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Abstract: Periodontitis is a major cause for tooth loss, which affects about 15% of the adult 

population. Cementum regeneration has been the crux of constructing the periodontal complex. 

Cementum protein 1 (CEMP1) is a cementum-specific protein that can induce cementogenic 

differentiation. In this study, poly(ethylene glycol) (PEG)-stabilized amorphous calcium 

phosphate (ACP) nanoparticles were prepared by wet-chemical method and then loaded with 

recombinant human CEMP1 (rhCEMP1) for controlled release. An electrospun multiphasic 

scaffold constituted of poly(ε-caprolactone) (PCL), type I collagen (COL), and rhCEMP1/ACP 

was fabricated. The effects of rhCEMP1/ACP/PCL/COL scaffold on the attachment proliferation, 

osteogenic, and cementogenic differentiations of human periodontal ligament cells, (PDLCs) 

were systematically investigated. A critical size defect rat model was introduced to evaluate the 

effect of tissue regeneration of the scaffolds in vivo. The results showed that PEG-stabilized 

ACP nanoparticles formed a core-shell structure with sustained release of rhCEMP1 for up to 

4 weeks. rhCEMP1/ACP/PCL/COL scaffold could suppress PDLCs proliferation behavior and 

upregulate the expression of cementoblastic markers including CEMP1 and cementum attach-

ment protein while downregulating osteoblastic markers including osteocalcin and osteopontin 

when it was cocultured with PDLCs in vitro for 7 days. Histology analysis of cementum after 

being implanted with the scaffold in rats for 8 weeks showed that there was cementum-like tissue 

formation but little bone formation. These results indicated the potential of using electrospun 

multiphasic scaffolds for controlled release of rhCEMP1 for promoting cementum regeneration 

in reconstruction of the periodontal complex.

Keywords: nanofiber scaffold, rhCEMP1, controlled release, cementum regeneration, in vivo

Background
Periodontitis is a common oral inflammatory disease induced by periodontal pathogens 

that causes periodontal tissue destruction, including connective attachment loss and 

alveolar bone resorption, thereby resulting in tooth loss.1 To date, periodontal recon-

struction based on infection control is still the key solution for periodontal treatment. 

However, the bottle neck for periodontal reconstruction is that it is difficult to regenerate 

cementum. Cementum represents a unique avascular-mineralized connective tissue that 

covers the root surface of the teeth. It provides the interface through which Sharpey’s 

collagen fibers of the periodontal ligament are anchored to the root surface. A number 

of studies show that cementum protein 1 (CEMP1, one kind of growth factor [GF]) 

promotes cell attachment, differentiation, extracellular matrix (ECM) deposition, and 

affects the composition, and morphology of hydroxyapatite (HA) crystals formed by 

human cementoblast cells in vitro.1–5 These observations confirm that CEMP1 plays 
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an important role during the cementum formation and the 

biomineralization process.

However, there is lack of experimental data to ascertain 

the ability of recombinant human CEMP1 (rhCEMP1) to 

induce cementum regeneration in vivo. Although CEMP1 

is beneficial for cementum regeneration, direct application 

of CEMP1 in tissue engineering is restricted due to its short 

biological half-life, systemic side effects, and rapid clear-

ance. Given the obstacles surrounding the issue, we induced 

a sustained releasing system to fit with the tardy regeneration 

process of cementum.

Recently, biodegradable scaffolds have been designed 

and successfully used in the repair and regeneration of 

damaged or diseased tissues. In addition, GFs can be encap-

sulated within these scaffolds to circumvent the premature 

release and the degradation of the GF before it reaches the 

targeting site. GFs encapsulated inside these scaffolds can 

be released according to cellular demands in a controlled 

manner,6 allowing similar reparative processes to be induced 

by low GF concentration.7 Importantly, controlled release of 

vascular endothelial growth factor from the scaffold leads to 

the formation of a more organized vasculature in comparison 

to the vasculature that arises from the uncontrolled vascular 

endothelial growth factor release.8 Furthermore, multiple GFs 

can be incorporated in one scaffold, which may complement 

one another temporally and spatially.9,10 However, scaffolds 

fabricated with a sole component usually exhibit limited 

mechanical properties and fail to mimic the natural tissue. To 

address this shortcoming, biomimetic hybrid scaffolds com-

posed of polymer and calcium phosphate nanoparticles were 

developed to successfully regenerate human tooth–ligament 

interfaces.11 The calcium phosphate not only enhanced the 

toughness of the scaffold, but also improved its biocompat-

ibility and accelerated the biomineralization procedure, 

because the chemical composition of calcium phosphate is 

similar to the inorganic phase of bone. Therefore, CEMP1-

encapsulated scaffolds seem to be suitable in the cementum 

formation and the biomineralization process, which not only 

acts as a physical and biological support for cementum regen-

eration, but also a three-dimensional (3D) artificial cementum 

ECM to mimic the structure and function of cementum.

Inspired by the merits of the hybrid scaffold, in this work, 

a robust CEMP1-encapsulated hybrid scaffold composed 

of poly(ε-caprolactone) (PCL), Type I collagen (COL), and 

poly(ethylene glycol) (PEG)-modified amorphous calcium 

phosphate (ACP) [Ca
3
(PO

4
)

2
⋅3H

2
O] was designed and 

fabricated through electrospinning method. PCL possesses 

remarkable toughness and good biocompatibility in addition 

to a high elongation and fracture energy.12–14 Its flexibility 

has been used to overcome the brittleness and low elon-

gation property of pure inorganic scaffolds.15 COL and 

calcium phosphate are the main constituents of cementum 

ECM.16 The presence of COL in the scaffold is conducive 

to tissue regeneration, including good biocompatibility, no 

immunogenicity, no toxicity, and supporting, protecting, 

and mediating cell adhesion.17 The use of ACP has some 

advantages: ACP shows better osteoconductive property 

than HA in vivo and its biodegradability is higher than that 

of tricalcium phosphate.18 Furthermore, the conversion of 

ACP to HA will release functional calcium and phosphate 

ions as convenient and fast sources of raw materials for the 

regeneration of mineralized tissue.19

To maintain the bioactivity of CEMP1 during the elec-

trospinning, rhCEMP1 was first encapsulated inside PEG-

modified ACP, due to the tight affinity between CEMP1 and 

calcium phosphate.20 The encapsulation of rhCEMP1 inside 

the PEG-modified ACP can protect rhCEMP1 from contacting 

the organic solvent during the electrospinning, thus avoiding 

unwanted protein denaturation. The release of rhCEMP1 from 

the rhCEMP1/ACP nanoparticles was studied. Then an elec-

trospun multiphasic scaffold composed of rhCEMP1/ACP, 

PCL, and COL was fabricated and cocultured with periodontal 

ligament cells (PDLCs) to assess the biocompatibility and 

inductivity. Finally, the in vivo assessment of tissue regenera-

tion was conducted in a critical size defect rat model.

