingly, Moreira et al50 found that the proportion of 

individuals demonstrating increased vascular permeability 

was similar between asthmatic and nonasthmatic elite swim-

mers and asthmatic control subjects. They also observed a 

high number of epithelial cells in the sputum of nonasthmatic 

swimmers. This may suggest developing of airway dysfunc-

tion in the nonasthmatic swimmers.

Belda et al14 observed a correlation between the duration 

of training and sputum neutrophil counts (r=0.36, P=0.04) 

in elite aquatic-based, but not nonaquatic-based (r=−0.16, 

P=0.45), athletes. They suggested that the increased airway 

inflammatory response is likely caused by exposure to chlo-

rine by-products. This supports the idea that cumulative life 

time exposure to chlorine by-products is important for the 

development of airway dysfunction.10,54,58,59 For example, 

Helenius et al54 reported that out of 29 elite Finnish swim-

mers, 28 were nonasthmatic at the start of their competitive 

careers. Over the course of their competitive careers, which 

lasted on average 9 years, 17% were diagnosed with asthma. 

Similarly, in a group of 34 Italian swimmers (age range 

7–20 years) who had been competing for at least 4 years 

and obtained a cumulative lifetime pool attendance of over 

400 hours, 68% reported at least one asthma-like symptom, 

74% exhibited allergic sensitization, and 53% demonstrated 

a positive response to a methacholine challenge. The propor-

tion of swimmers with allergic sensitization and AHR was 
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also greater than that expected for the general population. 

Importantly, none of the swimmers had selected swimming 

because of preexisting respiratory problems.59

Evidence available suggests that it may take at least 4 

years of competitive swim training before airway dysfunction 

develops in swimmers, and this is typically preceded by sev-

eral years of noncompetitive swimming.10,58,59 For example, 

Pedersen et al10,58 found that adolescent swimmers (aged 

12–16 years) with 2 to 3 years of competitive experience 

showed no evidence of raised baseline airway inflammation 

even when the total swimming training exceeded 9 years.58

Similarly, Carraro et al60 found that intermittent exposure 

to chlorine by-products failed to negatively impact airway 

inflammation in response to recreational swimming. FeNO 

concentrations were similar among 241 children (aged 7 to 10 

years) regardless of whether or not they undertook 1–2 hours 

of weekly swimming for 6 months. In a survey of 5,738 Brit-

ish school children, Font-Ribera et al7 found that swimming 

infrequently, once per month, once per week, or more than 

once a week up to the age of 7 years was not associated with 

the development of asthma or atopy (susceptibility to allergic 

reactions). On the contrary, they found that lung function was 

improved and the prevalence of asthma symptoms in those 

with respiratory conditions was improved with swimming. 

However, none of the swimmers in the studies by Font-Ribera 

et al7 and Carraro et al60 were reported to be well trained or 

competitive swimmers. In contrast, competitive swimmers 

aged 8 to 23 years are reported to spend between 10 and 30 

hours in the pool weekly10,57–59 and therefore subject their 

airway epithelium to a much greater cumulative stress.

Prevalence of airway dysfunction in elite 
swimmers
The proportion of elite and highly trained swimmers suffering 

from some form of bronchial tone respiratory disorder is high, 

with reports indicating it may approach54,61 or exceed44,59,62 

50%. A greater prevalence of asthma, AHR, and bronchial 

hyperresponsiveness has been reported in swimmers com-

pared with healthy individuals,54,63 cold-weather athletes,3,44 

and nonaquatic-based athletes.3,4,14,43 Furthermore, the rela-

tive risk of asthma in atopic swimmers has been shown to 

be greater (97-fold) than that of atopic long distance runners 

(42-fold) and speed and power athletes (25-fold).64

During the Olympic Games of 2004 (Athens) and 2008 

(Beijing), the number of aquatic athletes with asthma was 

greater than nonaquatic athletes.4 When looking at the mean 

percentage of athletes approved to use β
2
-agonists during the 

2004 and 2008 Olympic Games, only cycling and modern 

pentathlon had a similar prevalence (17.2% and 17.1%, 

respectively) to swimming (16.8%) with triathlon exhibiting 

the largest prevalence (24.9%).3 Focusing on aquatic disci-

plines specifically, Mountjoy et al4 extended their assessment 

to include data from the World Championships and Olympic 

Games from 2004 until 2009. They found that divers typically 

had the lowest prevalence of asthma compared with swim-

mers, water polo players, and synchronization swimmers. 

