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Abstract: Although the introduction of antiretroviral therapy has reduced the prevalence of 

severe forms of neurocognitive disorders, human immunodeficiency virus (HIV)-1-associated 

neurocognitive disorders were observed in 50% of HIV-infected patients globally. The blood–

brain barrier is known to be impermeable to most of antiretroviral drugs. Successful delivery 

of antiretroviral drugs into the brain may induce an inflammatory response, which may further 

induce neurotoxicity. Therefore, alternate options to antiretroviral drugs for decreasing the HIV 

infection and neurotoxicity may help in reducing neurocognitive impairments observed in HIV-

infected patients. In this study, we explored the role of magnetic nanoparticle (MNP)-bound tissue 

inhibitor of metalloproteinase-1 (TIMP1) protein in reducing HIV infection levels, oxidative 

stress, and recovering spine density in HIV-infected SK-N-MC neuroblastoma cells. We did not 

observe any neuronal cytotoxicity with either the free TIMP1 or MNP-bound TIMP1 used in our 

study. We observed significantly reduced HIV infection in both solution phase and in MNP-bound 

TIMP1-exposed neuronal cells. Furthermore, we also observed significantly reduced reactive 

oxygen species production in both the test groups compared to the neuronal cells infected with 

HIV alone. To observe the effect of both soluble-phase TIMP1 and MNP-bound TIMP1 on spine 

density in HIV-infected neuronal cells, confocal microscopy was used. We observed significant 

recovery of spine density in both the test groups when compared to the cells infected with HIV 

alone, indicting the neuroprotective effect of TIMP1. Therefore, our results suggest that the 

MNP-bound TIMP1 delivery method across the blood–brain barrier can be used for reducing 

HIV infectivity in brain tissue and neuronal toxicity in HIV-infected patients.

Keywords: HIV, neurocognitive disorders, TIMP1, magnetic nanoparticles, blood–brain 

barrier, neuroprotection

Introduction
Human immunodeficiency virus (HIV) is a neurotropic virus that enters the brain 

shortly after infection. It has been reported that HIV enters the central nervous system 

(CNS) via infected monocytes that traverse the blood–brain barrier (BBB) to replen-

ish perivascular macrophages. Brain macrophages and microglial cells are reported to 

be the key cells productively infected with HIV, and a few studies have also reported 

HIV infection in astrocytes,1,2 which results in HIV-associated neurocognitive disorders 

(HAND).3 Although very few reports suggest neurons being infected by HIV,4–6 but 

postmortem studies of brains of patients with HAND show decreased synaptic plasticity/

function at various levels. Synaptic plasticity is defined as a change in efficacy/strength 

of synapses (spine formation and maintenance of synaptic architecture) in response to 

the external stimuli. Neuronal plasticity dysregulation can be seen at the cellular level 
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by decreased spine density and synaptodendritic damage6 and 

