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Abstract: Schisandrae fructus (SF) has recently been reported to increase skeletal muscle mass 

and inhibit atrophy in mice. We investigated the effect of SF extract on human myotube dif-

ferentiation and its acting pathway. Various concentrations (0.1–10 µg/mL) of SF extract were 

applied on human skeletal muscle cells in vitro. Myotube area and fusion index were measured to 

quantify myotube differentiation. The maximum effect was observed at 0.5 µg/mL of SF extract, 

enhancing differentiation up to 1.4-fold in fusion index and 1.6-fold in myotube area at 8 days 

after induction of differentiation compared to control. Phosphorylation of eukaryotic translation 

initiation factor 4E-binding protein 1 and 70 kDa ribosomal protein S6 kinase, which initiate 

translation as downstream of mammalian target of rapamycin pathway, was upregulated in early 

phases of differentiation after SF treatment. SF also attenuated dexamethasone-induced atrophy. 

In conclusion, we show that SF augments myogenic differentiation and attenuates atrophy by 

increasing protein synthesis through mammalian target of rapamycin/70 kDa ribosomal protein 

S6 kinase and eukaryotic translation initiation factor 4E-binding protein 1 signaling pathway in 

human myotubes. SF can be a useful natural dietary supplement in increasing skeletal muscle 

mass, especially in the aged with sarcopenia and the patients with disuse atrophy.
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Introduction
Sarcopenia, a syndrome of progressive and generalized loss of skeletal muscle mass 

and strength, poses a huge health care burden in the elderly.1–5 It has raised a great 

interest in the search for dietary ingredients that can help increase and maintain skel-

etal muscle mass.6–8 The dried Schisandrae fructus (SF) has been traditionally used 

in herbal medicine as the therapy for asthma, night sweats, insomnia, dry coughs, uri-

nary disorders, involuntary ejaculation, poor memory, hyperacidity, chronic diarrhea, 

hepatitis, diabetes, etc.9–12 Previous studies on SF extract have reported various bio-

logical activities as antioxidant, antiviral, antitumor, and anti-inflammatory agent.13–18 

Recently, SF has been shown to increase skeletal muscle mass and ameliorate atrophy in 

the mouse models of sciatic neurectomy and dexamethasone (DEX) treatment.19–24

Muscle hypertrophy is affected by balancing between protein synthesis and 

degradation.25 Several materials, such as leucine and ursolic acid, as well as exercise, 

have been known to induce skeletal muscle hypertrophy stimulating v-akt murine 

thymoma viral oncogene homolog (Akt) or mammalian target of rapamycin (mTOR) 

signaling.26–32 Activation of mTOR generates upregulation of phosphorylated eukaryotic 

translation initiation factor 4E-binding protein 1 (p-4E-BP1) or phosphorylated 70 kDa 
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ribosomal protein S6 kinase (p-P70S6K). Those signals 

induce hypertrophy by enhancing translation of mRNAs.

On the other hand, inhibition of protein degradation (muscle 

proteolysis) has an important role for muscle hypertrophy and 

atrophy.25 Muscle RING finger 1 (MuRF1) is a key regulator for 

muscle proteolysis through ubiquitin–proteasome pathway.33–35 

MuRF1 has increased in various atrophy conditions, including 

immobilization, denervation, hindlimb unloading, DEX treat-

ment, and interleukin-1-induced cachexia.33–38 MuRF1 regulates 

muscle atrophy and attenuates muscle loss when deleted.39

Mechanism associated with myogenic differentiation by 

SF in human myotubes has not been well documented. We 

have assessed if SF could promote myogenic differentiation 

and which pathway it exploits in human skeletal muscle cells 

(HSkMCs).

According to our study, SF treatment increased protein syn-

thesis through upregulation of mTOR/p-4E-BP1/p-P70S6K, 

while it did not reduce MuRF1 in human myotubes. Never-

theless, SF enhanced myogenic differentiation. In addition, 

SF attenuated atrophy caused by DEX through an increased 

protein synthesis. SF induced muscle protein synthesis but did 

not inhibit protein degradation in human myotubes.

