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Abstract: A biological system obtains information, reacts to stimuli, and modifies its behav-

ior to adapt to the environment via complex control systems. A healthy system is expected to 

adequately adapt to a variety of changes. Physiological signals obtained from a healthy individual 

should contain rich information and complex behaviors. Entropy-derived measures have been 

used to access the complexity of the physiological signals. Aging or diseased status usually 

shows reduced entropy values and loss of complexity within the dynamics of physiological 

output. In this article, we aim to review the available evidence related to the pathophysiologi-

cal nature of complexity and the clinical applications of entropy-derived measures in varied 

neurological disorders.
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Introduction
“Survival of the fittest”. Evolution is characterized as the change in traits of biological 

populations over generations. In order to survive, an organism or a biological system 

needs to adapt to its environment by using the information of itself and the environment 

to modify behaviors and to solve the life history problems.1 The capacity of adaptation 

involves detecting, responding, and reacting to the innumerable perturbations of daily 

life.1 This capacity is achieved via complex integration of internal and external stimuli 

and interactions between multiple control systems and is regulated at scales of different 

orders of magnitude in space and time. In general, biological system exhibits a hier-

archical structure: genes encode proteins, proteins constitute organelles and cells, and 

cells form tissues and organs.2,3 The space ranges from molecular to the living organism 

scale. At the molecular scale, the dynamics is dominated by random and short-timescale 

fluctuations, while at organ or organism scale, the dynamics is more deterministic with 

longer timescale.4 Thus, the timescale could range from nanoseconds to years in a bio-

logical system. Regulation of this complex system over different temporospatial scales 

via both bottom-up and top-down directions forms a feedback loop and contains rich 

information of the control system. The fitness of an organism depends on the richness 

of the information that is available and the complexity of the structural and regulatory 

systems, and an organism has to react with its internal or external needs and to interact 

with one another.2 How to measure and describe the complexity of a biological system 

has been drawing attention in recent years. Many efforts have been made to quantify and 

distinguish the health and different diseases via the measure of complexity.3–6 Among the 
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methods of quantifying the complexity of a system, entropy 

analysis was introduced.

Pathophysiological aspects of 
entropy
The concept of entropy was introduced and developed in 

thermodynamics in the early 1850s by Rudolf Clausius, in 

response to the observation that a certain amount of func-

tional energy released from combustion reactions is always 

lost to dissipation or friction. In 1877, Ludwig Boltzmann 

developed a statistical mechanical evaluation of entropy 

and considered entropy as a measure of statistical disorder. 

Entropy increases with the degree of disorder and is maximal 

for completely random systems.5 In the 1940s, Shannon7 

applied the concept of entropy in communication theory 

to evaluate the statistical nature of “lost information” in 

phone-line signals. In the communication theory, the amount 

of information transmitted is the amount of information 

that is missing in the received signal or, alternatively, the 

uncertainty of a signal of what was actually sent when it is 

received.7 Entropy-based algorithms are then developed to be 

a quantitative measurement of the uncertainty. Complexity 

measured by entropy evaluates the amount of information 

needed to predict the future state of the system, and more 

complex dynamics are represented as larger entropy.8

In recent years, the concept of entropy-derived measures 

has been used in analyzing physiological signals in the studies 

evaluating the complexity of biological systems.

A healthy system is expected to adequately adapt to a 

variety of changes. Therefore, physiological signals obtained 

from a healthy individual should contain rich information and 

complex behaviors. On the contrary, aging and diseased sta-

tus, usually implying decrease of the richness of  physiological 

information and less fit to the environment, show reduced 

entropy values and loss of complexity within the dynamics 

of physiological output.3,6 The loss of physiological com-

plexity is believed to result from deterioration of underlying 

structural components of physiological systems, as well as 

impairments within the coupling between these systems.1,3 

For now, entropy-derived analyses have been widely applied 

in numerous studies and clinical usages, demonstrating 

the disease-related loss of physiological complexity in the 

dynamics of varied physiological systems, including cardio-

vascular,8–10 respiratory,11–13 and neurological systems.14–16

Different entropy-based metrics
Numerous entropy metrics are available to quantify different 

aspects of the complexity of physiological signals (Figure 1). 