Materials and methods
Materials and reagents
All reagents and chemicals were purchased from Aladdin 

(Shanghai, People’s Republic of China) unless otherwise 

stated. Plasmids and BL21 (DE3) were purchased from 

Thermo Fisher Scientific (Waltham, MA, USA). rhCEMP1 

enzyme-linked immunosorbent assay kit was purchased from 

CUSABIO (Wuhan, Hubei, People’s Republic of China). 

PCL was purchased from Dai Gang Biology (PCL, molecular 

weight of 160 kDa; Shanghai, People’s Republic of China). 

COL was purchased from Sigma-Aldrich (Wadena, MN, 

USA) and α-minimum essential medium (α-MEM) was from 

Hyclone (Logan, UT, USA). Fetal bovine serum and antibiot-

ics were purchased from Gibco (Grand Island, NY, USA).

synthesis and characterization of acPs 
and rhceMP1-loaded acPs (acPPs) 
nanoparticles
Briefly, CaCl

2
 and PEG (molecular weight: 10,000) with 

designed ratios of 1:1 (w/w) were dissolved in distilled water 

to form 0.1 M solution of CaCl
2
, which was immersed in 

an ice-water bath. Then Na
3
PO

4
⋅12H

2
O aqueous solution 
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(0.133 M) was added into the CaCl
2
/PEG solution with a 

Ca/P mole ratio of 1.5, and the reaction was continued in 

ice water under 900 rpm stirring for 30 minutes. The ACP 

nanoparticles were obtained by washing the precipitates 

with distilled water repeatedly to remove the unwanted ions 

(Na+ and Cl-) and freeze-dried for 48 hours. The blank cal-

cium phosphate samples were prepared without the presence 

of PEG, as the control.

For the preparation of ACPPs, 5 mL distilled water was 

added to suspend the ACP precipitates. A specified amount 

of lyophilized rhCEMP1 (as listed in Table 1) powder was 

allowed to incorporate into the ACP precipitates by stirring 

at 900 rpm for 5 minutes in an ice-water bath to afford a 

mixture in which the net share of rhCEMP1 in dry state 

would be 1%, 2%, 5%, and 8% (w/w). The new precipitates 

containing rhCEMP1 were named ACPPs and freeze-dried 

for 48 hours.

Production of rhCEMP1 has been described in earlier 

studies.21 Briefly, rhCEMP1 complementary DNA (cDNA) 

was optimized and inserted into corresponding sites of inter-

mediate vector pENTR/SD/D after restriction endonuclease 

digestion, and then inserted into vector pET28a. The recom-

binant vector pET28a-rhCEMP1 was confirmed by agarose 

gel electrophoresis and DNA sequence analysis. The plasmid 

was introduced into BL21 (DE3) expression host Escherichia 

coli strain. The expression of rhCEMP1 was determined by 

sodium dodecyl sulfate–polyacrylamide gel electrophoresis 

and enzyme-linked immunosorbent assay.

The precipitates obtained in the absence and presence 

of PEG or rhCEMP1 were characterized by transmission 

electron microscopy (JEM-200CX; JEOL, Tokyo, Japan). 

Fourier-transform infrared spectroscopy (NEXUS870; 

NICOLET, San Carlos, CA, USA) was conducted in the 

range of 400–4,000 cm-1.

Encapsulation efficiency and controlled 
release of rhceMP1 from acPPs
About 10 mg of the freeze-dried ACPPs were dispersed 

in 10 mL of phosphate-buffered saline (PBS) in a shaker 

incubator at 100 rpm and 37°C for 5 minutes. Afterwards, 

the solution was centrifuged and the concentration of 

rhCEMP1 in the supernatant was assessed using rhCEMP1 

enzyme-linked immunosorbent assay kit. The ratio of super-

natant to actual protein weight was defined as encapsulation 

efficiency (EE) of the nanoparticles. The EE of rhCEMP1 

was calculated as:

 EE (%) t f

t

=
C C

C

−
×100, (1)

where C
f
 is the weight of free rhCEMP1 in the supernatant 

and C
t
 is the actual protein weight.

About 10 mg ACPPs were immersed into 10 mL of PBS 

(pH 7.4), and the samples were placed in a shaker incuba-

tor at 100 rpm and 37°C. At predetermined intervals (1, 3, 

7, 14, 21, and 28 days), the medium was retrieved and an 

equal volume of fresh medium was replenished. The amounts 

of rhCEMP1 in the release medium were ascertained by 

rhCEMP1 enzyme-linked immunosorbent assay kit.

