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Abstract: GM2 gangliosidosis, a subset of lysosomal storage disorders, is caused by a deficiency 

of the glycohydrolase, β-N-acetylhexosaminidase, and includes the closely related Tay–Sachs 

and Sandhoff diseases. The enzyme deficiency prevents the normal, stepwise degradation of 

ganglioside, which accumulates unchecked within the cellular lysosome, particularly in neurons. 

As a result, individuals with GM2 gangliosidosis experience progressive neurological diseases 

including motor deficits, progressive weakness and hypotonia, decreased responsiveness, vision 

deterioration, and seizures. Mice and cats are well-established animal models for Sandhoff 

disease, whereas Jacob sheep are the only known laboratory animal model of Tay–Sachs dis-

ease to exhibit clinical symptoms. Since the human diseases are relatively rare, animal models 

are indispensable tools for further study of pathogenesis and for development of potential 

treatments. Though no effective treatments for gangliosidoses currently exist, animal models 

have been used to test promising experimental therapies. Herein, the utility and limitations of 

gangliosidosis animal models and how they have contributed to the development of potential 

new treatments are described.

Keywords: GM2 gangliosidosis, Tay–Sachs disease, Sandhoff disease, lysosomal storage 

disorder, sphingolipidosis, brain disease

Introduction
Recent advances ascribe novel and important roles to the lysosome that were previously 

unappreciated, including nutrient homeostasis and cell signaling in local or even distant 

tissues.1,2 Still valid, however, is the lysosome’s well-recognized function as a type 

of intracellular “stomach” or recycling center that contains various enzymes includ-

ing nucleases, proteases, lipases, phosphatases, and glycosidases at low pH.3–5 Here, 

complex lipids, oligosaccharides, and other macromolecules are degraded into their 

building blocks in a stepwise fashion by multiple lysosomal enzymes.4,6 When there are 

defects in the enzymes or proteins necessary for catabolism, abnormal accumulation 

of nondegraded products results in a lysosomal storage disorder.4 Lysosomal storage 

disorders are a group of >70 inherited disorders classified according to the accumu-

lated substrate.7 For example, mucopolysaccharidoses result from the accumulation 

of mucopolysaccharides (also known as glycosaminoglycans), and gangliosidoses are 

characterized by the accumulation of gangliosides.

Gangliosides, a class of glycosphingolipids, are essential molecules within the cel-

lular plasma membrane where they often assist in the formation of lipid rafts.8–10 They 

are involved in adhesion and cytokine signal transduction and cell membrane protein 

Correspondence: Douglas R Martin
245, Scott-Ritchey Research Center, 
Auburn University College of Veterinary 
Medicine, Auburn University, Auburn, AL 
36849, USA
Tel +1 334 844 5951
Fax +1 334 844 5850
Email martidr@auburn.edu

Journal name: The Application of Clinical Genetics
Article Designation: REVIEW
Year: 2016
Volume: 9
Running head verso: Lawson and Martin
Running head recto: Animal models of GM2 gangliosidosis
DOI: http://dx.doi.org/10.2147/TACG.S85354

T
he

 A
pp

lic
at

io
n 

of
 C

lin
ic

al
 G

en
et

ic
s 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.dovepress.com/permissions.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
https://www.facebook.com/DoveMedicalPress/
https://www.linkedin.com/company/dove-medical-press
https://twitter.com/dovepress
https://www.youtube.com/user/dovepress


The Application of Clinical Genetics 2016:9submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