In contrast, swimmers typically had the greatest prevalence, 

~12% to 25%. Mountjoy et al4 also observed that the preva-

lence of asthma/AHR was greater in elite aquatic athletes in 

Europe, North America, and Oceania than Africa, Asia, and 

South America. Although the authors were unable to ascertain 

why, they suggested that racial or genetic differences and/or 

geographical differences in diagnostic evaluations of bron-

chial tone disorders, chlorination usage and regulation, and 

participation rates could be possible explanations.

Impact of airway dysfunction on 
swimmers
Exposure to chlorine by-products does not negatively impact 

lung growth. For example, baseline forced expired volume 

in the first second of exhalation is around 10%–19% higher 

in elite swimmers than predicted, while baseline forced vital 

capacity is ~15%–34% greater.10,15,43,50,57,58,61,65 There is also 

no evidence that airway dysfunction is a barrier to success 

in swimming. For example, in the 2004 Athens Olympic 

Games, 56 athletes met the International Olympic Committee 

Medical Commission’s criteria for asthma, and went on to 

win a total of 17 medals (seven gold, seven silver, and three 

bronze).66 Of the 19% of swimmers who met the International 

Olympic Committee-Medical Commission’s criteria for 

using β
2
-agonists in the 2008 Beijing Olympic Games, 33% 

went on to win medals.3,67 This is similar to the percentage 

of cyclists approved to use β
2
-agonists who went on to win 

medals at the same Olympic Games (29%) and is greater 

than the percentage of medals won by all asthmatic athletes 

(5%–16%) during the Salt Lake City, Athens, Torino, and 

Vancouver Olympic Games of 2002 to 2010.3

Before an elite swimmer is permitted to use a medical 

treatment for AHR, they must provide evidence of a positive 

bronchial provocation test.1 Any medication (eg, inhaled 

corticosteroids, inhaled β
2
-agonists) must comply with the 

World Anti-Doping Agency regulations and swimmers can 

only use medications in accordance with Therapeutic Use 

Exemption.1,68

Bronchial provocation tests can be categorized as direct 

or indirect tests. Direct tests act on the smooth muscle cell 
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Table 3 Positive test criteria for some common bronchial provocation tests: WADA guidelines

Test Positive criteria

EVH ≥10% fall of FEV1

Exercise challenge ≥10% fall of FEV1

Histamine challenge ≥20% fall of FEV1 at a histamine concentration of 8 mg/mL or less during a graded test of 2 minutes
Mannitol inhalation ≥15% fall in FEV1 after challenge
Methacholine challenge ≥20% fall in FEV1. If steroid naïve PC20 should be <4 mg/mL.  If taking inhaled glucocorticoids for more than 1 month, 

PD20 should be ≤1,600 µg or PC20≤16.0 mg/mL

Note: WADA guidelines.68

Abbreviations: WADA, World Anti-Doping Agency; EVH, eucapnic voluntary hyperpnea; FEV1, forced expired volume in the first second of exhalation; PC20, concentration 
of the agonist in the inhaled aerosol leading to a fall in FEV1 of 20%; PD20, administered dose of an inhaled aerosol which causes FEV1 to fall by 20%.

receptors, whereas indirect tests act through intermediate 

pathways and commonly via the release of mediators from 

inflammatory cells.52 Those used in studies of elite swim-

mers include methacholine challenge,10,44,50,61,65 EVH,15,43,61,65 

histamine,44,54,64,69 exercise challenge,57,61,70 and mannitol.57 

Table 3 contains an overview of the current World Anti-

Doping Agency (2015) criteria for a positive bronchial 

provocation test.