Fabrication of electrospun multiphasic 
scaffold
Two kinds of scaffold were prepared using the electrospinning 

technique and named as ACP/COL/PCL and ACP/rhCEMP1/

COL/PCL. A solution strategy was adopted in polymer blend-

ing, and the detailed compositions are listed in Table 2. COL 

and PCL (weight ratio =1/1) were dissolved in hexafluor-

oisopropanol to yield a 25 w/v% solution. ACP or rhCEMP/

ACP-containing scaffolds were generated by admixing ACP 

or rhCEMP/ACP (a dispersion of 20 w/v% in hexafluoroiso-

propanol) to the polymer blend solutions (ACPP1 was chosen 

for fabricating the scaffold and then named as rhCEMP/ACP 

afterwards). A defined amount of genipin (GP) was added 

to cross-link the collagen before electrospinning. GP is a 

natural cross-linking agent extracted from the gardenia plant, 

and is less cytotoxic than glutaraldehyde. GP can react with 

proteins and produce blue-colored fluorescent hydrogels, 

thereby enabling cross-linking.22 The solution was drawn 

into a 10 mL syringe attached with a tip-blunt capillary (inner 

diameter =0.34 mm). A needlelike flow of the solution from 

the capillary spinneret was fed by a syringe pump at a flow 

rate of 2.5 mL/h. A high-voltage power supply was used at 

17 kV. The distance between the tip-blunt capillary and the 

Table 1 The compositions of electrospinning solutions

Sample HFIP (mL) COL (mg) PCL (mg) ACP (mg) ACP/rhCEMP1 (mg) GP (mg)

acP/cOl/Pcl 10 900 900 600 0 12
acP/rhceMP1/cOl/Pcl 10 900 900 0 600 12

Abbreviations: ACP, amorphous calcium phosphate; COL, Type I collagen; GP, genipin; HFIP, hexafluoroisopropanol; PCL, poly(ε-caprolactone); rhceMP1, recombinant 
human cementum protein 1.
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cover slips or aluminum foil that were used as collectors was 

15 cm. The obtained electrospun fibers were dried and then 

stored in clean polythene bags for further use.23

culture and seeding of PDlcs
Human PDLCs were retrieved, using a method adopted from 

Tanaka et al,24 from sound premolars extracted for orthodon-

tic reasons from five individuals (16–18 years old, three 

males and two females). All procedures in the study in both 

in vitro cell culture and in vivo animal model followed the 

approved ethical guidelines set by the Ethics Committee of 

Nanjing Stomatological Hospital. Written informed consent 

was obtained from all five individuals and/or their parents/

guardians. Briefly, teeth were rinsed three times with PBS 

supplemented with antibiotics (streptomycin 100 μg/mL, 

penicillin 100 units/mL). Periodontal ligament tissue was 

scraped from the middle-third of root surface with a surgi-

cal scalpel and cultured in α-MEM supplemented with 10% 

fetal bovine serum and antibiotics (streptomycin 100 mg/mL, 

penicillin 100 units/mL) in an atmosphere of 95% air/5% CO
2
 

at 37°C with 100% humidity. Cells were cultured in vitro and 

the third passage was used for the experiments.

The scaffolds were cut into circular discs with diameters 

of 5 mm (for 96-well plate), 19 mm (for 12-well plate), and 

25 mm (for 6-well plate) and sterilized in 70% ethanol for 

40 minutes and then washed with the culture medium to 

remove the alcohol residue. The cells were seeded on the 

sterilized scaffolds with a density of 6×103 cells/cm2 and were 

incubated at 37°C for 4 hours to promote cell attachment/

adhesion. Then, 1 mL of culture medium was added into each 

well. The culture medium was changed every 2 days.

assessment of PDlcs attachment, 
proliferation, and viability on 3D scaffolds
The cell viability and proliferation on the scaffolds was 

assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltet-

razolium bromide (MTT) assay. At predetermined time inter-

vals (1, 3, and 7 days), the scaffolds were washed with PBS to 

remove nonadherent cells, and 10% MTT solution in α-MEM 

was added, followed by incubation for 3 hours; afterwards, the 

formazan crystals were dissolved in dimethyl sulfoxide. The 

absorbance of the solutions at 490 nm was recorded.

Morphology of the cells on the scaffolds was observed 

by scanning electron microscopy (SEM). At day 1, 3, and 7, 

the cell-seeded scaffolds were washed with PBS and fixed in 

2.5% glutaraldehyde, followed by dehydration in incremental 

concentrations of ethanol (15%, 30%, 50%, 70%, 80%, 

90%, and 100%) for 10 minutes each. Then, the specimens 

were dried at room temperature and coated with gold to be 

observed using SEM (S-3400N II; Hitachi, Tokyo, Japan).

effect of multiphasic scaffolds on 
osteogenic and cementogenic 
differentiation of PDlcs
To investigate the effect of multiphasic scaffold on the 

osteogenic-related gene expression of osteocalcin (OCN), 

osteopontin (OPN), cementogenic-related gene expression of 

CEMP1, and cementum attachment protein (CAP), PDLCs 

were seeded on ACP/PCL/COL or rhCEMP1/ACP/PCL/

COL scaffolds (PDLCs without scaffold were used as the 

control) and cultured in osteogenic differentiation medium 

10% FBS α-MEM (Sigma-Aldrich) in the presence of 

osteogenic supplements, namely, ascorbic acid (50 μg/mL; 

Biosharp, Carlsbad, CA, USA), β-glycerolphosphate (10 mM; 

Biosharp), and dexamethasone (10-8 M; Biosharp) for up to 

7 days. Total RNA was isolated from the cultured scaffolds 

using RNAiso plus (Takara, Tokyo, Japan). RNA concentra-

tion and purity were determined using a Nanodrop ND 1000 

Spectrophotometer (NanoDrop Technologies, Wilmington, 

DE, USA). Total RNA was prepared from cells using the 

RNAeasy Mini Kit according to the manufacturer instructions 

(Qiagen, Venlo, the Netherlands). One microgram of total 

RNA was used for cDNA synthesis using a PrimeScript™ 

II 1st Strand cDNA Synthesis Kit for real-time polymerase 

chain reaction (RT-PCR; Takara). Quantitative RT-PCR was 

carried out using Universal SYBR Green Supermix (Bio-Rad, 

Table 2 The compositions of acPs

Sample CaCl2 (mg) Na3PO4⋅12H2O (mg) PEG (mg) diH2O-A (mL) diH2O-B (mL) rhCEMP1 (mg)

acP 367.5 842.6 0 50 0 0
acPP0 367.5 842.6 367.5 50 0 0
acPP1 367.5 842.6 367.5 50 5 3.4
acPP2 367.5 842.6 367.5 50 5 6.8
acPP5 367.5 842.6 367.5 50 5 17.0
acPP8 367.5 842.6 367.5 50 5 27.2

Abbreviations: acP, amorphous calcium phosphate; Peg, poly (ethylene glycol); acPP1, 1% (w/w) rhceMP1 in acP/Peg; acPP2, 2% (w/w) rhceMP1 in acP/Peg; 
acPP5, 5% (w/w) rhceMP1 in acP/Peg; acPP8, 8% (w/w) rhceMP1 in acP/Peg; di, deionized; rhceMP1, recombinant human cementum protein 1.
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Hercules, CA, USA). Primer sequences are listed in Table 3. 