112

Lawson and Martin

regulation.10 They may also be used as receptors for infectious 

or normal cellular processes. An example is cholera toxin B, 

which requires at least one GM1 ganglioside binding site to 

complete infection.11 Neurons have high levels of ganglio-

sides, with maximum expression in the gray matter of the 

brain.8,9 As much as 12% of the lipid matter of the brain con-

sists of gangliosides.10 Here, they modulate cell signaling and 

are essential for normal brain development and function.9,10 

However, when ganglioside catabolism is flawed, such as with 

the inherited gangliosidoses, severe neurological dysfunction 

ensues.9 Gangliosides consist of a ceramide backbone and 

oligosaccharide side chain, with or without sialic acid. Gan-

gliosides are classified via the Svennerholm nomenclature in 

which “G” denotes “ganglioside,” the number of sialic acid 

residues is identified using the following letters: A=0, M=1, 

D=2, and T=3, and the number of monosaccharide residues 

is identified using the following final digits: 1=4, 2=3, and 

3=2.12 The structure of GM2 ganglioside is shown in Figure 1.

Gangliosides are degraded in a stepwise fashion through 

a series of hydrolytic events mediated by specific lysosomal 

enzymes. For example, GM2 hydrolysis is initiated by β-N-

acetylhexosaminidase (Hex; EC 3.2.1.52). The absence of 

Hex activity prevents further degradation of the molecule, 

resulting in GM2 gangliosidosis. Hex consists of three iso-

zymes, each comprised of two subunits. Hexosaminidase A 

(HexA) is composed of both an α and a β subunit, HexB is 

composed of two β subunits, and HexS is composed of two 

α subunits, though it is very unstable and contributes little to 

GM2 hydrolysis. Each subunit is encoded by specific genes, 

HEXA for the α subunit and HEXB for the β subunit. Of the 

three isozymes, only HexA is capable of degrading GM2 gan-

glioside in humans. The GM2 activator protein, an accessory 

protein with no hydrolytic activity toward GM2 ganglioside, 

is nevertheless required for GM2 degradation by Hex.13 Thus, 

GM2 gangliosidosis may be caused by any of the three protein 

deficiencies and is classified into the following three variants 

Figure 1 Structure of GM2 ganglioside.
Notes: The “G” indicates it is a ganglioside. The “M” (mono) indicates that there is one sialic acid residue. The “2” is a conventional designation for the number of 
monosaccharide residues (in this case, 3).
Abbreviation: GalNAc, N-acetylgalactosamine.
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based on the isozyme(s) that remain functional: variant B 

(Tay–Sachs disease) is an α subunit deficiency that destroys 

HexA and HexS; variant 0 (Sandhoff disease) is a β subunit 

deficiency that destroys both HexA and HexB; and variant 

AB (GM2 activator deficiency) leaves HexA and HexB intact, 

but GM2 cannot be degraded.13 Both the diseases along with 

their associated genes, proteins, isoenzyme subunits, and 

accumulated substrates are depicted in Figure 2.

Human GM2 gangliosidosis
Regardless of the protein deficiency underlying GM2 gan-

