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Abstract: Long noncoding RNAs (lncRNAs) are typically defined as transcripts longer than 

200 nucleotides. lncRNAs can regulate gene expression at epigenetic, transcriptional, and 

posttranscriptional levels. Recent studies have shown that lncRNAs are involved in many 

neurological diseases such as epilepsy, neurodegenerative conditions, and genetic disorders. 

Alzheimer’s disease is a neurodegenerative disease, which accounts for .80% of dementia in 

elderly subjects. In this review, we will highlight recent studies investigating the role of lncRNAs 

in Alzheimer’s disease and focus on some specific lncRNAs that may underlie Alzheimer’s 

disease pathophysiology and therefore could be potential therapeutic targets.
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Introduction
Alzheimer’s disease (AD) is one of the most common neurodegenerative disease and 

accounts for .80% of dementia cases in people aged older than 65 years.1 The disease 

is characterized by devastating symptoms such as apraxia, agnosia, aphasia, and emo-

tional disturbance because of progressive mental and behavioral function decline.2–4 

The 2015 Alzheimer’s Association report predicts that, by 2050, there will be a new 

diagnostic case every 33 seconds, corresponding to 1 million new AD patients every 

year.5 Given the disability and dependence of these patients, the increasing prevalence 

of AD will impose huge burdens on families and society. Long noncoding RNAs 

(lncRNAs) comprise a subgroup of noncoding RNAs (ncRNAs) longer than 200 

nucleotides (nt), accounting for the largest proportion of the mammalian noncoding 

transcriptome. lncRNAs impact AD pathogenesis because of their diverse biochemical 

and functional effects such as chromatin modulation, posttranscriptional and post-

translational regulation, and protein complex organization.6,7

AD pathophysiology
Since the time of Dr Alois Alzheimer, neuropathologists have known that brain tissue 

of patients with AD contains extracellular senile plaques and intracellular neurofibril-

lary tangles composed of amyloid beta (Aβ) protein and hyperphosphorylated tau 

protein, respectively.8–15 Amyloid precursor protein (APP) is sequentially cleaved by 

β-site APP cleaving enzyme-1 (BACE1), and γ-secretase during Aβ biosynthesis, 

with γ-secretase initiating the “amyloid-cascade”.16 Aβ peptides aggregate into soluble 

oligomers that are proposed to be the activator of N-methyl-d aspartate receptor endo-

cytosis, mitochondrial dysfunction, oxidative damage, excessive calcium influx, lipid 

dysregulation, synaptic dysfunction, neuronal stress, apoptosis, aberrant neurogenesis, 

and neuroinflammation. However, whether or not Aβ induces tau aggregation is still 

being debated.17–21 But most recent studies suggest that Aβ oligomer formation may 
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be the essential step in the pathophysiology underpinnings 

of AD.17,22–24

lncRNA
ncRNAs can be divided on the basis of size into short 

ncRNAs (200 nt in length) and lncRNAs.17,25 lncRNAs vary 

from 200 nt to over 100 kb and usually lack an obvious open 

reading frame.26–30 lncRNAs secondary structure connected 

to specific functions are evolutionarily conserved.31,32 They 

regulate dynamically, localizing at specific cell types and 

in subcellular compartments.26,33,34 lncRNAs regulate gene 

expression at different levels.35 Most lncRNAs are located 

in the nucleus, which is consistent with their major function 

of epigenetic regulation.26,36 lncRNAs are not considered 

to be the “dark matter”, rather they have essential roles in 

controlling transcription and translation, as well as dur-

ing genetic imprinting, genome rearrangement, chromatin 

modification regulation of the cell cycle, transcription, splic-

ing, messenger RNA (mRNA) decay, and translation.27,30,37 

The pathomechanism and genetic factors of AD have been 

investigated for nearly 100 years. Research is ongoing, 

many studies have demonstrated that dysregulation of 

lncRNAs involved in cancer; epilepsy; and cardiovascular, 

neurodegenerative, and genetic diseases. Some have pos-

ited that lncRNAs may also have a major role in AD35,38,39 

(Table 1; Figure 1).

BACe1-AS
β-site amyloid precursor protein cleaving enzyme-1 

antisense transcript (BACE1-AS) is a conserved RNA 

transcribed from the positive strand of chromosome 11 

on the opposite strand of the BACE1 locus (11q 23.3).16,17 

BACE1-AS regulates BACE1 (β-site APP cleaving 

enzyme-1) expression at both the mRNA and protein levels. 