Methacholine challenge and EVH have proved to be the 

most popular bronchial provocation tests used in elite swim-

mers. Pedersen et al61 found that EVH was more sensitive 

than a methacholine challenge, a laboratory-based treadmill 

exercise provocation test (incremental test to exhaustion), or 

a swimming-based exercise challenge (minimum of 200 m at 

the fastest possible speed). Of the 21 elite female swimmers 

they tested, 16 had at least one positive test to exercise hyper-

pnea or EVH. Ten (63%) could be identified with EVH, eight 

(50%) with a swimming challenge, and eight (50%) with a 

laboratory-based test. Only six (38%) could be identified 

with a methacholine challenge indicating that this test is the 

one that has the least sensitive bronchial provocation in elite 

swimmers. It is therefore not surprising that EVH has been 

proposed as the preferred test to identify exercise-induced 

bronchoconstriction (EIB) in these athletes.10,61

As a disconnect has been observed between symptoms 

suggestive of EIB and positive EIB test results, it is prudent to 

screen all elite swimmers for EIB.43,61,70 For example, Clearie 

et al70 found that less than half of the 36 elite adolescent Scot-

tish swimmers who exhibited positive EIB results reported 

symptoms suggestive of EIB. However, if a positive EVH 

test is not observed, it should be followed up with a strenu-

ous laboratory-based test.61 But, the timing of any such test 

must be given serious consideration. Bougault et al65 found 

that AHR and EIB can be transient during intense training. 

Specifically, 12 out of 19 well-trained swimmers exhibited 

AHR in response to either EVH or a methacholine challenge 

when tested during a period of intense training. When tested 

again following at least 15 days of light or no training, airway 

responsiveness to a methacholine challenge or EVH had 

normalized in 67% (eight) of the swimmers.

It is also relevant to note that symptoms indicative of 

mild asthma can be partially reversed when elite swimmers 

retire from competition. Over a 5-year period, Helenius et 

al69 monitored 42 elite Finnish swimmers, which accounted 

for 88% of the Finnish National swimming teams. In all, 

62% retired from competition during this period while 38% 

continued their competitive careers. In those who continued 

to compete, the differential cell counts of eosinophils and 

lymphocytes significantly increased and the occurrence of 

asthma increased by 80% (from five swimmers to nine). 

Conversely, in swimmers who retired from competition, the 

eosinophil and lymphocyte differential cell counts fell and 

asthma decreased by 15% (from seven swimmers to six). 

However, the proportion of the reversal that could be attrib-

uted to reduced chlorine exposure versus reduced exercise 

volume was not determined.

Chlorine alternative pool water disinfection methods 

should also be considered in an attempt to reduce the preva-

lence of airway dysfunction in elite swimmers. Alternatives 

such as ozone, ultraviolet radiation, and copper/silver39,40,71–73 

are available. However, disinfection by ozone (which itself 

is a major respiratory irritant) and ultraviolet radiation only 

purify the water as it passes through the plant room. The 

water that remains in the pool therefore contains no residual 

disinfectant. Consequently, ozone or ultraviolet radiation 

disinfection methods need to be used in conjunction with 

chlorine or bromine-based disinfectants.39

Nonetheless, the small number of studies examining 

chlorine alternative disinfection methods reveal promising 

results. For example, Carbonnelle et al72 found that a single 

swimming session of 1,300 m (45 minutes in duration) was 

associated with a 34% increase in FeNO when completed 

in a pool disinfected by the copper/silver method (ambient 

nitrogen trichloride concentration of <20 µg/m3). Conversely, 
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the expected exercise-induced increase in FeNO was inhibited 

when undertaken in a chlorine disinfected pool (ambient 

nitrogen trichloride concentration of 160–280 µg/m3). In a 

similar study, Carbonnelle et al71 observed an increase in 

the serum concentrations of surfactant-associated protein 

A and surfactant-associated protein B  following 1,500 m  

swimming (45 minutes in duration) in a chlorinated pool 

(mean ambient nitrogen trichloride concentration of 355 µg/

m3) but observed no such changes in response to swimming 

in a copper/silver disinfected pool (nitrogen trichloride levels 

were too low for detection). These findings indicate that a 

single swimming session in a pool disinfected by the copper/

silver method does not increase lung hyperpermeability.71

Furthermore, Fernández-Luna et al73 found that regular 

low volume training in a pool disinfected by ozone can 

reduce lung epithelial damage when compared with training 

in a chlorinated pool. Daily training volumes of 500±300 m 

(50 minutes) two to three times per week for 3 months in a 

chlorinated pool (free chlorine 1.1±0.3 mg/L) increased basal 

plasma CC16 by 55% in healthy adults. However, in those 

training in an ozone disinfected pool (total bromine 1.8±0.3 

mg/L), CC16 was unaffected.