Approximate entropy (ApEn) and its modified methods are 

sets of measures of system complexity closely related to 

entropy, were introduced to apply in electrocardiogram, and 

are widely used to analyze heart rate-related data in clinical 

cardiovascular studies, as well as endocrine hormone release 

pulsatility.17,18

ApEn is applicable to noisy, typically short, real-world 

time series and can distinguish between correlated stochastic 

processes.19

Sample entropy (SampEn) is a modified algorithm of 

ApEn, when the bias of self-matches is avoided. As a result, 

it represents an estimator that is largely independent of the 

length of the time series.19 SampEn has been applied in 

electroencephalogram (EEG) and brain magnetic resonance 

imaging (MRI) data to evaluate the complexity of nonlinear 

structures in brain dynamics.16,19 These entropy-based metrics 

are based on a “one-step difference” and estimate the degree 

of irregularity of a time series over a single scale of time. 

Hence, they do not account for features related to structure 

and organization over a range of timescales.19 However, as 

the hierarchical structure of a real biological system exhibits 

different space and timescales, and the interactions can occur 

at the same scale as well as between scales, the traditional 

entropy that measures one single timescale may not be able 

to characterize and capture the whole structure of the com-

plexity of a real biological system.

In order to overcome this limitation and to investigate the 

variability in physiological signals across multiple temporal 

scales, numerous metrics were developed, including multi-

scale entropy (MSE) analyses5 and multivariate MSE.20,21 

These methods allow the detection of multiple, hierarchic 

levels, and complex fluctuation of neurophysiological output 

signal of a biological system. Furthermore, the goal of mul-

tiscale modeling is not only to model a system at multiple 

scales but also to conserve the information from a lower scale 

to a higher scale, so that the information from the very bottom 

scale can be carried to the top scale correctly.4

MSE method, as described by Costa et al,5 aims at quan-

tifying the interdependence between entropy and timescale, 

enabled by evaluating entropy of univariate time series, a 

technique called “coarse-graining” at multiple temporal 

scales. This is associated with the ability of living systems to 

adjust to a changing environment. The underlying integrative 

multiscale functionality is interpreted by nondiminishing 

entropy values across increasing timescales.19 MSE has the 

advantage of facilitating the assessment of the  dynamical 

complexity of a system and being applicable to both 

 physiological and physical signals of finite length.22
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Multivariate MSE evaluates SampEn over different 

 timescales and deals with the different embedding dimen-

sions, time lags, and amplitude ranges of data channels in 

a rigorous and unified way. The method is shown to cater 

for linear and/or nonlinear within- and cross-channel cor-

relations as well as for complex dynamical couplings and 

various degrees of synchronization over multiple scales, thus 

allowing for direct analysis of multichannel data.

Clinical applications of entropy in 
neuroscience
The human neurological systems comprise complex struc-

tural architecture and functional communication networks.1,22 

In the past, the function of neuronal circuit has been mainly 

conceptualized by linear modelization and failed to fully 

describe the dynamics of the neurophysiological signals. A 

large and growing body of studies has applied the nonlinear 

analyses, such as entropy-derived measures for evaluating 

the physiological complexity in neuroscience.

Autonomic Nervous system
The applications of entropy on human physiological signals 

were developed earlier for analyzing the heart rate and beat-

to-beat blood pressure.8 Heart rate is influenced by numer-

ous factors including the liquid metabolism, hormonal and 

temperature variations, physical activity, circadian rhythms, 

and autonomic nervous system. As a result, heart rate varia-

tions are extremely complex in healthy individuals.8 Aging 

and diseases, such as atrial fibrillation (AF) and heart failure, 

have been associated with reduced complexity in heart rate 

variability (HRV) and greater mortality.5 The entropy of heart 

rate was linked to neurological system since the modulation 

of heart beat was associated with the two components of 

autonomic nervous system: sympathetic and parasympathetic 

1. Easy visualization of relevant concepts

1. Most of biological signals are nonlinear and
    nonstationary which may hamper the results

1. Can describe the nonlinear behaviors of the
    system which may be difficult to be studied with
    traditional approaches

2. Seem to be more sensitive in specific
    pathological conditions than traditional
    approaches

1. No standardized procedure regarding the
    computation of complexity

2. The physical explanation and correlation with
    basic biological system is still unknown

2. Frequency (eg, neuronal firing rate)
    can be easily observed in basic research

Advantages

Disadvantages

Bioelectrical activity

Recording
conditions Noise

Organization of
neuronal system

Biological signals (eg, ECG, EEG, EMG)