Materials and methods
Materials
SF extract was obtained from Research Center for Anti-

Aging Technology Development (Busan Technopark, Busan, 

Korea). Extraction method of SF was indicated by previous 

research.15,21,22 SF was dissolved in dimethyl sulfoxide as a 

20 mg/mL stock solution and diluted with medium prior to use. 

The following antibodies were purchased from the individual 

providers: mTOR (sc-136269), p-mTOR (#2971), 4E-BP1 

(#9452), p-4E-BP1 (#2855), P70S6K (#2708), p-P70S6K 

(#9234), myosin heavy chain 3 (MYH3, sc-53091), MuRF1 

(ab172479), p-FOXO1 (#9461), and GAPDH (MB001) anti-

bodies were purchased from Cell Signaling (Danvers, MA, 

USA), Santa Cruz Biotechnology Inc. (Dallas, TX, USA), 

Bioworld (St Louis Park, MN, USA), and Abcam (Cambridge, 

UK). Secondary antibodies of antimouse (ADI-SAB-300-J) 

and antirabbit (ADI-SAB-100-J) were bought from Enzo Life 

Sciences (Farmingdale, NY, USA). Collagenase, dispase II, 

basic fibroblast growth factor, and DEX were bought from 

Sigma-Aldrich Co. (St Louis, MO, USA).

Primary culture of hskMcs
We used HSkMCs cultured primarily from donated human 

muscle pieces. All donors gave their written informed consent 

and agreed to muscle sampling during their surgical proce-

dures. This experiment was approved by Institutional Review 

Board of Pusan National University Yangsan Hospital. The sat-

ellite cells were isolated from the muscle piece by collagenase/

dispase digestion and were grown in Ham’s F10 medium 

(Thermo Fisher Scientific, Waltham, MA, USA) containing 

20% fetal bovine serum, antibiotics (penicillin 50 U/mL and 

streptomycin 50 mg/mL) and basic fibroblast growth factor 

(2.5 ng/mL).40,41 Muscle tissue was washed in Hank’s balanced 

salt solution. Muscle (~250 mg) was then minced and placed 

in 1 mL of collagenase (0.2%)/dispase II (2.4 U/mL) solution 

containing 8.3 mM CaCl
2
. Until completely digested, it was 

incubated at 37°C for 1 hour, being vortexed every 15 minutes. 

Digested muscle solution was filtered by a 100 µm nylon cell 

strainer and diluted with complete medium. Strained solution 

was centrifuged for 5 minutes at 150× g, and the pellet was 

washed in 2 mL of complete Ham’s F10 medium. Then, the 

pellets were resuspended and incubated in complete medium. 

Cells were seeded on gelatin-coated dish. Quality of human 

myoblast sample was checked with PAX3 (green, upper panel) 

and PAX7 (red, lower panel) stains (Figure S1). Growth 

medium was changed every 3 days. At confluence, HSkMCs 

were allowed to differentiate into myotubes. Differentiation 

of HSkMCs was induced by HSkMC differentiation medium 

(DM) (C-23061; PromoCell, Heidelberg, Germany).

Fusion index and myotube area
To observe differentiation efficiency, HSkMCs were seeded on 

12-well plates (2×104 cells/well), and after 1 day, HSkMCs were 

treated with SF of 0.1 µg/mL, 0.5 µg/mL, 1 µg/mL, 5 µg/mL,  

and 10 µg/mL in DM. Medium was changed to fresh DM 

with SF every 2 days. HSkMCs were photographed three 

times per group every 2 days for 8 days. Differentiation of 

HSkMCs was observed and photographed by phase-contrast 

microscopy (MCXI 600; MICROS, Vienna, Austria). Fusion 

index and myotube area were manually analyzed using ImageJ 

software. Fusion index is calculated as the ratio of the number 

of nuclei in fused myotubes per entire field. Myotube area is 

measured as the area covered by myotube in each photo.42,43

Induction of atrophy
To observe differentiation efficiency, HSkMCs were seeded 

on 6-well plates (1×105 cells/well), and after 1 day, HSkMCs 

were treated with SF of 0.5 µg/mL in DM. Medium was 

changed to fresh DM with SF every 2 days. Two days after 

induction of differentiation, cells were incubated with 100 µM 

DEX for 4 days to induce atrophy.44–47 Six days after the 

induction of differentiation, we took photos at three random 

spots in each group. For observing atrophy, we measured 

fusion index and myotube area. Cells were harvested with a 

Lipa buffer for protein extraction.
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Immunofluorescent staining
DM containing 0.5 µg/mL of SF was applied to the cells. 