at the systemic levels with gray and white matter atrophy7,8 

in both cortical and subcortical regions.9,10

Matrix metalloproteinases (MMPs) are a family of 

endopeptidases that play a major role in the degradation of 

most extracellular matrix proteins, wound healing, and tissue 

morphogenesis.11–14 Tissue inhibitors of metalloproteinases 

(TIMPs) are a family of proteinase inhibitors that control the 

activity of MMPs in vivo by binding in 1:1 stoichiometry.15,16 

Disruption of this balance is seen in various pathological 

conditions such as neuroAIDS,17 Alzheimer’s disease,18 mul-

tiple sclerosis,19 brain tumors,20 epilepsy,21 and excitotoxic/

neuroinflammatory processes.22 In the case of HIV infec-

tion, once the HIV enters into the CNS, it leads to neuronal 

damage, which in turn causes cognitive issues (eg, attention, 

memory, language, problem solving, and decision-making), 

and eventually leads to the HAND. Due to such diverse 

roles in disease advancement, MMPs can serve as a promis-

ing therapeutic target, leading to the development of many 

small-molecule or broad-spectrum MMP inhibitors. But 

issues like off-target effects, ineffective therapeutic plasma 

levels, and toxicity (eg, musculoskeletal toxicity) lead to the 

failure of these compounds at early stages of the clinical trials 

(eg, studies related to cancer and arthritis).23–26 Among all 

inhibitors, TIMP1 has strong affinity for MMP-9 and holds 

great therapeutic value in a wide variety of inflammatory and 

vascular diseases and in cancer.27 In our previous studies, 

we observed that TIMP1 is one of the highly downregulated 

synaptic plasticity genes in HIV-infected neuronal cells.6 

TIMP1 also acts as a neuroprotective agent in HIV infection 

by protecting neurons from apoptosis and by preserving the 

neuronal architecture.28 However, like most proteins, TIMP1 

does not cross the BBB and the native form has a short half-

life (,4 hours), rapid clearance, and low bioavailability, 

thus limiting its application as a neuroprotecting agent for 

CNS diseases.29

Nanotechnology is a platform to develop promising and 

novel drug delivery systems in medicine, and significant 

research exploring this novel technology has been focused on 

the delivery of different drugs/proteins/therapeutic agents to 

brain. Various kinds of drug delivery approaches to deliver 

drugs across the BBB are being pursued including the use of 

macrophage-mediated transport, receptor-mediated transport, 

and use of lipid carrier and tagging drugs to ligands through 

a carrier.30 Unfortunately, in vivo strategies like viral vector 

upregulation, direct injection into the brain, transnasal, infu-

sion pump-mediated, and transient disruption of BBB lack 

practical relevance for patient treatment.31–33 In clinical trials, 

systemic side effects are the limiting factors observed while 

delivering the optimum doses that have therapeutic effects 

within the brain.34 It is necessary to develop innovative 

technologies to deliver various neurotropic factors across 

the BBB to reduce the neurotoxic effects observed in various 

diseases. More recently, due to the intrinsic magnetic proper-

ties, magnetic nanoparticles (MNPs) have gained increasing 

importance owing to the advantage of tracking them through 

imaging methods. Along with our reports, several other 

in vitro and in vivo studies have reported the use of mag-

netically guided drug delivery systems.35–40 Previously, our 

group has shown the application of magnetic nanocarriers 

for delivering anti-HIV drugs and neuroprotective agents 

across the BBB using noninvasive external magnetic force 

and demonstrated that this target-specific CNS strategy can 

be used for the treatment of neuroAIDS.41,42 Recently, we also 

developed a novel layer-by-layer magnetic nanoformulation 

(NF) to deliver an anti-HIV drug and a latency reactivating 

agent across the BBB in a sustained-release manner for 

1 week for the treatment of neuroAIDS.43 The magnetic 

platform will help for speedy navigation of the drug-loaded 

nanocarrier to the target (brain), prevent reticuloendothelial 

system uptake of the drug, and reduce off-target effects. In 

the present study, we evaluated the role of TIMP1 protein in 

neuroprotection by regulating the HIV infection, oxidative 

stress, and spine density and its implication in prevention 

of HAND using nanotechnology platform. We synthesized 

MNP-loaded TIMP1 NF, tested its release kinetics and 

transmigration across BBB using an in vitro model, and 

observed the neuroprotective effect of TIMP1 in HIV-1-

infected neuronal cells.

Materials and methods
synthesis of super paramagnetic iron 
oxide nanoparticles
The iron oxide (Fe

3
O

4
) magnetic nanoparticles (MNPs) 

were synthesized according to the coprecipitation method 

as described previously.43,40

characterization of MNPs
Synthesized MNPs were characterized for size and shape 

using transmission electron microscopy (TEM; Phillips 

CM-200, 200 kV operated at 80 kV) as described previously.43 

The hydrodynamic radius, size distribution, and surface 

charge measurement of TIMP1-loaded and -unloaded 

MNPs were carried out at 25°C using Malvern Zetasizer 

(dynamic laser scattering, Nano ZS; Malvern Instruments, 

Inc., Westborough, MA, USA).
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Time kinetics, drug-binding isotherm, and 
in vitro release studies of TIMP1
TIMP1 protein was purchased from the Life Technologies 

(Catalog no 10934-H08H). To determine the time kinetics of 

direct binding of TIMP1 protein on MNPs, different amounts 

of MNPs (range: 5–20 µg) were added to 5 µg of TIMP1 

and incubated in phosphate-buffered saline (PBS) (pH 7.4) 

for 0, 10, 20, 30, and 60 minutes at room temperature (RT). 