Although these studies suggest that airway health may be 

better protected in the short term when chlorine alternative 

disinfection methods are used, there is a paucity of longitudi-

nal data. Clearly, more studies are needed to examine if such 

methods offer long-term protection against the magnitude of 

airway dysfunction that may develop over time. Similarly, 

training outdoors, for example, outdoor swimming pools, 

seas, lakes, or rivers, may reduce the exposure to chlorine 

by-products. However, climate may make this impractical 

and other dangers to health may exist.

Conclusion 
There is now compelling evidence that the combined effects 

of chronic endurance exercise and exposure to chlorine by-

products can lead to airway dysfunction in elite swimmers, 

even in those with no prior history of respiratory disorders. 

However, airway dysfunction does not appear to be a barrier 

to success in elite swimmers nor does it appear to negatively 

impact lung growth.

The traditional view that the relatively high prevalence of 

airway dysfunction observed in swimming is reflective of a 

selection bias can now be refuted. What is unclear is what the 

critical cumulative chronic endurance exercise and chlorine 

by-product exposure are. Given the complexity and number 

of factors that can impact airway remodeling and dysfunction, 

this will not be a simple question to answer. Based on the lim-

ited evidence available, a best estimate is that a minimum of 

4 years of competitive swimming consisting of several (>10) 

training hours per week is required for dysfunction to develop 

in healthy swimmers. However, this estimation is made cau-

tiously, especially as competitive swimming will naturally be 

preceded by a period of noncompetitive swimming during 

which appropriate skill and fitness levels are developed.

Given the independent effect of chronic endurance 

exercise on airway remodeling, it is unlikely that changing 

swimming pool disinfection methods will prevent the devel-

opment of airway dysfunction in elite swimmers. However, 

findings from studies comparing the impact of chlorine versus 

nonchlorine water disinfection methods suggest that chlorine 

alternatives (such as copper/silver and ozone) subject the 

airways to less stress. If the results of such studies, which 

have focused on short-term airway responses, translate into 

long-term benefits, the prevalence of airway dysfunction 

in elite swimmers could be reduced by adopting chlorine 

alternative disinfection methods. Longitudinal studies are 

required to investigate this possibility.

Disclosure 
The author reports no conflicts of interest in this work.

References
 1. International Olympic Committee. IOC Consensus Statement on Asthma 

in Elite Athletes; January 2008. Available from: www.olympic.org/
Documents/Reports/E/en_report_1301.pdf. Accessed January 3, 2016.

 2. Carlsen KH, Andersen SD, Bjrmer L, et al. Exercise-induced asthma, 
respiratory and allergic disorders in elite athletes: epidemiology, mecha-
nisms and diagnosis: Part I of the report from the Joint Task Force of 
the European Respiratory Society (ERS) and the European Academy 
of Allergy and Clinical Immunology (EEACI) in cooperation with 
GA2LEN. Allergy. 2008;63:387–403.

 3. Fitch KD. An overview of asthma and airway hyper-responsiveness in 
Olympic athletes. Br J Sports Med. 2012;46:413–416.

 4. Mountjoy M, Fitch K, Boulet LP, Bougault V, van Mechelen W, Verhagen 
E. Prevalence and characteristics of asthma in the aquatic disciplines. 
J Allergy Clin Immunol. 2015;36:588–594.

 5. Fitch KD, Morton AR. Specificity of exercise in exercise-induced 
asthma. BMJ. 1971;4:577–581.

 6. Bar-Or O, Inbar O. Swimming and asthma benefits and deleterious 
effects. Sports Med. 1992;14:397–405.

 7. Font-Ribera L, Villanueva CM, Nieuwenhuijsen MJ, Zock JP, Kogevinas 
M, Henderson J. Swimming pool attendance, asthma, allergies, and 
lung function in the Avon Longitudinal Study of Parents and Children 
cohort. Am J Respir Crit Care Med. 2011;183:582–588.