After 6 days, cells were washed with phosphate buffered 

saline (PBS) and fixed by 4% paraformaldehyde. Then, 

cells were permeabilized with PBS containing 0.25% Triton 

X-100 (PBST) for 25 minutes. These cells were incubated 

in 2% BSA for 30 minutes and then with MYH3 antibodies 

for 2 hours. After washing with PBS, cells were incubated 

with fluorescent anti-mouse IgG antibody (Alexa 594; 

Thermo Fisher Scientific) for 1 hour. Nuclei were stained by 

Hoechst 33342 (DAPI, 1 µg/mL) for 3 minutes. All antibod-

ies were diluted in PBST containing 1% BSA. These cells 

were mounted on a glass slide. The results were recorded 

using fluorescence microscopy (Eclipse 80i; Nikon Corpora-

tion, Tokyo, Japan).

Western blot
The cells were lyzed on ice using a Lipa buffer (GenDEPOT, 

Barker, TX, USA) for 30 minutes. Cell lysates were centri-

fuged at 13,000 rpm for 20 minutes at 4°C. The supernatant 

was collected, and the protein concentration was determined 

by a bicinchoninic acid protein assay kit. Equal amounts 

of protein (40 µg) were separated using 4%–15% gradient 

sodium dodecyl sulfate polyacrylamide gel electrophoresis 

and then transferred to a polyvinylidene fluoride membrane 

(EMD Millipore, Billerica, MA, USA). The membrane was 

blocked with 5% skim milk and incubated with p-mTOR, 

total mTOR, p-P70S6K (Thr389), P70S6K, p-4E-BP1, 

4E-BP1, MuRF1, MYH, and GAPDH primary antibodies 

overnight at 4°C. Those membranes were washed with PBS 

containing 0.1% Tween 20 and incubated with a horseradish 

peroxidase-conjugated mouse or rabbit secondary antibodies 

for 1 hour at room temperature. The immunoblots were visual-

ized by chemiluminescence horseradish peroxidase substrate 

(RPN 2235; GE Healthcare UK Ltd, Little Chalfont, UK).

statistical analysis
All the experiments in this study were performed in triplicate. 

All data were shown as the mean ± standard error of the mean. 

Statistical analysis was performed using analysis of variance 

followed by Tukey’s honest significant difference post hoc 

test except for the Western blot results. Protein expression 

levels were analyzed using Student’s t-test. The significance 

was taken as P,0.05.

Results
sF induced differentiation in hskMcs
Proliferation effects of SF prior to differentiation test were 

investigated in HSkMCs. Various concentrations (0.1 µg/mL, 

0.5 µg/mL, 1 µg/mL, 5 µg/mL, and 10 µg/mL) of SF in 

growth medium were treated in a 12-well plate 1 day after 

the seeding of 4×104 cells per well. At 2 days after SF treat-

ment, HSkMCs were trypsinized to be counted. Proliferation 

efficiency has not shown significant difference compared 

with control (Figure 1A). HSkMCs were treated with SF of 

0.1 µg/mL, 0.5 µg/mL, 1 µg/mL, 5 µg/mL, and 10 µg/mL  

in DM. Differentiation of HSkMCs was observed and 

photographed by phase-contrast microscopy (MCXI 600; 

MICROS) every 2 days. For observing differentiation effi-

ciency, fusion index and myotube area were analyzed. As 

shown in Figure 1B and C, overall fusion index and myotube 

area were the highest at 6 days. SF treatment of 0.5 µg/mL 

resulted in significantly higher fusion index at 6 days after 

differentiation, which tended to remain high until day 8 

(Figure 1B). Myotube area was 1.6-fold larger than that of 

control with SF treatment of 0.1 µg/mL and 0.5 µg/mL at 

8 days after differentiation (Figure 1C and D). Concentrations 

.1 µg/mL caused rather reduced differentiation effects at day 

8, supposedly by toxic effect. We chose SF concentration of 

0.5 µg/mL, which showed the best result on differentiation, 

to be used on the subsequent experiment of HSkMCs.