The amount of TIMP1 bound (% binding) to the MNPs was 

determined by estimating the concentration of TIMP1 in 

the unbound fraction (supernatant) of the mixture using a 

UV nanospectrophotometer (Synergy™ HT Multi-Mode 

Microplate Reader; BioTek Instrument, Inc., Winooski, VT, 

USA) at 280 nm. TIMP1 + MNP NF (5 µg MNPs with 5 µg 

TIMP1) release studies were performed in vitro in an Eppen-

dorf tube containing 1,000 µL of PBS (pH 7.4) incubated at 

37°C in an incubator; aliquots of release samples were col-

lected at preset interval times (every 30 minutes) and aliquots 

of the same volume were replaced with fresh PBS solution 

to maintain sink condition. The cumulative TIMP1 release 

percentage was obtained using the amount of TIMP1 released 

from the total amount of TIMP1 loaded and was determined 

spectrophotometrically at λ
max

 of 280 nm.

cell culture and reagents
SK-N-MC neuroblastoma cells were obtained from American 

Type Culture Collection (ATCC, Manassas, VA, USA; cata-

log no HTB-10). HIV-1Ba-L (clade B, macrophage-tropic 

[R5] virus) was obtained through the AIDS Research and 

Reference Reagent Program, Division of AIDS, National 

Institute of Allergy and Infectious Diseases (NIAID), 

National Institutes of Health (NIH) (Washington DC, USA; 

AIDS Reagent Program, catalog no 510).

hIV-1 infection of human sK-N-Mc cells
An established laboratory protocol was used for infecting 

the SK-N-MC cells with HIV,6 with slight modifications. 

Briefly, the SK-N-MC (1×105 cells) cells were grown 

overnight in six-well plates in the Dulbecco’s Modified 

Eagle’s Medium, and these cells were activated by treating 

with polybrene (10 µg/mL) for 6–7 hours before the infec-

tion. The cells were infected with optimized concentration 

(20 ng) of HIV-1 clade B virus overnight, were washed to 

remove the unbound virus, and were incubated for a further 

5 days. On the fifth day, TIMP1 solution or MNP NF con-

taining TIMP1 was added to these cells and incubated for 

48 hours. The culture supernatant collected after 7 days of 

infection was used for the p24 antigen estimation using an 

enzyme-linked immunosorbent assay (ELISA) kit (catalog 

no 0801200; ZeptoMetrix Corp., Buffalo, NY, USA). Control 

cells (without HIV, TIMP1/MNP–TIMP1) were included in 

the setup of all experiments.

In vitro BBB preparation, validation, and 
transmigration assay
The BBB model was prepared as described by Persidsky 

et al44 and modified by us.43 Briefly, in a bicompartmental 

transwell culture plate (product no 3415; Corning Life 

Sciences, Reynosa, Mexico), the in vitro BBB model was 

prepared. An insert with 10 µm thick polycarbonate mem-

brane possessing 3.0 µm pores separates the upper chamber 

of this plate from the lower chamber. In a sterile 24-well 

cell culture plate with the insert, human brain microvascular 

endothelial cells in the upper chamber and human astrocytes 

on the underside of lower chamber were grown to conflu-

ency. To assess the effect of MNP + TIMP1 NF on integ-

rity of the in vitro BBB model, after transmigration assay, 

paracellular transport of fluorescein isothiocyanate–dextran 

(FITC–dextran) was measured.43 Briefly, 100 mg/mL FITC–

dextran (Sigma-Aldrich Co., St Louis, MO, USA) was added 

to the upper chamber of the inserts and further incubated for 

6 hours. Samples were collected from the bottom chamber 

after 6 hours and relative fluorescence was measured at an 

excitation wavelength of 485 nm and an emission wave-

length of 520 nm using Synergy HT Multi-Mode Microplate 

Reader instrument (Biotek Instrument, Inc.). FITC–dextran 

transport was expressed as percentage of FITC–dextran 

transported across the BBB into the lower compartment 

compared to negative control. Intactness of in vitro BBB 

was determined by measuring the transendothelial electri-

cal resistance (TEER) using Millicell ERS microelectrodes 

(EMD Millipore, Billerica, MA, USA). On the fifth day of 

BBB preparation, when the ideal integrity of the BBB was 

achieved (by measuring TEER values), transmigration assay 

of MNP-bound TIMP1 was performed. MNP + TIMP1 NF 

was added to the upper chamber of the BBB preparation and 

incubated at 37°C with/without magnetic force of (0.08 T) 

placed externally below the transwell basolateral chamber. 