Amplification conditions were 95°C for 10 minutes for dena-

turation, then 40 cycles of 95°C for 15 seconds, 60°C for 1 

minute, and 95°C for 15 seconds, followed by a melting curve 

from 58°C to 98°C. Reaction products were quantified using 

StepOne Software (Version 2.1). Expression level values 

were normalized to that of an internal control, β-actin.

Implantation in rat calvaria model
The rat calvarial defect is generally used to evaluate bone 

regeneration in an orthotopic model and to screen biomaterials 

or tissue engineering constructs before moving to larger ani-

mals for potential translation to human applications. All proce-

dures followed the approved ethical guidelines set by the Ethics 

Committee of Nanjing Stomatological Hospital. This size of 

defect was chosen because it is the “critical size”: a defect of 

this size does not heal by itself without intervention.25

Rats with calvarial defects were divided into three 

groups, ACP/COL/PCL, rhCEMP1/ACP/COL/PCL, and 

control, with each group having six rats. To achieve this, 27 

male Wistar rats aged 7–8 weeks weighing 240–290 g were 

obtained from Model Animal Research Center of Nanjing 

University. The rats were positioned in a stereotaxic frame 

and immobilized during surgery. The hair over the skull of 

the animals was shaved, a full-thickness skin incision was 

made along the midline from the nasofrontal to occipital 

region, then the subcutaneous tissue was dissected, and the 

underlying periosteum was sharply incised/elevated to obtain 

sufficient exposure to the calvarium. A saline-cooled stainless 

steel trephine (5 mm outer diameter) was used to remove a 

full-thickness of bone to create the critical bone defects on 

both left and right sides of dorsal calvarium. Substantial 

caution was taken to prevent damage to the underlying 

sagittal sinus and dura mater. Then the bone defects were 

repaired with a 5 mm diameter scaffold of either ACP/PCL/

COL or rhCEMP1/ACP/PCL/COL. In the control group, the 

defect was left empty without repair. The periosteum and the 

subcutaneous tissue were closed sequentially with absorbable 

sutures. The skin wound was closed with 4–0 silk sutures. 

The animals were kept on a surgical bed until they awoke 

and had free access to food and water thereafter.

After 4 and 8 weeks postimplantation, the animals were 

sacrificed by CO
2
 asphyxiation and the calvaria bone of the 

rat was harvested and fixed in 10% formalin for 48 hours. 

The fixed samples were washed with PBS and were pro-

cessed and analyzed histologically and by micro-computed 

tomography (CT).

Micro-cT
Micro-CT of all specimens was performed using an X-eye 

micro-CT scanner (SEC, Gyeonggi-do, Korea) that has a very 

high spatial resolution through 360° and is equipped with an 

X-ray charge-coupled device camera of 1.4 M. The maximum 

tube current was 0.2 mA, maximum tube voltage was 160 kV, 

and the focus size was 1 μm. For each sample, 70 V tube 

voltage and 70 A current were maintained in the X-ray tube. 

To scan the whole calvaria, 400 microtomographic slices of 

every sample were taken with a slice increment of 30 μm. 

The micro-CT slices were processed using 3Di-Cat thresh-

olding, then used to create 3D models for visualization and 

quantitative histomorphometric analysis.

histological staining
After fixation in 10% neutral buffered formalin, the samples 

were rinsed with PBS several times and decalcified in 0.5% 

formaldehyde containing 10% ethylene diamine tetraacetic 

acid, pH 7.4, at 37°C in an incubator shaker. Then, the 

samples were embedded in tissue embedder (KMA-0100-00; 

CellPath Ltd., Newtown, UK), and 5 μm thick sections were 

prepared. Sections were perpendicular to the sagittal suture to 

produce a plane of analysis through the center of the defect. 

Representative sections were stained with H&E (hematoxylin 

and eosin). Additionally, Masson’s trichrome was visualized 

using an optical microscope for cross-reference.

statistical analysis
All the experiments were repeated three times, with each 

treatment conducted in triplicate unless otherwise stated. Data 

are represented as averages ± standard deviation and analyzed 

statistically by one-way analysis of variance (ANOVA) and a 

post hoc Student’s t-test. The post hoc t-test was performed 

when the ANOVA test indicated significance at P,0.05.

Table 3 Primer pairs used in qrT-Pcr analysis

Gene Primers

OCN F: 5′-cacTccTcgcccTaTTggc-3′
r: 5′-cccTccTgcTTggacacaaag-3′

OPN F: 5′-cTccaTTgacTcgaacgacTc-3′
r: 5′-caggTcTgcgaaacTTcTTagaT-3′

CAP F: 5′-TccagacaTTTgccTTgcTT-3′
r: 5′-TTacagcaaTagaaaaacagcaTga-3′

CEMP1 F: 5′-ggcgaTgcTcaaccTcTaac-3′
r: 5′-gaTacccaccTcTgccTTga-3′

β-actin F: 5′-gaTgagaTTggcaTggcTTT-3′
r: 5′-caccTTcaccgTTccagTTT-3′

Abbreviations: CAP, cementum attachment protein; CEMP1, cementum protein 1; 
OCN, osteocalcin; OPN, osteopontin; qrT-Pcr, quantitative real-time polymerase 
chain reaction; F, forward primer; r, reverse primer.
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Results
characterization of acPs
ACP nanoparticles obtained without the presence of PEG 

have a needlelike shape as shown in Figure 1A, which 

suggests the transformation of ACP to apatite because of 

the quick hydrolysis of ACP during the initial synthesis 

procedure.21 After the addition of PEG, the as-prepared 

ACP nanoparticles were covered by PEG, which hampered 

their hydrolysis. Consequently, a core–shell structure was 

clearly observed in Figure 1B. The gray shell is the PEG 

layer and the core is made of ACP (Figure 1B inset). After 

the incorporation of rhCEMP1 into the ACP nanoparticles, 

irregular morphology was observed, confirming the success-

ful encapsulation of rhCEMP1 (Figure 1C).