sF increased phosphorylation of P70s6K 
and 4e-BP1 through mTOr signaling
To identify signaling pathways that were involved in 

SF-enhanced differentiation, HSkMCs were seeded on a 

ϕ100 mm dish (1×106 cells/plate), and the next day, they 

were treated with SF of 0.5 µg/mL in DM. At 1 day, 2 days, 

and 4 days after differentiation, the cells were harvested and 

lysed. We observed that SF increased phosphorylation of 

mTOR compared with control on the first day (Figure 2A 

and B). Levels of p-mTOR were normalized to the levels of 

GAPDH, as it has been suggested that myogenesis is affected 

by mTOR expression in kinase-independent way.48 This 

increase significantly upregulated the phosphorylation of 

P70S6K and 4E-BP1 (Figure 2C and D). p-P70S6K exhibited 

upregulation also in the late phase (day 4) of differentiation 

(Figure 2C). We concluded that SF induces muscle hyper-

trophy by protein synthesis through mTOR/P70S6K and 

4E-BP1 signaling in HSkMCs.

sF inhibited muscle atrophy through 
increasing protein synthesis
DEX is a glucocorticoid that mediates muscle prote-

olysis.19,21,35,46 Atrophy of myotubes was induced by 100 µM 

DEX. HSkMCs were treated with SF of 0.5 µg/mL in DM 

and changed to fresh DM and SF every 2 days. At 2 days 

after induction of differentiation, cells were incubated with 
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100 µM DEX for 4 days to induce atrophy. In the last 6 days 

after induction of differentiation, we could see that DEX 

treatment inhibits differentiation by fusion index and myo-

tube area (Figure 3A–C) and MYH3 expression (Figure 3D 

and E). Those cells that induced atrophy were attenuated by 

SF treatment in concert with the upregulation of p-4E-BP1 

and p-P70S6K (Figure 3E). However, SF did not inhibit the 

increase in MuRF1, which is responsible for muscle protein 

degradation through ubiquitin–proteasome pathway, induced 

by DEX (Figure 3F). Finally, differentiation enhancement by 

SF was revealed by MYH expression, a late-phase marker of 

myotube differentiation (Figure 3D and E). By these data, 

we could see that SF suppresses muscle atrophy by inducing 

protein synthesis in human myotubes.

Discussion
Muscle mass is frequently compromised by aging.1–5 Search 

for the dietary supplements to ameliorate and maintain 

skeletal muscle function is becoming an important topic in 

antiaging research field.49–55

Muscle growth starts by the activation of quiescent myo-

blasts (proliferation). These cells get committed to myogenic 

differentiation and fuse with existing muscle fibers.56–61 

In vivo skeletal muscle growth is identified by hypertrophy 

(increase in fiber size) and hyperplasia (increase in fiber 

number),62–64 while in vitro myogenic differentiation can be 

quantified by fusion index (ratio of fused nucleus) and area 

(hypertrophy) of myotubes.42,43 In addition, maintenance of 

myotubes is influenced by signals of skeletal muscle protein 

Figure 1 sF-induced differentiation in hskMcs.
Notes: (A) sF was treated with various concentrations (0.1 µg/ml, 0.5 µg/ml, 1 µg/ml, 5 µg/ml, and 10 µg/ml) in growth medium. Two days after treatment, hskMcs were 
counted. as a result, sF did not induce proliferation. (B and C) sF (0.1 µg/ml, 0.5 µg/ml, 1 µg/ml, 5 µg/ml, and 10 µg/ml) was treated with DM and changed with fresh DM 
every 2 days. HSkMCs were photographed three times every 2 days. For observing differentiation efficiency, fusion index and myotube area were analyzed. (D) eight days 
after differentiation induction with sF, hskMcs were photographed. a total of 0.5 µg/mL of SF significantly induced more differentiation. All data represented mean ± seM 
(n=3). *symbol indicates P,0.05 compared to control.
Abbreviations: DM, differentiation medium; hskMcs, human skeletal muscle cells; sF, schisandrae fructus.
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synthesis and degradation.25 So we investigated which signals 

regulate differentiation by SF treatment. Various concentra-

tions of SF were treated with HSkMCs with growth medium 

and DM, while SF did not significantly affect HSkMCs 

under proliferation (Figure 1A), but 0.5 µg/mL of SF could 

remarkably increase differentiation at 6 days by fusion 

index and at 8 days by myotube area after differentiation 

(Figure 1B–D).