gliosidosis, the disease course is quite similar and is segre-

gated into the following clinical phenotypes based on severity 

and age of onset: infantile (also known as acute), the most 

severe form with onset at <1 year of age; subacute (which 

includes late-infantile and juvenile forms), with onset in early 

childhood; and chronic (also called late- or adult-onset), with 

initial symptoms in early- to midteens.13 Diagnosis may be 

made by a number of methods, including sequencing for 

known mutations, mass spectrometry, and conventional 

enzyme assays using synthetic substrates. The infantile form 

has been described most thoroughly. Children are clinically 

normal at birth, begin showing early clinical signs at ~3–5 

months of age, and experience progressive neurological 

disease including increased startle reflex, motor deficits, 

progressive weakness and hypotonia, decreased responsive-

ness, vision deterioration, and developmental arrest.13–15 

Seizures develop in 98% of patients.15  Ophthalmoscopic 

 examination often reveals a “cherry-red spot” due to macular 

pallor of the fovea centralis. Some infants affected by Sand-

hoff disease have additional peripheral disease consisting of 

hepatosplenomegaly and dysostosis multiplex.13 Regardless, 

children affected with either Tay–Sachs or Sandhoff disease 

usually die at 3–5 years of age.13,15 The majority of children 

die due to primary disease (~46%) and fewer die due to 

aspiration pneumonia or seizure activity.15 Subacute disease 

is typically recognized between 2 years and 10 years of age 

by progressive ataxia and incoordination. These patients 

do not typically display the “cherry-red spots” and instead 

experience loss of vision due to optic atrophy and retinitis 

pigmentosa.13 The majority of patients with this form progress 

to a vegetative state accompanied by decerebrate rigidity at 

~10–15 years of age and die a few years later.13 The cause of 

death is most often concurrent infection.13 The chronic GM2 

gangliosidoses have similar clinical phenotypes; however, 

chronic Tay–Sachs disease is more common than chronic 

Sandhoff disease.13 The age of clinical onset is variable, but 

symptoms include progressive dystonia, nystagmus, ataxia, 

tremors, muscle wasting and weakness, and psychosis.13

Normal life span can be expected with residual Hex activ-

ity as low as 10%–20% of normal.8 Below that  threshold, 

disease onset generally correlates with the amount of residual 

enzyme activity produced by a given mutation. That is, severe, 

early-onset disease is caused by low levels of residual activity, 

whereas milder, late-onset disease results from relatively high 

residual activity. Correlation of disease severity with residual 

Figure 2 Hex isozymes, associated substrates, and disorders.
Note: Figure courtesy of Cynthia J Tifft, National Human Genome Research Institute/NIH.
Abbreviations: GAGs, N-acetylgalactosamine; HexA, hexosaminidase A; HexB, hexosaminidase B; HexS, hexosaminidase S.
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enzyme activity suggests that prognosis can be predicted by 

specific mutations, which is often but not always the case and 

demonstrates that other unknown factors influence disease 

progression.

Pathological changes
Grossly, the brain of GM2 gangliosidosis patients can vary 

widely in appearance, but alterations include marked atrophy, 

thickened and fibrotic leptomeninges, dilated ventricular 

system, thinned cerebral cortex, cerebellar and brainstem 

 atrophy, and widened gyri.14 Some brain abnormalities, 

such as diffuse white matter changes, subtle basal ganglia 

alterations, and hemisphere and cerebellar atrophy, can be 

detected using advanced imaging modalities such as com-

puted tomography and magnetic resonance imaging (MRI).12 

Histopathological changes noted via light microscopy include 

distention of neurons with storage material, demyelination, 

atrophic dendrites, and infiltration of macrophages contain-

ing abundant storage material.14,16 Central nervous system 

(CNS) inflammation due to glial cell activation, a hallmark 

of the gangliosidoses, may be associated with subsequent 

iron depletion in the brain due to alterations in cellular iron 

metabolism and homeostasis.17 Ultrastructurally, character-

istic cellular changes are termed “membranous cytoplasmic 

bodies” that appear as concentric ring-like structures in neu-

ronal lysosomes. This term was coined after early electron 

micrographs of affected brain tissue revealed cytoplasmic, 

membrane-like structures formed by massive accumulation 

of the amphiphilic GM2 ganglioside molecule within the 

aqueous environment of the lysosome (Figure 3).13

As previously mentioned, disease is not isolated to the 

CNS. Besides hepatosplenomegaly and eye  abnormalities, 

alterations in other peripheral tissues such as foamy 

 histiocytes within the bone marrow, cardiac valvular and 

structural abnormalities, skeletal changes, and iron deple-

tion of the bone marrow, liver, and other organs have been 

described.8,13,17,18 The presence of vacuolated lymphocytes 

along with magenta neutrophil inclusions has been well 

documented in several nonhuman species affected by GM2 

gangliosidosis.19 Cytologic cerebrospinal fluid (CSF) analysis 

of a Korat kitten with GM2 gangliosidosis (Sandhoff disease) 

revealed large mononuclear cells containing prominent, 

purple inclusions, whereas CSF from muntjac deer with 

Tay–Sachs-like disease contained large mononuclear cells 

with long, needle-like inclusions.20,21 However, little has 

been described regarding CSF cytologic evaluation in human 

patients with GM2 gangliosidosis.