Signal processing and mathematic characteristic

Frequency domain approaches (eg, FFT, HHT)
decomposition of signals
into different frequency bands

Entropy approaches (eg, ApEn, SampEn, MSE)
usually taking negative logarithm of probabilities of
specific conditions based on self-similarity or
randomness of signals

The complexity of specific biological system involved
and encoded in the signals

Neuronal activity is mainly frequency
coded and modulated

Physiological
basis

Figure 1 The characteristics of the methods in biosignal processing.
Abbreviations: ECG, electrocardiography; EEG, electroencephalogram; EMG, electromyography; FFT, fast Fourier transform; HHT, Hilbert–Huang transform; ApEn, 
approximate entropy; SampEn, sample entropy; MSE, multiscale entropy.
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nerves.23 Rhythmical oscillations of both heart rate and blood 

pressure have been indicated to reflect the sympathetic and 

parasympathetic modulation.24,25 HRV was proposed to be 

a reliable tool to evaluate the function of the autonomic 

nervous system.26

Using ApEn, Li et al analyzed the 24-hour HRV signals 

from a total of 29 healthy controls and 63 type 2 diabetes 

patients. ApEn values extracted from low- and  high-frequency 

components of HRV of healthy controls were higher than 

those of diabetes patients, suggesting lower complexity of 

the cardiovascular system and worse regulation function 

in response to changes of environment in individuals with 

diabetes when compared with healthy controls.27 Sungnoon 

et al28 used SampEn to evaluate the signal complexity of HRV 

extracted from surface electrocardiography (ECG) in control 

subjects and individuals with AF. Their results showed that 

SampEn values from lead V1 in patients with persistent AF 

were significantly higher than those in healthy controls. The 

low-frequency to high-frequency power ratio of HRV analysis 

in both paroxysmal AF and persistent AF patients was also 

significantly decreased when compared to healthy controls. 

The data reflected the impairment of cardiac autonomic 

function in both paroxysmal AF and persistent AF patients 

consistent with an increased atrial signal irregularity.

Using the MSE method, Turianikova et al29 investigated 

the effect of orthostatic challenge on the complexity of HRV 

and blood pressure variability and the correlation between 

MSE and traditional linear (time and frequency domain) 

measures in 28 healthy young individuals. They found that 

MSE of HRV and blood pressure variability signals is sen-

sitive to changes in autonomic balance caused by postural 

change from the supine to the standing position, and the 

effect of orthostatic challenge on complexity depended on 

the timescale of MSE.29

Alteration of autonomic nervous system in acute hypoxia 

was noted when evaluating the cardiovascular dysfunction 

with SampEn by Zhang et al,30 when they investigated eight 

healthy male subjects exposed to simulated altitude from 

sea level to 3,600 m in 10 minutes. The results showed 

that hypoxia attenuated both SampEn and spectral HRV 

 parameters, with the shift of balance of sympathovagal toward 

sympathetic dominance.

Renyi entropy and ApEn have also been proposed to 

be used to detect early cardiac autonomic dysfunctions.31,32 

Significant difference of Renyi entropy derived from a 

20-minute, lead-II ECG recording between controls and early 

or definite cardiac autonomic neuropathy in diabetes patients 

forms a useful tool to detect the autonomic impairment in the 

early stages of the disease and has the potential to improve 

treatment and outcomes.31

Early assessment of the complexity of HRV by MSE 

has shown its value of predicting stroke-in-evolution and 

outcomes in acute ischemic stroke patients.33,34

Entropy values over single or different timescales may 

reflect certain behavior of heart rate dynamics and have the 

implications of the complexity of autonomic nervous system. 