According to the previous studies, many kinds of materi-

als, such as ursolic acid and leucine,26,32,37,51 as well as exercise 

that have been known to induce skeletal muscle hypertrophy 

are associated with mTOR and transforming growth factor-

beta signaling.21,26,27 SF also activated signaling pathway 

of mTOR/p-P70S6K and p-4E-BP1 in early phases of dif-

ferentiation (Figure 2). This activated signaling increased 

the synthesis of skeletal muscle proteins (Figure 3D and E). 

However, SF did not reduce MuRF1, which is responsible 

for muscle protein degradation through ubiquitin–proteasome 

pathway (Figure 3F). Nevertheless, we could observe 

substantial myotube hypertrophy by SF treatment showing 

increase in fusion index and myotube area and MYH expres-

sion in human myotubes (Figures 1 and 3).

Much research has utilized DEX-treated mice and C2C12 

to generate muscle atrophy.19,21,47 In this study, DEX pro-

voked atrophic changes accompanied by increase in MuRF1 

expression.

The upstream p-FOXO1 increased on the application of 

SF, which links to the inhibition of the protein degradation 

(Figure S2). However, contrary to the previous report with 

DEX-treated mice,21 SF treatment did not attenuate MuRF1 

expression but rather raised it (Figure 3F). We speculate 

that MuRF1 expression by SF might be associated with 

FOXO3 levels or activity. Nevertheless, MYH expres-

sion and P70S6K activation were restored by SF inducing 

differentiation (Figure 3D and E). We suppose that this 

SF-induced muscle hypertrophy is influenced by the activa-

tion of mTOR signaling and the resultant increased protein 

synthesis than the inhibition of MuRF1 (Figure 4). It is still 

Figure 2 sF increased protein synthesis through mTOr/P70s6K and 4e-BP1 signaling.
Notes: (A) sF (0.5 µg/ml) was treated with differentiation medium. hskMcs’ differentiation was induced for 1 day, 2 days, and 4 days. Phosphorylation and expression of 
mTOR, P70S6K, and 4E-BP1 were observed for Western blot. GAPDH expression was analyzed to identify equal loading. (B–D) levels of mTOr activation (phosphorylation) 
were normalized to the levels of GAPDH.48 Phosphorylation of P70S6K and 4E-BP1 was normalized to the levels of each total protein. All data represented mean ± seM 
(n=3). *symbol indicates P,0.05.
Abbreviations: 4e-BP1, 4e-binding protein1; hskMcs, human skeletal muscle cells; mTOr, mammalian target of rapamycin; p-4e-BP1, phosphorylated 4e-BP1; p-P70s6K, 
phosphorylated P70s6K; P70s6K, 70 kDa ribosomal protein s6 kinase; sF, schisandrae fructus; seM, standard error of mean; gaPDh, glyceraldehyde 3-phosphate 
dehydrogenase.
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Figure 4 The diagram describes the mechanism of sF that increases muscle hypertrophy.
Notes: It is suggested that sF increased protein degradation through increasing MurF1 expression; nevertheless, it could also increase muscle hypertrophy by inducing 
myogenic differentiation and attenuating atrophy by protein synthesis through mTOr/P70s6K and 4e-BP1 signaling pathway.
Abbreviations: 4E-BP1, 4E-binding protein1; mTOR, mammalian target of rapamycin; MuRF1, muscle RING finger 1; P70S6K, 70 kDa ribosomal protein S6 kinase; 
sF, schisandrae fructus.