Several biomarkers have been investigated recently as 

minimally invasive monitors of disease progression. Thirteen 

analytes associated with glial cell activation and subsequent 

inflammation were markedly increased in the CSF in ganglio-

sidosis patients. Five of these 13 analytes were persistently 

increased in the infantile-onset form of the disease.22 Blood, 

CSF, MRI, and electrodiagnostic abnormalities also have 

been investigated.16

Animal models of GM2 gangliosidosis
No effective treatments exist for GM2 gangliosidosis, and 

animal modeling is an important tool for therapy develop-

ment. Subsequently, the species in which GM2 gangliosidosis 

has been reported and their degree of similarity to the human 

condition are described.

Mice
Unlike human GM2 gangliosidosis, Tay–Sachs and Sand-

hoff diseases in mice have dramatically different phe-

notypes. In 1995, mouse models of both Tay–Sachs and 

Sandhoff diseases were described. The Tay–Sachs mouse 

model (HEXA knockout) displayed biochemical and patho-

logical hallmarks of disease only in a few focal areas of the 

brain such as the septal area, hippocampus, and cerebral 

cortex. Clinical signs could only be induced in female mice 

that had at least four litters before a year of age.23 Other-

wise, Tay–Sachs mice showed few, if any, clinical signs 

and had normal life spans.23,24  However, the mouse model 

of Sandhoff disease (HEXB knockout) showed marked 

neurological disease, widespread neuropathology, and a 

short lifespan of ~4 months.24 The mouse model of GM2 

activator deficiency had an  intermediate phenotype, with 

cerebellar pathology and motor  deficiencies, but without 

a reduced life span.25
Figure 3 Transmission electron micrograph of membranous cytoplasmic bodies in 
the brain of a cat affected with gangliosidosis (Magnification 23,275).
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Discordance of disease severity between the models was 

explained by the presence of an alternative pathway for the 

degradation of GM2 ganglioside in mice. In humans, GM2 

is almost exclusively degraded by HexA so that Tay–Sachs 

disease (HexA deficiency) leads to profound ganglioside 

storage. However, in the mouse model of Tay–Sachs dis-

ease, sialidases are able to convert GM2 to GA2, which 

is then degraded through a minimal yet sufficient activity 

of HexB. Elegant work from the laboratory of Li suggests 

that GA2 degradation by HexB results from a mouse GM2 

activator protein that is much less restrictive than its human 

counterpart. Thus, an alternative catabolic pathway for GM2 

ganglioside in mice is responsible for a Tay–Sachs model 

that does not faithfully recapitulate the human condition.26,27

Dogs
Although dogs with GM2 gangliosidosis are not known to 

exist in a research colony setting, affected dogs of several 

breeds have been described. The following cases of canine 

GM2 gangliosidosis have been reported:

1. A castrated male golden retriever with reduced HexA and 

HexB activity has been reported. This patient succumbed 

to disease at 15 months of age, and the genetic mutation 

was not identified.28 The approximate average life span 

of normal dogs is 10–12 years.

2. A family of toy poodles affected by Sandhoff disease have 

also been described. The clinical, pathological, biochemi-

cal, and MRI findings were attributed to a frameshift 

mutation in HEXB.29,30 

3. A mixed breed dog presented at 10 months of age with 

hind limb weakness. The weakness progressed and by 

the age of 13 months, the dog was unable to stand or 

ambulate normally. Enzyme assays from whole blood 

revealed a marked decrease in HexA and HexB activity, 

and GM2 accumulation was detected by immunohisto-

chemistry. DNA genotyping from this dog was negative 

for the mutation documented in the family of toy poodles 

previously described.31 

4. German short-haired pointer and Japanese spaniels were 

reported with profound storage of GM2 ganglioside, but 

the underlying protein defect was not pinpointed.32,33 

5. Recently, a likely case of Tay–Sachs disease was reported 

in Japanese Chin dogs with a Glu323Lys mutation in the 

Hex α-subunit.34

Cats
No feline models of Tay–Sachs disease have been described. 