Abnormality of complexity revealed by HRV analyzed by 

entropy method could be a sensitive indicator of autonomic 

dysfunction and suggests underlying impairment of interac-

tion in the brain–heart axis.34

Sleep regulation
The sleep process is also involved in the regulation of auto-

nomic nervous system. The transition from wake to sleep 

and between different sleep stages has been shown to be 

characterized by the activation of several cortical, subcortical, 

and brainstem neural circuits. The processes also involve in 

changes in many hormones, neurotransmitters, internal cir-

cadian rhythms, and environmental variations.35 Observation 

of the fluctuations between sympathetic and parasympathetic 

predominance upon sleep onset and during the transitions 

between different sleep stages reveals that the cardiovascular 

system is strongly affected by different sleep stages. From sleep 

stages N1 to N3, a gradual decrease in heart rate and blood 

pressure could be observed, and during rapid eye movement 

(REM) sleep, activation of cardiovascular system is dominant, 

and sometimes to the level similar or higher than wakefulness.36

Measuring complexity of HRV during sleep has been 

used to evaluate the regulation of autonomic nervous system 

in physiological and pathological sleep. An earlier study 

has shown that in healthy adults, non-REM (NREM) sleep 

is characterized by an increased SampEn of HRV, and the 

SampEn of HRV during REM sleep was similar to wake sta-

tus (Wake: 1.53±0.28, NREM: 1.76±0.32, REM: 1.45±0.19, 

P=0.005).37 Differences between the HRV analyzed by using 

the ApEn in postmenopausal women have shown the specific 

features in heart rate dynamics during various sleep stages.38

Decreased physiological complexity of HRV during 

sleep by using entropy method has been associated with 

aging-related process. In the study presented by Viola et al, 

who evaluated the HRV in polysomnography of 12 healthy 

young (21.1±0.8 years) and 12 healthy older subjects 

(64.9±1.9 years), the older adults showed a significant reduc-

tion of Shannon entropy and corrected conditional entropy. 

And the decrease of entropy measures was more evident 

during REM sleep.39
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With using the MSE method to measure the physi-

ological complexity of sleep under different time scale 

factors, Yang et al reported the altered autonomic function 

in patients with depression and  insomnia.40 Compared 

with the controls, the patients with major depression 

and primary insomnia exhibited significant reductions 

in parasympathetic-related HRV indices and also exhib-

ited significant reductions in physiological complexity 

during the sleep period. An earlier study focused on the 

complexity metrics of the HRV during sleep in patients 

with obesity showed that the obesity group presented sig-

nificantly reduced complexity during light and deep sleep 

(deep sleep stage III, obese group: SampEn =1.34±0.56; 

controls group: SampEn =1.68±0.4; sleep stage II, obese 

group: SampEn =1.27±0.41; controls group: SampEn 

=1.54±0.38, P≤0.05).41 Entropy-based HRV parameters 

have been suggested to improve the classification of dif-

ferent sleep stages.42

Entropy-based analysis of EEG during sleep has also 

been applied in various physiological status and disorders. 

The work by Burioka et al43 has shown that the ApEn val-

ues for EEG signals were lower during stage IV sleep and 

higher during wake and REM sleep (0.896±0.264 during 

eyes-closed waking state, 0.738±0.089 during Stage I, 

0.615±0.107 during Stage II, 0.487±0.101 during Stage 

III, 0.397±0.078 during Stage IV, and 0.789±0.182 during 

REM sleep) in eight healthy young adults. As in entropy-

based HRV analysis, entropy for EEG has been suggested 

to be able to be used as a criterion for sleep staging44 and 

in evaluation of consciousness status.45,46 Parkinson’s dis-

ease (PD), which is known to be related to various sleep 

disorders during the progressive course of the disease and 

commonly have negative effects on the patients’ quality of 

life, has been linked to altered MSE of EEG during NREM 

sleep.47 These results suggested that entropy-derived 

measures are useful tools to detect and provide important 

information of the complexity of autonomic cardiovas-

cular and neurophysiological controls during sleep and 

also indicated that the reduction of entropy in diseased 

status and aging is characterized by impairment of cardiac 

control mechanisms. Sleep is a highly regulated behavior 

involving complex neural networks and neurotransmit-

ters. The mechanism of neuronal circuits regulating sleep 

process and its correlation to different measures of entropy 

value are not fully understood; altered complexity of 

physiological signals during sleep may reflect the nature of 

impaired neuronal connectivity. Entropy values of different 

temporospatial scales possibly represent the hierarchical 

composition of the nervous systems. Further research to 

clarify the pathophysiological mechanisms underlying the 

altered complexity during sleep are warranted to improve 

the understanding of the associations between different 

diseases and sleep disorders.

Alzheimer’s disease and cognitive 
dysfunction
Alzheimer’s disease (AD) is characterized by progressive 

deterioration of cognitive function and behavioral disturbance. 