MNP + TIMP1 NF was collected from the lower chamber at 

different time points (ie, 1, 2, 3, and 6 hours) and % transmi-

gration was analyzed for all the different time points using 

ammonium thiocyanate-based photometric assay.43

Intracellular uptake analysis
Human neuroblastoma SK-N-MC cells were seeded in six-

well plates at a concentration of 1×106 cells. After 24 hours, 
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cells were treated with equal quantity of FITC-tagged 

MNP + TIMP1 NF for 3–24 hours. Cells were rinsed with 

PBS, and to quantify the cellular uptake of TIMP1-loaded 

nanoparticle levels, the flow cytometer was used.45 These 

cells were harvested at different time points (3–24 hours) 

after treatment, and 1 million cells were aliquoted in 

12×75 mm polystyrene falcon tubes (BD Biosciences, San 

Jose, CA, USA; catalog no 352058) and fixed with Cytofix 

solution (BD Biosciences). Cells for uptake were analyzed 

in a flow cytometer (BD Accuri Cytometers Inc., Ann Arbor, 

MI, USA), and a total of 10,000 events were collected for 

each sample. The results were analyzed using the FlowJo 

software (Tree Star Inc., Ashland, OR, USA). Cells were 

gated based on cells with and without NF controls. Cells 

positive for NF are shown as colored histograms and com-

pared with controls.

cytotoxicity assay
Cytotoxicity of MNPs alone and TIMP1-loaded MNP 

NF was assessed by MTT cell viability assay using the 

established protocol.46 SK-N-MC cells were seeded in six-

well tissue plates at a density of 1×105 cells per well and 

infected with HIV as explained in the “HIV-1 infection of 

human SK-N-MC cells” section. After 5 days of infection, 

100 µL fresh media containing different amounts of Fe
3
O

4
 

(5–20 µg), TIMP1 (50 ng–1 µg), and MNPs-bound TIMP1 

was added (5–20 µg of MNPs loaded with 5 µg of TIMP1). 

After 48 hours of incubation, 6-well plates were given a 

media change with 1 mL medium and approximately 100 µL 

of MTT solution (100 mg MTT/20 mL of PBS) was added 

into each well and incubated at 37°C for 3 hours. Finally, 

1 mL of stop solution (20% sodium dodecyl sulfate in 50% 

dimethylformamide) was added into each well and the mix-

ture was kept on a rocker for ~2 hours; the absorbance was 

then read at 550 nm using a microplate reader (Synergy HT 

Multi-Mode Microplate Reader; BioTek Instrument, Inc.).

effect of TIMP1 on neuronal cell 
protection from oxidative stress induced 
by hIV-1 infection
Production of reactive oxygen species (ROS) in HIV-1 infec-

tion and/or after adding free TIMP1 or MNP-bound TIMP1 

to SK-N-MC cells was detected by the dichlorofluorescein 

diacetate assay (DCFDA) using the established protocol47 

with few modifications. SK-N-MC cells were cultured in 

six-well plates (1×105 cells) overnight to allow them to 

adhere on the bottom surface of the plate. The next day, 

after activation with polybrene, cells were infected with 

optimized concentration of HIV-1 for 5 days. On the fifth day, 

TIMP1 or MNP + TIMP1 NF was added to these cells and 

incubated for 48 hours. After 7 days of infection/treatment, 

cells (100,000 cells per well) were transferred to 96-well 

plates along with its media and incubated overnight. The 

next day, negative control group wells were treated with 

catalase (0.001 mg) for 2 hours. Further, cells were treated 

with 100 mM DCFDA for 1 hour at 37°C, and finally, the 

optical density was read in a microplate reader with excitation 

wavelength of 485 nm and emission wavelength of 528 nm 

(BioTek Instrument, Inc.). Cells treated with H
2
O

2
 for 2 hours 

were considered as positive control. Untreated and uninfected 

cells were considered as control cells. Test group results were 

compared with the control group values.