However, numerous mutations in the feline HEXB gene 

have been reported. Clinical signs of Sandhoff disease in 

affected kittens begin at ~4–7 weeks of age and include 

hypermetria, head tremor, ataxia, and eventual paresis.35–37 

Seizures are part of the natural disease course, and death 

occurs at ~6 months of age.35,36 For cats that are used as 

models of therapy development for Sandhoff disease, a 

clinical rating scale that describes disease progression in 

more detail has been developed.38,39 Also, humane end point 

has been established as the inability to stand, which occurs 

at ~4.3 months of age.38,39 The approximate life span of 

normal cats is 12–14 years.

Several feline mutations have been described in a num-

ber of breeds including European Burmese, Korat, domestic 

short-haired cats, and Japanese domestic cats (Table 1). 

In 1977, a naturally occurring mutation genetically and 

biochemically analogous to human Sandhoff disease was 

reported in domestic short-haired cats (Figure 4A).40 Ani-

mals with this mutation have <3% of normal Hex activity 

and ~15% of normal protein levels. The mutation has been 

identified as a 25 base pair inversion at the extreme 3’ ter-

minus of the coding sequence.37 This mutation results in 

the presence of antigenically cross-reactive material, which 

may diminish the immune response to therapeutic protein.36 

Another mutation was described in 1985 in Korat cats 

derived from Thailand. The gene mutation in this lineage 

is due to a single base deletion with a resultant premature 

termination codon in exon 1.40,41 Since no β subunit pro-

tein is produced from this mutation, the immune system 

of affected Korat cats is likely to recognize a therapeutic β 

subunit protein as foreign.

Japanese domestic cats also have a mutant allele that 

results in low activities of both HexA and HexB.42,43 This 

mutation is a single nucleotide substitution resulting in 

 premature termination at codon 223, midway through the β 

subunit.44,45 Also, a 15 base pair deletion at the 3’ end of intron 

11 of HEXB, which included the preferred splice acceptor 

site, has been identified in European Burmese cats.46

Table 1 Overview of documented feline Sandhoff mutations and 
their respective breeds

Feline breed HEXB mutation
Domestic  
short-haired37

25-base pair inversion leading to premature termination 
codon in the extreme carboxyl terminus

Korat36 Single base deletion resulting in premature termination 
codon in exon 1

Japanese 
domestic44,45

Single nucleotide substitution causing a premature 
termination codon midway through the β subunit

European 
Burmese47

15-base pair deletion at 3’ end of intron 11, including 
splice acceptor

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


The Application of Clinical Genetics 2016:9submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

116

Lawson and Martin

Sheep
A consequence of the alternative pathway for GM2 

 ganglioside catabolism in mice, described earlier, is that 

mouse models of Tay–Sachs disease have not been ter-

ribly helpful for therapy development. In fact, the lack of 

an established animal model of Tay–Sachs disease with 

measurable clinical symptoms has been a hindrance in the 

quest for effective treatments. Although Tay–Sachs disease 

has been described in various species, many – such as 

 flamingos – are not appropriate research models.47 In 2010, 

it was described that Jacob sheep (Figure 4B) with Tay–Sachs 

disease provide a model with a large brain size and obvious 

clinical signs that can be easily maintained in a research set-

ting.48,49 Affected sheep have a single base substitution in exon 

11 of HEXA, resulting in a glycine to arginine substitution in 

the α subunit and substantial reduction of HexA activity.48

Utilities and limitations of GM2 
animal models
Though GM2 gangliosidosis has been reported in  numerous 