The neuropathological features of AD include generalized 

neuronal cell loss, neurofibrillary tangles, and senile plaques 

in brain regions. EEG has been widely employed as a non-

invasive clinical tool for examining normal and pathologic, 

neurophysiological temporal dynamics. Nonlinear EEG 

complexity analyses have been applied to understand the 

physiological processes in patients with dementia. Several 

studies demonstrated the utility of MSE in evaluating EEG 

changes in AD. Using ApEn48,49 and SampEn,50 reduced 

complexities in EEG signals in AD have been reported.51,52 

With regard to MSE measures, studies have found lower EEG 

complexity in AD patients compared to that of age-matched 

controls,53,54 and increased MSE value at higher scale factors 

has been associated with the decline in cognitive function in 

AD, as determined by mini-mental state examination scores. 

MSE complexity of EEGs in various brain areas has also 

been reported to correlate to subdomains of neuropsychiatric 

functions.55 The pathological presentations of AD, including 

neuronal loss and deficiency of neurotransmitters, result in 

altered corticocortical association fibers and cause discon-

nection syndrome.56 The complexity of EEGs at different 

time scales might represent neuronal network connectivity 

of the brain of AD patients. The neurophysiological mecha-

nism underlying the contradiction between decreased EEG 

complexity across smaller scale factors (shorter time scales) 

and increased complexity at larger scale factors (longer time 

scales) for severe AD patients globally across brain regions 

remains not clearly understood. It may reflect the changes 

of brain dynamics under the process of AD. A recent study 

using functional magnetic resonance imaging (fMRI) to 

evaluate the integrity of brain systems sustaining cognition 

has observed a decrease in anteroposterior interactions and, in 

contrast, increased interactions within the frontal and parietal 

subsystems in the elderly compared to young controls.57 This 

decreased anteroposterior integration was more pronounced 

in AD patients compared to elderly controls, particularly 

in the precuneus–posterior cingulate region. Whether the 

diversity of entropy measures at different timescales could be 
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explained by the changes in the interactions between different 

brain regions, or it reflects the hierarchical composition of the 

central nervous system, still warrants elucidation.

Entropy measures of EEG complexity have also been 

applied in many other pathological states, including toxic 

states,58 seizure,59 schizophrenia,60,61 and anesthesia.62,63

Parkinson’s disease
PD is a degenerative disorder of the central nervous system 

affecting mainly the motor and various nonmotor systems. 

Pathological features include degeneration of dopamine-

secreting cells in the substantia nigra pars compacta of 

basal ganglia coupled with intracytoplasmic inclusions 

known as Lewy bodies.64 Reduced dopaminergic neuronal 

activity caused by cell death results in disruption of the 

pathways connecting basal ganglia with different brain 

regions, such as motor, oculomotor, associative, limbic, 

and orbitofrontal areas. Disconnection of these circuits 

involved in a wide variety of functions explains the varied 

symptoms of the disease. Previous study has shown that 

the irregularity in the neuronal firing activity of EEG, 

muscular activity of electromyography (EMG), and kinet-

ics of movement exhibit a complex temporal organization 

in PD.65 Using the entropy methods, many studies have 

reported the changes in the complexity of physiological 

signals in PD, including lower ApEn of Parkinsonian tremor 

on EMG activities, altered entropy of gait rhythms, and 

lower SampEn of postural stability in PD patients with 

freezing symptoms.66

In PD, changes in EEGs’ complexity at awake and during 

sleep have been reported. With wavelet packet entropy method, 

EEG signals from patients with PD showed higher entropy 

over the global frequency domain at resting state.67 Sleep 

stage-specific increases of MSE were observed in PD during 

NREM sleep.47 The changes in the complexity of EEG signals 

in PD patients may also show the difference of interconnec-

tion of the cortical functional island and have been proposed 

to be used as early diagnosis and early intervention of PD.

From the data stream recorded from globus pallidus 

internal (GPi) neurons in patients who underwent deep 

brain stimulation, higher neuronal entropy (as estimated 

by the ApEn) in the GPi has been reported in the patients 

with PD than in the patients with dystonia,68 indicating a 

greater irregularity in the neuronal discharge pattern from 

the output nuclei of the basal ganglia with hypokinetic state. 