Infrared spectroscopy was conducted to measure the 

chemical composition of these samples. Figure 2 shows the 

spectra of rhCEMP1, ACP, ACP/PEG, rhCEMP1/ACP/

PEG, and their characteristic peaks. The characteristic 

vibration peaks of tetrahedral PO
4
3− ions at 590–610 cm-1 

and around 1,000 cm-1 are clearly observed in the infrared 

spectrum of ACP (Figure 2).26 The large and strong bands 

at 2,886 cm-1 were attributed to CH
2
 stretch in the spectrum 

of ACP/PEG, and the shoulder at 842 cm-1 was attributed 

to C–O stretch,27 confirming the presence of PEG. The 

characteristic peaks of amide I and amide II of rhCEMP1 

at 1,653 and 1,547 cm-1,28 as well as the bending vibration 

of PEG near 842 cm-1 were all observed in rhCEMP1/ACP/

PEG. These results further confirmed the encapsulation of 

rhCEMP1 inside the ACPPs.

ee and controlled release of rhceMP1 
from acPPs
The loading ratios and EEs were measured, and the results 

are shown in Figure 3A. When these ACP/PEG nanopar-

ticles were immersed in the rhCEMP1 solution at differ-

ent concentrations (1%, 2%, 5%, and 8% [w/w]), the EE 

of rhCEMP1 inside ACP/PEG was 97.8±2.2, 96.4±1.2, 

81.3±3.6, and 81.3±3.6, respectively.

Cumulative release profiles of rhCEMP1 from the 

rhCEMP1/ACP/PEG are presented in Figure 3B. In the case 

of ACPP1 and ACPP2, containing low content of rhCEMP1, 

an ultimately low burst release on the first day (1.72%±0.07% 

for ACPP1 and 1.86%±0.46% for ACPP2) was observed, fol-

lowed by the continuously sustained release up to 4 weeks. 

For the ACPP5 and ACPP8, the initial burst release on day 1 

was 10.1%±1.5% and 20.4%±2.4%, respectively. These 

results indicated that these ACP/PEG nanoparticles could 

load rhCEMP1 well and release it in a sustained manner.

characterization of electrospun 
multiphasic scaffold
The meshes of electrospun nanofibers showed a porous mor-

phology as they were observed in the SEM images (Figure 4). 

The average diameter of PCL/COL, ACP/PCL/COL, and 

rhCEMP1/ACP/PCL/COL fibers was determined to be 130, 

214, and 204 nm, respectively. Electrospun fibers loaded 

with ACPs demonstrated a rough surface with protuberances 

(Figure 4D and E). Energy dispersive X-ray spectroscopy was 

used for the elemental analysis of the scaffolds. In contrast 

with PCL/COL, the calcium and phosphorus elements were 

observed both in the ACP/PCL/COL and rhCEMP1/ACP/

PCL/COL scaffolds, further indicating the presence of ACP 

in the scaffolds (Figure 4F and I).

The proliferation of PDlcs on the 
scaffolds
At day 1, 3, and 7 after cell seeding, SEM showed that 

PDLCs could attach and grow on the multiphasic scaffolds 

ACP/PCL/COL (Figure 5A–C). The cells adhering to the 

fibers appeared to have rounded or spindle-shaped morphol-

ogy. From Figure 5D–F, it can be seen that the PDLCs can 

not only attach but also spread on the surface of the scaffold. 

Figure 1 Transmission electron micrographs of acPs prepared with or without Peg and rhceMP1.
Notes: (A) acP nanoparticles obtained without the presence of Peg had a needlelike shape. (B) The addition of Peg in acP resulted in a core-shell structure. (C) after 
the incorporation of rhceMP1 into the acP nanoparticles, irregular morphology was observed.
Abbreviations: acP, amorphous calcium phosphate; Peg, poly(ethylene glycol); rhceMP1, recombinant human cementum protein 1.
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Figure 2 FTIr spectra of acPs.
Notes: (A) rhceMP1, (B) acP, (C) acP/Peg, and (D) rhceMP1/acP/Peg. The characteristic vibration peaks of tetrahedral PO

4
3− ions at 590–610 cm-1 and around 

1,000 cm-1 are clearly observed in the FTIr spectrum of acP. The large and strong bands at 2,886 cm-1 are attributed to ch2 stretch and the shoulder at 842 cm-1 was 
attributed to C–O stretch, confirming the presence of PEG. The characteristic peaks of amide I and amide II of rhCEMP1 are at 1,653 and 1,547 cm-1.
Abbreviations: acP, amorphous calcium phosphate; FTIr, Fourier-transform infrared spectroscopy; Peg, poly(ethylene glycol); rhceMP1, recombinant human cementum 
protein 1.