species, only mice, cats, and sheep are maintained as 

research models. Mice continue to be invaluable as models of 

 numerous diseases, including GM2 gangliosidosis. However, 

as discussed earlier, the alternative catabolic pathway for 

gangliosides constitutes a prominent disadvantage of mouse 

models of Tay–Sachs and Sandhoff diseases, confounding 

interpretation of results from certain experimental therapies 

and thus their potential for human application. Additional 

disadvantages of mice are their comparatively short life span 

that precludes truly long-term studies16 and their small size 

that limits the ability to obtain sufficient samples of tissues or 

body fluids (especially CSF). A decided advantage of mouse 

models for neurodegenerative disease is that standardized 

behavioral assays are available for consistent evaluation of 

disease progression.50 Other utilities of mice as models  

of Sandhoff disease include small space requirements, short 

life cycle (~2 years) and gestation (~21 days), and large litter 

size. These considerations allow a large number of animals 

to be readily available in a short period of time,51 and per 

diem/maintenance costs are usually far below those of larger 

animals.

The feline models have been advantageous in transla-

tional research endeavors due to their strong resemblance 

phenotypically, biochemically, and genetically to human 

Sandhoff disease. Compared with mice, the degree of GM2/

GA2 accumulation in cats with Sandhoff disease is more 

comparable to human patients. Additionally, the reduction in 

myelin-enriched lipids (associated with dysmyelination) is 

intermediate to the levels in the mouse with Sandhoff disease 

and human patients.52 Also, cats have long been used as mod-

els of human disease and have large brains (~60× larger than 

mice) with complexity and organization that is more similar 

to humans.53 In addition to providing a greater amount of tis-

sue for experimentation and diagnostics, the increased size 

eases dissection of certain regions of the brain and permits 

noninvasive imaging with MRI field strengths identical to 

those used in human medicine (3 T). Furthermore, cats have 

substantially larger bodies facilitating repeated sampling of 

fluids such as blood, urine, and CSF for biomarker develop-

ment to track disease progression in individual animals over 

time. The gestation length for cats (~63 days) is longer than 

that of mice; however, it is  significantly shorter than that of 

Figure 4 Representative animal models of GM2 gangliosidosis.
Notes: (A) Domestic short-haired cat affected by Sandhoff disease (GM2 gangliosidosis variant 0). (B) Jacob lamb affected by Tay–Sachs disease (GM2 gangliosidosis, variant B).
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humans. Additionally, cats have a significantly longer life 

span compared with mice, allowing for long-term stud-

ies. However, a significant limitation of the feline model is 

the limited availability of feline-specific reagents (such as 

antibodies).

The primary utility of sheep is that they are the only estab-

lished research model of Tay–Sachs disease with measurable 

clinical symptoms. Human late-onset Tay–Sachs disease 

closely resembles the clinical and pathological features of 

affected sheep, such as ataxia, proprioceptive deficits, and 

similar histological and ultrastructural appearance.49 Further-

more, the level of residual enzyme activity is also similar.48 

They are easily maintained as research animals, often with 

per diem costs lower than cats, and their brain size is only 

five to ten times smaller than that of a child. However, it is 

important to note that sheep have disproportionately larger 

body versus brain sizes compared with humans, meaning that 

intravenous or other systemic therapies for people may not 

be effectively modeled in sheep. Additional disadvantages 

include the possession of horns (up to six), which creates 

challenges with imaging modalities such as MRI and com-

puted tomography. Similar to cats, procuring ovine-specific 

antibodies or other markers is difficult.

Therapy development
As previously mentioned, there is no effective treatment 

for GM2 gangliosidosis. However, several experimental 

 therapies are being investigated.