spine density measurement
Coverslips were sterilized using absolute alcohol and placed in 

six-well culture plates and incubated for 2 hours at 37°C. After 

incubation, SK-N-MC cells were cultured on the coverslips 

and incubated overnight at 37°C. SK-N-MC cells were treated 

with the polybrene for 6 hours and infected with the HIV (as 

explained in the “HIV-1 infection of human SK-N-MC cells” 

section) for 5 days. On the fifth day of infection, free TIMP1/

MNP-bound TIMP1 was added into the respective wells and 

incubated for 48 hours. Seven days postinfection, SK-N-MC 

cells were stained with the Dil (1,1′-dioctadecyl-3,3,3′,3′-
tetramethylindocarbocyanine perchlorate) stain.

Dil stain
SK-N-MC cells were washed with PBS once and fixed 

with 4% formaldehyde for 30 minutes at RT. Then, cells 

were stained with Dil stain (the fluorescent membrane 

tracer) (10 µg/mL in PBS concentration) and incubated for 

90 minutes at RT. To allow the transport of the dye, the 

stained coverslips in six-well plates were incubated over-

night in PBS. In the morning, these stained coverslips were 

mounted on the glass slides with ProLong® Gold Antifade 

Reagent (Thermo Fisher Scientific, Waltham, MA, USA) 

and confocal microscopy was performed.

confocal microscopy
The stained neuronal cells were observed for dendrites using 

the TCS SP2 Leica Confocal Laser Scanning Microscope 

using the 60× oil immersion objectives, an 88 nm argon-

ion laser illumination, and a 2.5× confocal electronic zoom 

setting. A series of optical serial sections of the cells were 

used to obtain the best “two-dimensional” images of indi-

vidual cells.
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statistical analysis
All the experiments were performed in duplicate and repeated 

three times. The obtained values were averaged and data 

represented as mean ± standard error (SE). GraphPad Prism 

software was used to analyze the data. One-way analysis of 

variance was used to compare the data obtained between 

the groups, and the results were considered significant at 

P#0.05. The confocal images were analyzed for the spine 

density using the ImageJ software.

Results
Formulation characterization and drug 
release kinetics
MNPs were prepared per laboratory standardized protocol43 

and characterized for size, shape, polydispersity index, 

and TIMP1 loading. TEM studies show that nanoparticles 

were in the range of 10±3 nm (TIMP1 loaded), as shown in 

Figure 1A, and had excellent dispersion property (polydis-

persity index .0.178) in aqueous medium.

The synthesized MNPs were also analyzed for superpara-

magnetic property (magnetic hysteresis loops, range: +1,200 

to −1,200 Oersted) and crystal structure (X-ray diffraction 

spectroscopy); the results showed strong magnetic behavior 

(revealed through no coercivity and remanence) and magnetite-

specific peaks (data not shown). Also, the time kinetics of 

TIMP1 (5 µg) loading with respect to MNP concentration 

was evaluated – maximum binding of TIMP1 (4±0.51 µg, 

corresponds to 80% loading) occurred as early as 10 minutes 

when lowest amount of MNPs (5 µg) was used as shown in 

Figure 1B (a and b), compared to higher time of incubation 

or larger amount of MNPs. Zeta (ζ) potential showed overall 

negative charge on MNPs (−30±4 mV) in deionized water, 

which changed to +10±2 mV on TIMP1 loading, thus confirm-

ing the TIMP1 deposition on MNPs due to electrostatic bonding. 

Furthermore, in vitro pharmacokinetic release studies showed 

that 100% TIMP1 release from MNPs takes place in ~6 hours 

in PBS (pH 7.4) at 37°C (Figure 1C).