Cells on rhCEMP1/ACP/PCL/COL exhibited extended 

distended, spread morphology. The PDLCs proliferated 

stably during a prolonged culture period on/within ACP/

PCL/COL scaffold, but rhCEMP1/ACP/PCL/COL tended 

to suppress the growth of cells (Figure 5G).

effect of rhceMP1/acP/Pcl/cOl scaffold 
on cementogenic and/or osteogenic 
differentiation of PDlcs in vitro
The scaffolds were cocultured with PDLCs for 7 days. To 

determine if scaffolds induce osteogenic and/or cementogenic  

Figure 3 rhCEMP1 EE and release profile.
Notes: (A) The ee was correlated reciprocally with the concentration of rhceMP1 inside acP/Peg. (B) Cumulative release profiles of rhCEMP1 from the rhCEMP1/
ACP/PEG went through a low burst release on the first day, followed by the continuously sustained release up to 4 weeks. The results are presented as means ± standard 
deviation (n=3); *P,0.05.
Abbreviations: acP, amorphous calcium phosphate; acPP1, 1% (w/w) rhceMP1 in acP/Peg; acPP2, 2% (w/w) rhceMP1 in acP/Peg; acPP5, 5% (w/w) rhceMP1 in 
ACP/PEG; ACPP8, 8% (w/w) rhCEMP1 in ACP/PEG; EE, encapsulation efficiency; PEG, poly(ethylene glycol); rhCEMP1, recombinant human cementum protein 1.
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Figure 4 The morphology and elemental composition of scaffolds.
Notes: (A) seM image of Pcl/cOl with interconnected pores; (B) higher magnification SEM image exhibited smooth surface; (C) eDX results suggested no ca and P 
present; (D) acP/Pcl/cOl with a rough surface and a diameter of about 200 nm; (E) higher magnification SEM image shows the surface roughness of the fibers; (F) the 
peaks of ca and P suggested the presence of acP. (G) rhceMP1/acP/Pcl/cOl scaffolds with (H) higher magnification SEM image to show the surface roughness of the 
fibers; and (I) the peaks of ca and P suggested the presence of rhceMP1/acP.
Abbreviations: acP, amorphous calcium phosphate; cOl, type I collagen; eDX, energy-dispersive X-ray spectroscopy; Pcl, poly(ε-caprolactone); rhceMP1, recombinant 
human cementum protein 1; seM, scanning electron microscopy.

Figure 5 Morphology of PDlcs on scaffolds.
Notes: At days 1, 3, and 7 after cell seeding, SEM showed the PDLCs could attach and grow on the multiphasic scaffolds ACP/PCL/COL. The cells adhering to the fibers 
appeared as rounded or spindle-shaped morphology (A–C). cells on rhceMP1/acP/Pcl/cOl exhibited extended distended, spread morphology (D–F). The PDlcs 
proliferated stably during a prolonged culture period on/within acP/Pcl/cOl scaffold, but rhceMP1/acP/Pcl/cOl tended to suppress the growth of cells (G). seM images 
were taken at 1,000× magnification; *P,0.05.
Abbreviations: acP, amorphous calcium phosphate; cOl, Type I collagen; Pcl, poly(ε-caprolactone); PDlcs, periodontal ligament cell; rhceMP1, recombinant human 
cementum protein 1; seM, scanning electron microscopy.
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differentiation, the expressions of cementogenic mark-

ers (CAP and CEMP1) and osteogenic gene markers 

(osteocalcin – OCN and osteopontin – OPN) were analyzed 

by quantitative PCR (Figure 6). ACP/PCL/COL upregulated 

the expression of CAP and CEMP1 (up to 2- and 20-fold). 

Moreover, it increased OCN and OPN expression signifi-

cantly by 16- and 3-fold, respectively. This indicated that 

ACP/PCL/COL facilitated both osteogenesis and cemento-

genesis. The ability of cementogenesis was intensified for 

rhCEMP1/ACP/PCL/COL compared to ACP/PCL/COL, 

with 44-fold CAP and 5-fold CEMP1 expression. In contrast, 

the expression of OCN was rather limited with rhCEMP1/

ACP/PCL/COL and it was just one-fifth of ACP/PCL/COL. 

Notably, the expression of OPN could not be detected. This 

result proved that rhCEMP1/ACP/PCL/COL had the ability 

to induce cementogenic differentiation of PDLCs. Mean-

while, it controlled osteogenesis; therefore, there would be 

more chances for cementogenesis.

Figure 6 gene expression by PDlcs seeded on the scaffolds at day 7 of culture.
Notes: acP/Pcl/cOl upregulated the expression of CAP (A) and CEMP1 (B). The ability of cementogenesis was intensified for rhCEMP1/ACP/PCL/COL compared to 
acP/Pcl/cOl. acP/Pcl/cOl increased OCN and OPN expression. In contrast, the expression of OCN was rather limited with rhceMP1/acP/Pcl/cOl (C). Notably, 
the expression of OPN could not be detected (D). Data are mean ± sD (n=3) normalized to β-actin, then relative to control. *P,0.05 versus control; #P,0.05 between 
indicated groups.
Abbreviations: acP, amorphous calcium phosphate; CAP, cementum attachment protein; CEMP1, cementum protein 1; cOl, Type I collagen; OCN, osteocalcin; 
OPN, osteopontin; Pcl, poly(ε-caprolactone); rhceMP1, recombinant human cementum protein 1; sD, standard deviation; Undet, undetected.
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In vivo mineralized tissue regeneration
To investigate the osteoinductive and cementoinductive 

potential of the scaffolds, ACP/PCL/COL and rhCEMP1/

ACP/PCL/COL were implanted orthotopically in the calvaria 

defect of a rat. None of the rats showed evidence of inflamma-

tory or immune response after the implantation. All animals 

used in this experiment were sacrificed at 4 and 8 weeks.

Micro-CT images were examined to determine the degree 

of mineralization along with the distribution of the newly 

formed mineralized tissue. At 4 weeks, the control group 

(untreated defect; Figure 7A) remained open with minimal 

mineralized regions at the center of the defect or on regions 

confined mostly to the defect edges. For defects filled with 

ACP/PCL/COL scaffolds at 4 weeks, moderately mineralized 

regions with uniform bone growth were observed (Figure 7B). 

The edges of the regenerated calvarial defect appeared to be 

continuous with the surrounding bone in the control group, 

while bone regeneration was distributed through the ACP/

PCL/COL scaffold surface layer by layer. The defects filled 

with rhCEMP1/ACP/PCL/COL had a much higher density 

(Figure 7C). At 8 weeks, defects in control and ACP/PCL/

COL displayed almost complete closure (Figure 7D and E). 