Enzyme replacement therapy
Since the GM2 gangliosidoses are the result of absent or 

defective Hex enzymes with no or little functional activity, 

replacement of these enzymes with functional molecules 

has been investigated. There has been some success in treat-

ing humans with systemic or peripheral disease associated 

with other lysosomal storage diseases such as Gaucher 

disease and mucopolysaccharidoses; however, penetration 

of infused enzymes into the CNS remains challenging.54 A 

major obstacle is the delivery of the exogenous enzymes 

across biochemical or anatomical barriers such as the 

blood–brain barrier. Additionally, hepatic mechanisms may 

rapidly clear any circulating enzyme before it can benefit 

target tissues.55 No attempts to treat GM2 gangliosidosis 

through systemic enzyme replacement therapy have been 

successful. However, intracerebroventricular injections 

of a recombinant human HexA in Sandhoff mice led to a 

slightly prolonged life span compared with the untreated 

control animals.56

Substrate reduction therapy
Substrate reduction therapy (SRT, also called substrate 

 deprivation therapy) utilizes small molecules that partially 

inhibit the synthesis of ganglioside.57,58 N-Butyldeoxynojiri-

mycin (miglustat or Zavesca®), which was initially developed 

as a treatment for patients with acquired immunodeficiency 

syndrome, reduces the rate of neuronal ganglioside storage 

in murine models of Tay–Sachs and Sandhoff diseases.59,60 In 

treated Sandhoff mice, no increase in life expectancy could 

be achieved if therapy began during the late presymptomatic 

period; however, in mice treated earlier (at 3 weeks or 6 

weeks of age), the life expectancy was extended by ~40%.60 

In two infantile Tay–Sachs patients treated after the onset of 

clinical signs, miglustat did not halt disease progression but 

did slow the advancement in one patient. A decrease in the 

rate of CNS inflammation was also noted.61 Another study 

in a patient with chronic Sandhoff disease appreciated minor 

effects on neurological progression.62 Thus, miglustat has 

shown only mild efficacy in humans, and it has an associ-

ated gastrointestinal toxicity that leads to discontinuance in 

many patients.

Chaperone therapy
Often, mutated lysosomal enzymes retain a reasonable degree 

of activity toward native substrates, but are prevented from 

reaching the lysosome by the quality control machinery of 

the endoplasmic reticulum. Chaperones are small molecules 

that stabilize (or “rescue”) the conformation of mutated 

lysosomal proteins that would otherwise be cleared by endo-

plasmic reticulum-associated degradation. After “rescued” 

proteins reach the low-pH environment of the lysosome, 

they dissociate from the chaperone molecule and are able 

to restore some level of enzyme activity.63 One study in 

GM2 fibroblasts found that chaperone therapy is effective 

in increasing enzyme activity, but concluded that it should 

be combined with SRT for synergistic effects.62 To date, 

efficacy of chaperone therapy in GM2 patients has not been 

confirmed, though fine-tuning of dose and delivery routes 

may prove beneficial. For example, one clinical trial found a 

close correlation in HexA activity in leukocytes and plasma 

levels of pyrimethamine, a pharmacological chaperone drug. 

However, the plasma level varied due to both the dose and 

metabolism of each patient.63

Bone marrow/cord blood transplantation
Bone marrow transplants have been investigated in various 

lysosomal storage diseases including leukodystrophies, 

mucopolysaccharidosis, Gaucher disease, and Tay–Sachs 
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disease; however, mortality is high (~25%). Similar to the 

other potential therapies discussed, studies in animal mod-

els indicate that treatment before the onset of neurological 

symptoms is pivotal to maximize the effects of therapy.64 

Results of umbilical cord blood transplantation in Tay–Sachs 

children have not been promising. Though disease in some 

children stabilized after the transplant, they remained severely 

debilitated.65 A synergistic effect of SRT along with bone 

marrow transplantation has been reported in murine Sand-

hoff disease models.57 In a human Tay–Sachs patient, bone 

marrow transplantation with miglustat treatment did not 

improve outcome, though miglustat was added only after it 

became apparent that standard bone marrow transplant was 

not beneficial.66

Neural stem cell therapy
Neural stem cell transplantation (via intracranial injection) 

has been noted to delay disease onset, preserve motor func-

tion, reduce pathological changes, and enhance survival 

in mice with Sandhoff disease, by migrating extensively 

throughout the brain, disseminating cross-correcting enzyme, 

and reducing ganglioside storage and inflammation.67,68 If 

treatment occurred presymptomatically, there was a 40% 

increase in life expectancy compared with the 19% improve-

ment in animals treated after onset of clinical disease. 