 8. Geiger K, Henschke, N. Swimming for children and adolescents with 
asthma. BMJ. 2015;49:835–836.

 9. Silva GAJ, Andriolo BNG, Riera R, Parra SA, Peccin MS. Water-based 
exercise for adults with asthma (review). Cochrane Database Syst Rev. 
2014;7:CD003316:1–36.

10. Pedersen L, Lund TK, Barnes PJ, Kharitonov SA, Backer V. Airway 
responsiveness and inflammation in adolescent elite swimmers. J Allergy 
Clin Immunol. 2008a;122:322–328.

11. Rotman HH, Fliegelman MJ, Moore T, et al. Effects of low concentra-
tions of chlorine on pulmonary function in humans. J Appl Physiol 
Respir Envrion Exerc Physiol. 1983;54:1120–1124.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Open Access Journal of Sports Medicine 2016:7submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

62

Lomax

12. Massin N, Bohadana AB, Wild P, Héry M, Toamain JP, Hubert G. Respi-
ratory symptoms and bronchial responsiveness in lifeguards exposed 
to nitrogen trichloride in indoor swimming pools. Occup Environ Med. 
1998;55:258–263.

13. Jacobs JH, Spaan S, van Rooy GBGJ, et al. Exposure to trichloramine and 
respiratory symptoms in indoor swimming pool workers. Eur Respir J.  
2007;29:690–698.

14. Belda J, Riscart S, Casan P, et al. Airway inflammation in the elite athlete 
and type of sport. Br J Sports Med. 2008;42:244–249.

15. Bougault V, Loubaki L, Joubert P, et al. Airway remodelling and 
inflammation in competitive swimmers training in indoor chlorinated 
swimming pools. J Allergy Clin Immunol. 2012;129:351–358.

16. Bernard A, Nickmilder M, Dumont X. Chlorinated pool attendance, 
airway epithelium defects and the risks of allergic diseases in adoles-
cents: interrelationships revealed by circulating biomarkers. Environ 
Res. 2015;140:119–126.

17. Rosenman KD, Millerick-May M, Reilly MJ, et al. Swimming facilities 
and work-related asthma. J Asthma. 2015;52:52–58.

18. di Prampero PE. The energy cost of human locomotion on land and in 
water. Int J Sports Med. 1986;7:55–72.

19. McArdle WD, Glaser RM, Magel, JR. Metabolic and cardiorespiratory 
response during free swimming and treadmill walking. J Appl Physiol. 
1971;30:733–738.

20. Holmér I. Oxygen uptake during swimming in man. J Appl Physiol. 
1972;33:502–509.

21.  Holmér I, Lundin A, Eriksson BO. Maximum oxygen uptake during swim-
ming and running by elite swimmers. J Appl Physiol. 1974;36:711–714.

22. Holmér I, Stein EM, Saltin SB, Ekblom B, Astrand PO. Hemodynamic 
and respiratory responses compared in swimming and running. J Appl 
Physiol. 1974;37:49–54.

23. Rodriguez FA. Maximal oxygen and cardiorespiratory response to 
maximal 400-m free swimming, running and cycling tests in competi-
tive swimmers. J Sports Med Phys Fit. 2000;40:87–95.

24. Roels B, Schmitt L, Libicz S, Bentley D, Richalet JP, Millet G. Speci-
ficity of VO

2
max and the ventilatory threshold in free swimming and 

cycle ergometry: comparison between triathletes and swimmers. Br J 
Sports Med. 2005;39:965–968.

25. Lundgren CEG. Immersion effects. In: The Lung at Depth. Lundgren CEG,  
Miller JN editors. New York: Marcel Dekker Inc.; Chapter 3; 1999: 
91–128.

26. Robertson CH, Engle CM, Bradley ME. Lung volumes in man immersed 
to the neck: dilution and plethysmographic techniques. J Appl Physiol 
Respir Environ Exerc Physiol. 1978;44:679–682.

27. Jarrett AS. Effect of immersion on intrapulmonary pressure. J Appl 
Physiol. 1965;20:1261–1266.

28. Burger EJ, Macklem P. Airway closure: demonstration by breathing 
100% O

2
 at low lung volumes and by N

2
 washout. J Appl Physiol. 