BACE1 is essential for the production of the toxic Aβ.40,41 

AD pathogenesis has been implicated in many different 

cell stressors. Following exposure to high temperature, 

serum starvation, staurosporine, Aβ1–42, high glucose, 

BACE1-AS, and BACE1 mRNA are both upregulated. This 

suggests that cell stressors may alter BACE1-AS expression 

and subsequently BACE1 enzyme activity.16,42 Regardless 

of whether BACE1-AS is knocked down or overexpressed, 

both BACE1 mRNA and BACE1 protein are regulated 

in parallel, thereby reducing Aβ production and plaque 

deposition.16,17,42 In animals, loss of BACE1 results in numer-

ous behavioral and physiological deficits, including memory 

loss, reduced synaptic plasticity,43 emotional deficits,44 and 

peripheral myelination defects.45–49 The delicate physiologic 

and pathologic boundaries indicate that BACE1 expression 

should be tightly regulated.16,49

In summary, cell stress increases BACE1-AS levels, 

which in turn stimulates BACE1 expression, which could 

enhance APP processing and Aβ1–42 production. Elevated 

Aβ1–42 levels can further promote BACE1-AS overex-

pression and the APP processing cascade in a feedforward 

manner.16,42,50 By forming an RNA duplex, BACE1-AS 

increases BACE1 mRNA stability.42,51,52 So, BACE1 and 

BACE1-AS may be potential biomarkers and treatment 

targets for AD.46,50,53,54

51A
The neuronal sortilin-related receptor gene (SORL1, also 

known as SORLA and LR11) has long been hypothesized to 

be involved in AD pathogenesis.55–58 Recent studies have pos-

ited that SORL1, as a sorting receptor for APP holoprotein, 

interacts with APP in endosomes and the trans-Golgi network 

where it affects trafficking and proteolytic processing.59 

Decreased SORL1 expression might shift APP from the 

retromer recycling pathway to the β-secretase cleavage 

pathway, increasing secreted APP production and subsequent 

Table 1 Dysregulated lncRNAs in Alzheimer’s disease

lncRNAs Target Role References

BACe1-AS↑ Upregulation BACe1 mRNA stability Aβ↑ 16

51A↑ Downregulating SORL1 variant A Aβ↑ 59,61

17A↑ Impairing the GABA B signaling Aβ↑, Aβx-42/Aβx-40↑ 62,63

NDM29↑ Promoting the cleavage activity of BACe and γ-secretase Aβ↑, Aβx-42/Aβx-40↑ 12

BC200 ↑/↓ Targeting at eIF4A to decouple ATP hydrolysis Modulators of local protein synthesis to  
maintain the long-term synaptic plasticity

65

NAT-Rad18 ↑ Controlling the expression of DNA repair protein Rad18 Making the neuron more sensitive to apoptosis 68

Notes: The arrows next to lncRNAs indicates up/down regulation. The arrows next to Aβ indicates up/down expression.
Abbreviations: Aβ, amyloid β peptide; BACe1, β-site APP cleaving enzyme-1; BC200, brain cytoplasmic 200 RNA; GABA, gamma-aminobutyric acid; eIF4A, eukaryotic 
initiation factor 4A; lncRNAs, long noncoding RNAs; mRNA, messenger RNA; NDM29, neuroblastoma differentiation marker 29; SORL1, sortilin-related receptor gene; 
ATP, adenosine triphosphate.
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Aβ formation.59,60 51A is a novel ncRNA that maps in an 

antisense configuration to intron 1 of the SORL1 gene, the 

synthesis of which promotes the expression of alternatively 

spliced SORL1 variants. Notably, 51A is overexpressed in in 

vitro models and the AD brain. One possible mechanism by 

which 51A might increase AD susceptibility is by increasing 

amyloid formation via downregulating SORL1 variant A 

through alternative splicing.59,61

17A
17A is a 159-nt lncRNA synthesized by RNA polymerase III 

and maps in intron 3 of G-protein-coupled receptor 51 gene 

(GPR51); it undergoes alternative splicing, increasing the 

number of GABA B2 receptor isoforms. GABA B R2 

splice variant B may affect GABA B biological function by 

regulating intracellular 3′–5′-cyclic adenosine monophos-

phate accumulation and the activation of specific potassium 

channels. These events would impair GABA B signaling, 

enhance Aβ secretion, and increase the Aβx-42/Aβx-40 

ratio. 17A RNA is upregulated in AD compared with con-

trol tissues, suggesting that it could directly or indirectly be 

involved in the mechanism of AD.52,62,63

NDM29
Neuroblastoma differentiation marker 29 (NDM29) is an 

RNA polymerase III-transcribed ncRNA. NDM29 synthesis 

is dose-dependently induced by inflammatory stimulation. 