However, the defects in rhCEMP1/ACP/PCL/COL remained 

open with some mineralized regions characterized by non-

uniform low-density shadows (Figure 7F). The bone density 

of control and ACP/PCL/COL was quite similar at both 

4 and 8 weeks. Mineralization took place, and bone density 

was doubled at 8 weeks. In contrast, the bone density in 

rhCEMP1/ACP/PCL/COL was a little higher than the other 

groups at 4 weeks. However, it stopped increasing and ended 

up with a lower density at 8 weeks (Figure 7G).

Histological sections stained with H&E for calvaria defect 

treated with control, ACP/PCL/COL, and rhCEMP1/ACP/

PCL/COL scaffolds at 4 and 8 weeks after the implanta-

tion of the scaffolds are shown in Figure 8. At 4 weeks, 

margins of the defect were connected by a thin connective 

fibrous tissue in the control, but no evidence of bone forma-

tion was observed (Figure 8A). For the defect treated with 

ACP/PCL/COL scaffold, it was almost filled with a layer of 

bonelike tissue (Figure 8B). Island-like new bone was dis-

tributed discretely in rhCEMP1/ACP/PCL/COL (Figure 8C). 

Further analysis at higher magnification using sections 

stained with H&E staining and Masson’s trichrome stain-

ing exhibited abundant vascularization in ACP/PCL/COL 

(Figure 8H). A layer of regular cementum-like cells stained 

in purple was seen surrounding the rhCEMP1/ACP/PCL/

COL. Adjacent to the targeted light purple cementum-like 

cells was a layer of ligament tissue. The outermost space was 

occupied by new bone (Figure 8I). The purple, light blue, 

and dark blue stained tissues constituted a sandwich structure 

resembling the periodontal complex. In Masson’s trichrome 

staining, the sandwich structure was distinctly recognized, 

as the cementum-like layer was pink and purple, whereas 

the ligament layer and bone layer were light blue and dark 

blue, respectively (Figure 8O). At 8 weeks, similar tissue 

accumulated, except for new bone formation in the control 

Figure 7 evaluation of mineralization in calvarial defect via micro-cT showing mineralized bone formation at 4 and 8 weeks postimplantation of the scaffolds.
Notes: at 4 weeks, (A–C) the control group remained open while in acP/Pcl/cOl and rhceMP1/acP/Pcl/cOl scaffolds moderately mineralized regions with uniform 
bone growth were observed. at 8 weeks, (D–E) defects in control and acP/Pcl/cOl displayed almost complete closure. (F) The defects in rhceMP1/acP/Pcl/cOl 
remained open with some mineralized regions characterized by nonuniform low-density shadows. (G) The bone density in rhceMP1/acP/Pcl/cOl was a little higher than 
the other groups at 4 weeks. however, it ceased increasing and ended up with a lower density at 8 weeks. *P,0.05.
Abbreviations: acP, amorphous calcium phosphate; ceMP1, cementum protein 1; cOl, type I collagen; cT, computed tomography; Pcl, poly(ε-caprolactone); rhceMP1, 
recombinant human cementum protein 1.
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Figure 8 h&e histological staining and Masson’s trichrome staining for samples from rat calvaria defect model after 4 and 8 weeks postimplantation.
Notes: (A and G) Control-4 weeks: margins of the defect are connected by a thin dense connective fibrous tissue; (B and H) acP/Pcl/cOl-4 weeks: the defect is 
almost filled with bonelike tissue with vessels on the surface of the scaffold; (C) rhceMP1/acP/Pcl/cOl-4 weeks: there is not much new bone regenerating but a layer of 
regular cementum-like basophilic cells stained light blue-purple was seen surrounding the scaffold. ligament-like tissue was seen adjacent to the bone-like tissue (I). (D and 
J) control-8 weeks: the bonelike tissue formed showed lamellar features with limited small vessels. (E) acP/Pcl/cOl-8 weeks: similar to (B) with more bone formation, 
abundant neovascularization was seen in (K). (F) rhceMP1/acP/Pcl/cOl-8 weeks: the defect has a closure of about 60% by bonelike tissue. cementum-like tissue has an 
increment (L). Masson’s trichrome staining (M–R). all microphotographs were taken at 400× magnification.
Abbreviations: acP, amorphous calcium phosphate; b, bonelike tissue; c, cementum-like tissue; cOl, type I collagen; h&e, hematoxylin and eosin; l, ligamentlike tissue; 
Pcl, poly(ε-caprolactone); rhceMP1, recombinant human cementum protein 1; s, scaffold; V, vessel.
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(Figure 8D). Nonetheless, deficient vascularization hindered 

the extension of new bone (Figure 8J). Large amounts of bony 

nodules, both in number and size, were observed in ACP/

PCL/COL, which led to the formation of the strips of bony 

tissue. These bony tissue islands were surrounded by dense 

connective tissue (Figure 8E, K, and Q). The layer of purple 

cementum-like tissue increased to more than 5-fold of the 

amount at 4 weeks. The bony island extended to 40%, lead-

ing to closure of the defect (Figure 8F). Masson’s trichrome 

staining (Figure 8M–R) was similar to H&E (Figure 8G–L) 

staining, in which bonelike tissue, vessel, ligament-like 

tissue, cementum-like tissue were dark blue, red, light blue, 

and blue-purple, respectively.

Discussion
Considering the increasing aging population worldwide, 

there is a major need for the regeneration of periodontal 

tissue for maintaining normal tooth function. The ability to 

regenerate cementum tissue is crucial to this clinical chal-

lenge. We have designed and fabricated a novel multiphase 

scaffold with rhCEMP1, which can be released in a controlled 

manner. It was demonstrated that the rhCEMP1/ACP/PCL/

COL scaffold has the potential of generating cementum-like 

tissue in vitro and in vivo. This may be a novel method to 

use a cementum-specific inductive scaffold for cementum 

regeneration, for which data has so far not been published.

In this study, it was observed that the rhCEMP1/ACP/

PCL/COL scaffold enhanced the cementogenic differentia-

tion of seeded PDLCs in vitro by upregulating the expression 

of typical cementoblastic gene markers CAP and CEMP1 

while controlling the expression of osteoblastic gene markers 

OCN and OPN. Consequently, rhCEMP1/ACP/PCL/COL 

scaffold induced cementum-like tissue formation and hin-

dered bone formation in vivo orthotopically compared to 

ACP/PCL/COL scaffold. These results demonstrate that the 

rhCEMP1 is a key bioactive compound in cementum forma-

tion both in vitro and in vivo.