1968;25:139–148.
29. Rowell LR. Human Circulation Regulation During Physical Stress. 

New York: Oxford University Press; 1986.
30. Agostoni E, Gurtner G, Torri G, Rahn H. Respiratory mechanics 

during submersion and negative-pressure breathing. J Appl Physiol. 
1966;21:251–258.

31. Withers RT, Hamdorf PA. Effect of immersion on lung capacities and 
volumes: implications for the densitometric estimation of relative body 
fat. J Sports Sci. 1989;7:21–30.

32. Hong SK, Ting EY, Rahn H. Lung volumes at different depths of sub-
mersion. J Appl Physiol. 1960;15:550–553.

33. Craig AB, Dvorak M. Expiratory reserve volume and vital capacity of 
the lungs during immersion in water. J Appl Physiol. 1975;38:5–9.

34. Cordain L, Stager J. Pulmonary structure and function in swimmers. 
Sports Med. 1988;6:271–278.

35. Cordain L, Tucker A, Moon D, Stager JM. Lung volumes and maximal 
respiratory pressures in collegiate swimmers and runners. Res Q Exerc 
Sport. 1990;61:70–74.

36. Armour J, Donnelly PM, Bye PTP. The large lungs of elite swimmers: 
an increased alveolar number? Eur Resp J. 1993;6:237–247.

37. Magel JR, Faulkner JA. Maximum oxygen uptakes of college swimmers. 
J Appl Physiol. 1967;22:929–938.

38. Bernard A. Chlorination products: emerging links with allergic diseases. 
Curr Med Chem. 2007;14:1771–1782.

39. World Health Organization. Guidelines for Safe Recreational Water 
Environments Volume 2 Swimming Pools and Similar Environments. 
France: World Health Organization; 2006.

40. Pool Water Treatment Advisory Group. The Management and Treatment 
of Swimming Pool Water – Code of Practice; 2013. Available from: 
www.edlc.co.uk/pdf/PWTAG%20CodeofPractice1.13v5_000.pdf.  
Accessed September 25, 2015.

41. Wheatley JR, Amis TC, Engel LA. Oronasal partitioning of ventilation 
during exercise in humans. J Appl Physiol. 1991;71:546–551.

42. Bonsignore MR, Morici G, Riccobono L, et al. Airway cells after swim-
ming outdoors or in the sea in nonasthmatic athletes. Med Sci Sports 
Exerc. 2003;35:1146–1152.

43. Martin N, Lindley MR, Hargadon B, Monteiro WR, Pavord ID. Airway 
dysfunction and inflammation in pool- and non-pool-based elite athletes. 
Med Sci Sports Exerc. 2012;44:1433–1439.

44. Bougault V, Turmel J, St-Laurent J, Bertrand M, Boulet LP. Asthma, 
airway inflammation and epithelial damage in swimmers and cold-air 
athletes. Eur Respir J. 2009;33:740–746.

45. Daviskas E, Gonda I, Anderson SD. Local airway heat and water vapour 
losses. Respir Physiol. 1991;84:115–132.

46. Kippelen P, Anderson SD. Airway injury during high-level exercise. Br 
J Sports Med. 2012;46:385–390.

47. Kippelen P, Fitch KD, Anderson SD, et al. Respiratory health of elite 
athletes – preventing airway injury: a critical review. Br J Sports Med. 
2012;46:471–476.

48. Bussotti M, di Marco S, Marchese G. Respiratory disorders in endur-
ance athletes – how much do they really have to endure? Open Access 
J Sports Med. 2014;5:47–63.

49. Williams AE. Immunology Mucosal and Body Surface Defences. UK: 
Wiley-Blackwell; 2012.

50. Moreira A, Palmares C, Lopes C, Delgado L. Airway vascular damage 
in elite swimmers. Resp Med. 2011;105:1761–1765.

51. Anderson SD, Kippelen P. Exercise-induced bronchoconstriction: 
pathogenesis. Curr Allergy Asthma Rep. 2005;5:116–122.