The upregulation of NDM29 RNA is accompanied by altered 

APP modulation. Meanwhile, it can promote the cleavage 

activities of BACE that, in turn, generates an enhanced 

amount of APP C-terminal fragments for further processing 

by the γ-secretase cleavage complex to increase Aβ formation 

and the Aβx-42/Aβx-40 ratio.12,63,64

Brain cytoplasmic 200 RNA (BC200)
BC200 is a translational regulator that targets eukaryotic 

initiation factor 4A, thus decoupling adenosine triphosphate 

hydrolysis from RNA duplex unwinding, modulating local 

protein synthesis in postsynaptic dendritic microdomains, 

and contributing to the maintenance of long-term synaptic 

plasticity.65

One postmortem study found that BC200 RNA levels in 

cortical areas are reduced by .60% between the ages of 49 

and 86 years. Compared with age-matched normal brains, 

BC200 RNA is significantly upregulated in the AD brain. 

Moreover, the relative BC200 RNA levels in AD-involved 

brain areas increase in parallel with disease progression. 

Still, at least one study reported BC200 downregulation.66 

The contradiction between studies may be due to differences 

in brain regions and varying disease severity, but aberrant 

BC200 RNA expression in AD is a possibility.67

Relative BC200 RNA levels decrease in dendrites 

but increase in somata. This divergent expression affects 

microtubule-dependent transport and could contribute to 

axonal and dendritic blockage that may be early events in 

AD. It could eventually contribute to local Aβ generation 

and subsequent amyloid deposition.24,68 Another group found 

that BC200 RNA is not affected under apoptotic conditions 

Figure 1 Dysregulated lncRNAs in AD.
Notes: BACe1-AS, 17A, 51A, and NDM29 directly or indirectly increase Aβ formation and/or the Aβx-42/Aβx-40 ratio. BC200 modulates local protein synthesis to maintain 
long-term synaptic plasticity. NAT-Rad18 is implicated in apoptosis. The arrows next to Aβ indicates up/down expression.
Abbreviations: Aβ, amyloid β peptide; AD, Alzheimer’s disease; BACe1, β-site APP cleaving enzyme-1; BC200, brain cytoplasmic 200 RNA; eIF4A, eukaryotic initiation 
factor 4A; lncRNAs, long noncoding RNAs; NDM29, neuroblastoma differentiation marker 29; SORL1, sortilin-related receptor gene; mRNA, messenger RNA.
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in vitro and hypothesized that BC200 is only involved in 

necrosis rather than apoptosis.22

NAT-Rad18
Apoptosis is the main form of programmed cell death, and 

excessive apoptosis causes progressive cell loss that con-

tributes to many neurodegenerative disorders, including 

AD. Rad18 is a member of the Rad6 epistasis group, which 

is responsible for postreplication repair. NAT-Rad18 genes 

encode for natural antisense transcripts against Rad18, 

encoding a spectrum of DNA-damaging agents. There is a 

counterbalanced relationship between Rad18 and NAT-Rad18 

in both mRNA and protein level, with Rad18 showing a low 

expression level. NAT-Rad18 is differentially up-regulated 

expressed in brain tissues especially cortical neurons follow-

ing exposure to Aβ. Collectively, this evidence indicates that 

NAT-Rad18 may be involved in AD via its effects on DNA 

repair system.69

Conclusion
Almost all lncRNAs related to AD have been listed in this 

review, but investigation into this field is in the early stage. 

Since AD was first reported, a century passed before the 

discovery of basic molecular mechanism. Unquestionably, 

new information about lncRNAs may light a new beacon in 

the search for AD treatments. Depending on the mechanism 

of AD, BACE1-AS, 17A, 51A, and NDM29 directly or 

indirectly increase Aβ formation and/or the Aβx-42/Aβx-40 

ratio. The roles of BC200 and NAT-Rad18 are different. 

BC200 modulates local protein synthesis to maintain 

long-term synaptic plasticity. NAT-Rad18 is implicated in 

apoptosis, while BC200 is only involved in necrosis. As the 

lncRNA field continues to develop, we still need to elucidate 

how lncRNAs operate at the molecular and cellular levels. 

Most recent studies suggest that lncRNAs are desirable 

candidates in the ongoing quest for AD biomarkers and could 

help identify rational therapeutic strategies. An enhanced 

understanding of lncRNA biology could open more avenues 

to early AD diagnosis and treatment.

Disclosure
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