Combination treatment with stem cell therapy and SRT syn-

ergistically doubled the life span in some of the mice in this 

study.68 However, another study with Sandhoff mice found 

no such synergistic relationship with neural stem cell therapy 

and the substrate reduction molecule N-butyldeoxygalac-

tonojirimycin (NB-DGJ).69 That is, NB-DGJ alone reduced 

storage as effectively as the combination of NB-DGJ and 

neural stem cell therapy.70 Neural stem cell transplantation 

in human GM2 patients has not been reported.

Iron supplementation
One study appreciated a marked depletion of iron in the brain 

and other organs such as the bone marrow, liver, spleen, 

and kidneys of GM2 gangliosidosis mice. Supplementation 

of iron (both oral and parenteral) delayed disease onset, 

improved motor function, and prolonged survival. The author 

concluded that further studies regarding iron supplementa-

tion combined with other therapeutic strategies and anti-

inflammatory drugs should be investigated.17

Gene therapy
Adenoviral-mediated gene therapy has been tested in the 

knockout mouse model of Sandhoff disease,71 whereas 

 adeno-associated viral (AAV) gene therapy has been 

intensively investigated in both feline and murine mod-

els.38,39,41,70,72,73 AAV gene therapy delivered intracranially 

in Sandhoff mice showed dramatically increased survival 

and delayed disease onset. Supranormal Hex activity was 

widespread and long-lasting throughout the brain and spinal 

cord, reducing ganglioside storage and inflammation.72 Some 

treated mice lived normal life spans.

The life span of Sandhoff cats treated via bilateral tha-

lamic injections was prolonged in spite of strong humoral 

immunity to AAV1 vectors and human HexA protein.74 When 

vectors were modified to encode feline Hex in the context of 

an AAVrh8 capsid, the immune response was reduced and 

survival increased (>2× longer life span than untreated cats).74 

In short-term studies with the same feline-specific vectors, 

thalamic treatment supplemented by injections of the deep 

cerebellar nuclei or lateral ventricle restored Hex activity to 

above normal levels throughout the brain and spinal cord. 

Although storage material was significantly reduced in the 

CNS, it was not completely cleared. However, neurologi-

cal function significantly improved 17 weeks after therapy 

compared with the control animals.38 Long-term studies are 

underway to determine maximum survival benefit.

Concerns regarding gene therapy for human treatment 

include permanent genetic modification of neurons and 

insertional mutagenesis leading to neoplasia after vector 

integration into the host genome. Also, direct intracranial 

injection has inherent risks that may be minimized by less 

invasive routes such as CSF and peripheral blood. Such 

alternative strategies are being investigated75 but may be 

confounded by the dilution of vector in large volumes of 

body fluid. After injection into the CSF or blood, two sepa-

rate vectors expressing the α and β subunits are unlikely to 

transduce any given cell, and coexpression of both subunits 

is necessary for optimal production of HexA.73,74 Construc-

tion of a bicistronic AAV vector expressing both subunits 

has proven challenging due to size constraints. However, a 

novel construct termed HexM incorporates critical features 

of both the α and β subunits into a single protein and has 

produced promising results after intravenous injection in the 

mouse model of Sandhoff disease.76

Conclusion
Animal models are a useful tool in advancing the understanding 

of pathogenesis and developing potential therapies for orphan 

diseases such as the GM2 gangliosidoses. Animal models of 

GM2 gangliosidosis vary according to biochemistry, size, spe-

cies, and other important factors. The most  appropriate model 
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or models may be chosen according to  specific  experimental 

goals. Although there are a few limitations to the use of animal 

models, they are more than  counterbalanced by the utilities. 

Much of the information gained from research using animal 

models has been crucial in the advancement of experimental 

therapies to potential clinical application. With continued 

development and testing of promising approaches, long-sought 

therapies will finally be at hand.
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