52. Cockcroft DW, Davis BE. Mechanisms of airway hyperresponsiveness. 
J Allergy Clin Immunol. 2006;118:551–559.

53. Persson CGA, Erjefält JS, Andersson M, Greiff L, Svensson C. 
Extravasation, lamina propria flooding and luminal entry of bulk plasma 
exudate in mucosal defence, inflammation and repair. Pulm Pharmacol. 
1996;9:129–139.

54. Helenius IJ, Rytilä P, Metso T, Haahtela T, Venge P, Tikkanen HO. Respi-
ratory symptoms, bronchial responsiveness, and cellular characteristics 
of induced sputum in elite swimmers. Allergy. 1998;53:346–352.

55. Lagerkvist BJ, Bernard A, Blomberg A, et al. Pulmonary epithelial 
integrity in children: relationship to ambient ozone exposure and 
swimming pool attendance. Environ Health Perspect. 2004;112: 
1768–1771.

56. Bernard A, Carbonnell S, Michel O, et al. Lung hyperpermeability and 
asthma prevalence in schoolchildren: unexpected associations with the 
attendance at indoor chlorinated swimming pools. Occup Environ Med. 
2003;60:385–394.

57. Romberg K, Bjermer L, Tufvesson E. Exercise but not mannitol provo-
cation increases urinary Clara cell protein (CC16) in elite swimmers. 
Respir Med. 2011;105:31–36.

58. Pedersen L, Lund TK, MØlgaard E, Kharitonov SA, Barnes PJ, Backer 
V. The acute effect of swimming on airway inflammation in adolescent 
elite swimmers. J Allergy Clin Immunol. 2009;123:502–504.

59. Silvestri M, Crimi E, Oliva S, et al. Pulmonary function and airway 
responsiveness in young competitive swimmers. Pediatr Pulmonol. 
2013;48(1):74–80.

60. Carraro S, Pasquale MF, da Frè M, et al. Swimming pool attendance and  
exhaled nitric oxide in children. J Allergy Clin Immunol. 2006;118: 
958–960.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Open Access Journal of Sports Medicine 2016:7 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

Open Access Journal of Sports Medicine

Publish your work in this journal

Submit your manuscript here: http://www.dovepress.com/open-access-journal-of-sports-medicine-journal

The Open Access Journal of Sports Medicine is an international,  
peer-reviewed, open access journal publishing original research,  
reports, reviews and commentaries on all areas of sports  
medicine. The journal is included on PubMed. The manuscript manage-
ment system is completely online and includes a very quick and fair 

peer-review system. Visit http://www.dovepress.com/testimonials.php 
to read real quotes from published authors. 

Dovepress

63

Airway dysfunction in elite swimmers

61. Pedersen L, Winter S, Backer V, Anderson SD, Larsen KR. Airway 
responses to eucapnic hyperpnea, exercise, and methacholine in elite 
swimmers. Med Sci Sports Exerc. 2008;40:1567–1572.

62. Stadelmann K, Stensrud T, Carlsen KH. Respiratory symptoms and 
bronchial responsiveness in competitive swimmers. Med Sci Sport 
Exerc. 2011;43:375–381.

63. Zwick H, Popp W, Budik G, Wanke T,Rauscher, H. Increased 
sensitization to aeroallergens in competitive swimmers. Lung. 
1990;168:111–115.

64. Helenius IJ, Tikkanen, HO, Sarna S, Haahtela T. Asthma and increased 
bronchial responsiveness in elite athletes: atopy and sport event as risk 
factors. J Allergy Clin Immunol. 1998;101:646–652.

65.  Bougault V, Turmel J, Boulet LP. Airway hyperresponsiveness in elite 
swimmers: Is it a transient phenomenon. J Allergy Clin Immunol. 
2011;127:892–898.

66. Dickinson JW, Whyte GP, McConnell AK, Harries MG. Impact of 
changes in the IOC-MC asthma criteria: a British perspective. Thorax. 
2005;60:629–632.

67. Arie S. London 2012 Olympics – what can we learn from asthma in 
elite athletes. BMJ. 2012;344(e2556):1–3.

68. World Anti-Doping Agency. TUE Physician Guidelines Medical Infor-
mation to Support the Decisions of TUE Committees Asthma. Available 
from: http://www.wada-ama.org/en/resources/therapeutic-use-exemp-
tion-tue/medical-information-to-support-the-decisions-of-tuecs- 
asthma. Accessed January 10, 2016.