Figure 3 sF inhibited muscle atrophy through increasing protein synthesis.
Notes: at 2 days of differentiation, atrophy of myotubes was induced by 100 µM DeX for 4 days, and DM was changed to fresh DM with sF every 2 days. (A–C) In the 
last 6 days after induction of differentiation, HSkMCs were photographed three times per group. For observing differentiation efficiency, fusion index and myotube area 
were analyzed. All data represented mean ± seM (n=3). *symbol indicates P,0.05 compared to control. #symbol represents P,0.05 compared to DeX treatment alone. 
(D) Myotubes were fluorescence stained with anti-MYH (red) and DAPI (blue), which was observed as a marker of late differentiation. (E and F) examples of representative 
Western blot were shown for MYH, p-P70S6K, P70S6K p-4E-BP1, 4E-BP1, GAPDH, and MuRF1. Levels of MYH, MuRF1, p-P70S6K, and p-4E-BP1 were normalized to the 
levels of gaPDh or total protein.
Abbreviations: DEX, dexamethasone; DM, differentiation medium; 4E-BP1, 4E-binding protein1; HSkMCs, human skeletal muscle cells; MuRF1, muscle RING finger 1; MYH, 
myosin heavy chain; p-4e-BP1, phosphorylated eukaryotic translation initiation factor 4e-binding protein 1; p-P70s6K, phosphorylated P70s6K; P70s6K, 70 kDa ribosomal 
protein s6 kinase; sF, schisandrae fructus; seM, standard error of mean; gaPDh, glyceraldehyde 3-phosphate dehydrogenase.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2016:11 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2413

effect of sF extract on human myotube differentiation

probable that application of DEX early in the differentiation 

posed antidifferentiation effect, which was alleviated by SF 

extract to result in myotube hypertrophy.

Conclusion
SF could enhance myogenic differentiation and attenuate 

atrophy in human myotubes, supporting previous reports 

from mouse models. We confirmed that these effects are 

mediated by increased protein synthesis through mTOR/

P70S6K/4E-BP1 signaling pathway (Figure 4). We find 

that the human myotube culture is a good testbed to screen 

materials to benefit human skeletal muscle, which may reveal 

aspects different from those by mice experiment. It will 

eventually help the people with sarcopenia or myopathy to 

maintain and strengthen their skeletal muscle.
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effect of sF extract on human myotube differentiation

Figure S1 Human skeletal muscle cells were identified by the expression of PAX3 and PAX7.
Notes: Primary cultured human skeletal muscle cells have exhibited the expression of PaX3 (green, upper panel) and PaX7 (red, lower panel), which have been known as 
human myoblast marker. each of the stained cells was merged with nuclei.

Figure S2 sF increased phosphorylation of FOXO1.
Notes: sF (0.5 µg/ml) was treated with differentiation medium. hskMcs’ differentiation was induced for 1 day, 2 days, and 4 days. Phosphorylation of FOXO1 was observed 
by Western blot. p-FOXO1 levels were normalized to the levels of GAPDH.
Abbreviations: hskMcs, human skeletal muscle cells; sF, schisandrae fructus; gaPDh, glyceraldehyde 3-phosphate dehydrogenase.

Supplementary materials
Immunofluorescent staining
Primary cultured human skeletal muscle cells (2×104 cells/well) 

were seeded on a cover glass in a 12-well plate, which was 

coated with 1% gelatin. After 2 days, cells were washed with 

phosphate buffered saline (PBS) and fixed by 4% paraformal-

dehyde. Then, cells were permeabilized with PBS containing 

0.25% Triton X-100 (PBST) for 25 minutes. These cells were 

incubated in 2% BSA for 30 minutes and then with PAX3 

(ab180754; Abcam) or PAX7 (ab34360; Abcam) antibodies 

overnight at 4°C. After washing with PBS, cells were incubated 

with fluorescent antirabbit IgG antibodies (Alexa 594 or Alexa 

488; Thermo Fisher Scientific, Waltham, MA, USA) for 1 hour. 

Nuclei were stained by Hoechst 33342 (DAPI, 1 µg/mL) for 

3 minutes. All antibodies were diluted in PBST containing 1% 

BSA. These cells were mounted on a glass slide. These results 

were recorded using fluorescence microscopy (Eclipse 80i; 

Nikon Corporation, Tokyo, Japan).
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