Stem cells are one of the major players in tissue engi-

neering approaches. The PDL tissue is a key contributor to 

the process of regeneration of the periodontium. It is quite 

complex and composed of several different cell populations, 

including osteoblasts and osteoclasts, cells of the epithelial 

rests of Malassez and cementoblasts. Besides, it also contains 

fibroblasts and undifferentiated mesenchymal stem cells.29 

CEMP1 can induce a cementoblastic phenotype and reduce 

osteoblastic differentiation in PDLCs.30 A large animal 

model demonstrating in situ cementum regeneration must 

be further included in our study. PDL-derived cells would 

have a more favorable effect on PDL formation instead of 

bone marrow mesenchymal stem cells.31 PDLCs served as 

stem cells in in vitro studies. However, the host provides 

the stem cell in in vivo experiments. The most appropriate 

in vivo model to evaluate the ability of CEMP1 to induce 

cementum regeneration would be the tooth root fenestration 

preclinical model.32 This model takes into consideration the 

functional loading of the tooth and should be regarded as an 

in situ cementum regeneration model. However, this model 

requires more sophisticated surgical techniques and longer 

time to treat samples. Therefore, we employed the critical 

size defect model as a preliminary assessment and this model 

could act as an ectopic cementum regeneration model. It is 

noteworthy that both bone and cementum are mineralized 

tissue, which have a higher density performance in micro-CT. 

CEMP1/ACP/PCL/COL exhibited the highest density at 

4 weeks, as the micro-CT data showed. This high-density 

tissue manifested due to enhancement of mineralization and 

this mineralized tissue was proved to be cementum-like tissue 

in H&E sections.

This study shows that cementum regeneration is pos-

sible with a protein-releasing acellular biomaterial scaffold. 

In contrast to cell transplantation, this strategy of endogenous 

regeneration upon controlled releasing of rhCEMP1 offers a 

new approach to the reconstruction of periodontal complex. 

Despite the effective cementum induction, CEMP1 did not 

favor bone regeneration. However, Serrano et al33 reported 

that rhCEMP1 was able to induce 97% regeneration of a 

rat calvaria critical-size defect, with the density and char-

acteristics of the new mineralized tissues being normal for 

bone. This was probably because they applied rhCEMP1 

to a gelatin matrix scaffold, which showed burst release. 

Moreover, gelatin was far more easily degraded, and so it 

was impossible to provide a sustained vehicle for rhCEMP1 

in the 16-week experimental period.34 Alizarin Red S staining 

showed PDLCs cultured in osteogenic induction medium 

increased mineralization, whereas CEMP1 overexperssion 

completely inhibited the mineralization, which was in accor-

dance with our study result.30

Compared to the reparation of connective tissue and 

bone, the metabolism and reparation of cementum are 

much lower. That is probably why in clinical periodontitis 

treatment we would find that osteogenesis takes a dominant 

position, leading to ankylosed tooth and root absorption. 

Here in our study, rhCEMP1 slowed down the proliferation 

of stem cell growth, resulting in cementogenesis. Then, the 

expression of CAP, which symbolized cementogenesis, had 

increased to about 45 times as much as that of the control.  
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In vitro RT-PCR results showed that ACP/PCL/COL 

scaffold favored both osteogenic and cementogenic markers’ 

expression. Particularly, ACP/PCL/COL upregulated the 

expression of CAP and CEMP1 (up to 2- and 20-fold). This 

seemed to be an inspiring sign. Nevertheless, we could 

hardly determine any cementogenesis apart from the new 

bone and vessels in in vivo experiment. The rhCEMP1/ACP/

PCL/COL scaffold enhanced cementogenic differentiation 

of seeded PDLCs in vitro by upregulating the expression 

of typical cementoblastic gene markers CAP and CEMP1 

while controlling the expression of osteoblastic gene markers 

OCN and OPN. It would be interesting to find out the pos-

sible molecular mechanism of how rhCEMP1 regulates 

cementogenesis. A microarray analysis aiming to assess 

differences in gene expression between cementoblasts and 

osteoblasts identified that the Wnt signaling pathway was 

differentially regulated. The expression of the Wnt inhibitors 

Wnt inhibitory factor 1 and secreted frizzled-related protein 1 

was elevated in cementoblasts compared with osteoblasts.35 

Wnt signaling pathway is closely related to the regulation 

of cementogenesis.36,37 On the contrary, downregulation of 

Wnt causes root resorption.38

Regarding the necessity of restoring cementum, peri-

odontal ligament, and alveolar bone, which constitute the 

whole periodontal complex, a combination of more than one 

cytokine such as BMP2 for bone induction39 and bFGF for 

periodontal ligament40 is essential. However, more studies 

are needed to determine the most appropriate combination 

of double or triple cytokines. In addition, attention must be 

paid to the spatiotemporal delivery by modifying the delivery 

system on the basis of cell reaction in vitro.

Conclusion
In this study, we employed ACP as a sustainable delivery 

for rhCEMP1 in vivo. The release profile of the rhCEMP1/

ACP nanoparticles was studied. Then, an electrospun mul-

tiphasic scaffold composed of rhCEMP1/ACP, PCL, and 

COL was fabricated and cocultured with PDLCs to assess 

the biocompatibility and inductivity. Finally, a critical size 

defect rat model was introduced to evaluate the effect of tis-

sue regeneration of the scaffolds. The scaffold showed the 

ability to suppress cell proliferation behavior and upregulate 

the expression of cementoblastic markers while restricting 

the expression of osteoblastic markers when cocultured 

with human PDLCs in vitro for 7 days. Histology analysis 

after implantation in rats for 8 weeks showed that there was 

cementum-like tissue formation, but less bone formation. 

These results indicated the potential of using electrospun 

multiphasic scaffolds for controlled release of rhCEMP1 for 

promoting cementum regeneration in reconstruction of the 

periodontal complex.
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