69. Helenius IJ, Rytilä P, Sarna S, et al. Effect of continuing or finishing 
high-level sports on airway inflammation, bronchial hyperrespon-
siveness, and asthma: A 5-year prospective follow-up study of 42  
highly trained swimmers. J Allergy Clin Immunol. 2002;109: 
962–968.

70. Clearie KL, Vaidyanathan S, Williamson PA, et al. Effects of chlorine 
and exercise on the unified airway in adolescent elite Scottish swimmers. 
Allergy. 2009;65:269–273.

71. Carbonnelle S, Francaux M, Doyle I, et al. Changes in serum  
pneumoproteins caused by short-term exposure to nitrogen trichlo-
ride in indoor chlorinated swimming pools. Biomarkers. 2002;7: 
464–478.

72. Carbonnelle S, Bernard A, Doyle IR, Grutters J, Francaux M. Fractional 
exhaled NO and serum pneumoproteins after swimming in a chlorinated 
pool. Med Sci Sports Exerc. 2008;40:1472–1476.

73. Fernández-Luna Á, Gallardo LM, Plaza-Carmona MP, et al. Respira-
tory function and changes in lung epithelium biomarkers after a short-
training intervention in chlorinated vs. ozone indoor pools. PLoS One. 
2013;8(e68447):1–6.

74. Bonen A, Wilson BA, Yarkony M, Belcastro AN. Maximal oxygen 
uptake during free, tethered, and flume swimming. J Appl Physiol: 
Respir Environ Exerc Physiol. 1980;48:232–235.

75. Costill DL, Kovaleski J, Porter D, Kirwan J, Fielding R, King D. Energy 
expenditure during front crawl swimming: predicting success in middle-
distance events. Int J Sports Med. 1985;6:266–270.

76. Wakayoshi K, Acquisto LTD, Cappaert JM, Troup JP. Relationship 
between oxygen uptake, stroke rate and swimming velocity in competi-
tive swimming. Int J Sports Med. 1995;16:19–23.

77. Ogital F, Hara M, Tabata I. Anaerobic capacity and maximal oxygen 
uptake during arm stroke, leg kicking and whole body swimming. Acta 
Physiol Scand. 1996;157:435–441.

78. Fernanades RJ, Billat VL, Cruz AC, Colaco PJ, Cardoso CS, Vilas-Boas 
JP. Does net energy cost of swimming affect time to exhaustion at the 
individual’s maximal oxygen consumption velocity? J Sports Med Phys 
Fitness. 2006;46:373–380.

79. Reis JF, Alves FB, Bruno PM, Vleck V, Millet GP. Effects of aerobic 
fitness on oxygen uptake kinetics in heavy intensity swimming. Eur J 
Appl Physiol. 2012;112:1689–1697.

80. McClaran SR, Wetter TJ, Pegelow DF, Dempsey JA. Role of expiratory 
flow limitation in determining lung volumes and ventilation during 
exercise. J Appl Physiol. 1999;86:1357–1366.

81. Adir Y, Shupak A, Gil A, et al. Swimming-induced pulmonary edema 
clinical presentation and serial lung function. Chest. 2004;126:394–399.

82. Helenius I, Lumme A, Haahtela T. Asthma, airway inflammation and 
treatment in elite athletes. Sports Med. 2005;35:565–574.

83. Guenette JA, Sheel AW. Physiological consequences of a high work 
of breathing during heavy exercise in humans. J Sci Med Sports. 
2007;10:341–350.

84. Gelardi M, Ventura MT, Fiorella R, et al. Allergic and non-allergic 
rhinitis in swimmers: clinical and cytological aspects. Br J Sports Med. 
2012;46:54–58.

85. Molis MA, Molis, WE. Exercise-induced bronchospasm. Sports Health. 
2010;2:311–317.

86. West JB. Pulmonary Pathophysiology the Essentials. 8th ed. Philadel-
phia, PA: Lippincott Williams & Wilkins; 2013.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com

	Publication Info 4: 
	Nimber of times reviewed 4: 