Apomorphine, a nonselective dopamine agonist, when being 

administered during surgery for deep brain stimulation, has 

been reported to induce a decrease in entropy measured 

in the interspike intervals of subthalamic nucleus. In PD, 

dysfunction in subthalamic nucleus and GPi neuronal data 

stream generates a large number of different pattern pos-

sibilities leading to a signal with limited order and reduced 

information and enhances the inhibition of motor program 

by decreasing its informative nature.65 Depletion of neuronal 

activities, reduced richness of information, disorganization 

of interconnections between neuronal circuitry, and altered 

global cortical functions may contribute to the changes in 

the complexity of physiological signals in PD.

Motor control system
Entropy-derived measures have been applied in evaluating 

balance and locomotor functions, which are commonly 

qualified by recording the temporal and spatial fluctuations 

of physiological signals, such as center of pressure69,70 and 

gait.71,72 The normal function of controlling postural sway 

dynamics and gait is complex, depending on intact integra-

tion of musculoskeletal, somatosensory, visual, vestibular, 

and central nervous systems. It has become evident that 

aging is associated with diminished postural sway complexity 

(as quantified by MSE) and independently associated with 

frailty, low daily activity, and falls in older adults as com-

pared to healthy younger adults.73,74 Perturbations, such as 

visual, somatosensory impairments,75 and stressors, such as 

concurrent cognitive interference,76 have been demonstrated 

to result in decreased complexity of postural control. The 

center of pressure data and gait measures are often dynamic, 

nonlinear, and nonstationary in nature. When compared with 

traditional methods, entropy-derived analyses are shown to 

be promising and advantageous in analyzing these data.70

Other clinical applications
Several studies have applied entropy-based measures for 

different physiological signals. Using MSE method for 

analyzing magnetoencephalography records in patients with 

traumatic brain injury, lower complexity within multiple brain 

regions has been demonstrated and correlated with greater 

variability in cognitive task performance as compared to 

controls.77 In fMRI studies, SampEn of the patients with 

schizophrenia has more complex fMRI signals than healthy 

controls.78 In the study using blood oxygen level-dependent 

MRI, an age-related loss of complexity was present in the 

temporal fluctuations of blood oxygen level-dependent sig-

nals from multiple brain regions.79 Within older adults, the 

degree of complexity estimated from numerous brain regions 

was positively correlated with cognitive functions, including 

attention, orientation, memory, and verbal fluency. Entropy 
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analysis is also feasible to evaluate the associations of the 

signal complexity between different systems, for instance, 

the brain and heart connection. Using EEG and 24-hour 

ECG, MSE analysis showed inverse correlations between 

the signal complexity of cardiac and cerebral activities.80 

The resting-awake and fast-photic stimulation EEGs were 

associated with the R-to-R peak interval of ECG, imply-

ing a strong correlation between the dynamics of heartbeat 

and brainwaves and the link between autonomic network of 

central nervous system and the modification and control of 

heart rate.

Rehabilitation and treatment 
programs
Entropy-derived methods have also been successfully 

used and proposed to be sensitive indicators for moni-

toring and evaluating the effects of different therapies, 

including rehabilitation,1 exercise training,81 Tai Chi train-

ing,82 and transcranial direct current stimulation83 in the 

individual with movement disorders or impaired postural 

control. These treatment-related increases and regains 

in  physiological complexity also correlated closely with 

functional improvements.

Conclusion
A growing body of studies has proposed entropy-derived 

analyses as useful and robust tool to assess the nonlinear 

physiological signals and evaluate the complexity of a biolog-

ical system. The use of entropy-derived analyses to describe 

the physiological signals and neuronal network activities may 

provide new qualitative and quantitative information relative 

to the nature of complexity of nervous systems, as well as its 

distortion in pathological conditions.

It is reasonable to expect that the inclusion of nonlinear 

features of entropy methods could help with better understand-

ing the complexity and nonstationarity of signals recorded in 

normal and pathological conditions. Further studies are needed 

to correlate the results of entropy measures over different tem-

porospatial scales to the functional status and to the assessment 

of therapeutic effects.The application of entropy-based methods 

in functional neuroscience provide us new and different per-

spectives in viewing a biological system and diseases. With 

these novel tools, new treatments and therapeutic strategies of 

diseases may be developed by evaluating and optimizing the 

internal complexity of an organism and also its dynamics to the 

external environment. The potentials of entropy-based methods 

have implications for future research and clinical practice.
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