In vitro BBB development and  
MNP + TIMP1 NF transmigration 
efficiency studies
The BBB transmigrability of the plain MNPs and MNPs + 

TIMP1 NF was evaluated using an in vitro human BBB 

model. The tightness of the developed in vitro BBB was 

Figure 1 characterizations of MNP nanoformulation.
Notes: (A) Transmission electron microscopy of TIMP1-loaded MNPs; (B) binding kinetics of TIMP1 (5 µg) to MNPs: (a) effect of MNPs amount with respect to percentage 
TIMP1 binding and (b) effect of time with respect to percentage TIMP1 binding; (C) in vitro release data: cumulative percentage release profile of TIMP1 from MNP 
nanoformulation (5 µg of TIMP1 loaded onto 5 µg MNPs) was studied in PBs (ph 7.4) with 0.1% sodium azide at 37°c using 100 kD Micro Float-a-lyzer (spectrum labs, 
cincinnati, Oh, Usa) dialysis membrane. standard errors are shown for the mean of triplicate samples.
Abbreviations: TIMP1, tissue inhibitor of metalloproteinase-1; MNPs, magnetic nanoparticles; PBs, phosphate-buffered saline.
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determined by TEER values estimation after 5–6 days as per 

our previously standardized protocol.43 Following the TEER 

determination, 100 µL of cell culture medium containing 

MNPs (5 µg) ± TIMP1 (4±0.51 µg) NF was added in the upper 

chamber into the respective wells (24-well plate) and incu-

bated in the presence or absence of external magnetic force 

(0.8 T). As shown in Table 1, before applying the magnetic 

force, TEER values of all treatment groups were comparable 

to the standard (untreated well) of 360±10 Ω/cm2. As per 

our expectation, even after applying the magnetic force, we 

did not observe any significant change in TEER value with 

MNPs + TIMP1 NF treatment (as shown in Table 1) when 

compared with untreated and plain MNP samples.

MNPs + TIMP1 NF ability with respect to BBB trans-

migration was verified by measuring the iron concentration 

in the lower chamber after application of external magnetic 

field for different time points. We observed that 40%±2.5% 

of plain MNPs and 37.5%±1.5% of MNPs + TIMP1 NF 

transmigrated across the in vitro BBB on magnetic treatment 

(0.8 T, 2 hours) compared to no magnetic treatment for both 

MNPs and MNPs + TIMP1 NF (shown in Figure 2A). Also, 

no significant increase in nanoformulation transmigration 

Table 1 In vitro BBB model Teer values

Magnetic force Untreated 
well (control)

Plain 
MNPs

TIMP1 + MNPs

No force 362.5±9.7 371.8±5.6 360.6±9.5
Magnetic force 362.6±6.5 368.4±10.5 360.2±2.6

Note: Data presented as mean ± standard deviation. n=5.
Abbreviations: BBB, blood–brain barrier; MNPs, magnetic nanoparticles; Teer, 
transendothelial electrical resistance; TIMP1, tissue inhibitor of metalloproteinase-1.

Figure 2 MNPs + TIMP1 nanoformulation (NF) transmigration study using in vitro BBB model.
Notes: (A) Transmigration efficiency evaluation: MNPs, free TIMP1, and MNPs + TIMP1 NF were added in the upper chamber of the transwells, and samples were tested 
for transmigration ability in the presence or absence of static magnet (0.8 T) placed underneath the cell culture plate for the 2 hours treatment; transmigrated samples were 
collected from the bottom chamber, centrifuged, and estimated for iron content using iron assay; (B) effect of magnetic treatment time with respect to NF transmigration 
efficiency: samples from the lower chamber at different time points, ie, 2, 4, and 6 hours, were collected, and transmigrated MNPs + TIMP1 NF was collected from the bottom 
chamber, centrifuged, and calculated for iron content using iron assay. (C) BBB integrity analysis using the FITc–dextran transport assay: FITc–dextran transport was measured 
for MNPs/MNPs + TIMP1 NF after 2 hours’ magnetic treatment, and FITc–dextran (molecular weight 40,000 Da) was added to the upper chamber of the insert. after 
30 minutes’ incubation, relative fluorescence unit from the lower chamber of the transwell was measured. Results were expressed as % FITC–dextran transport with respect 
to the untreated control cultures (−ve control = no cell and +ve control = with all BBB cells) and represented as mean ± se of independent experiments. ***P#0.001.
Abbreviations: BBB, blood–brain barrier; SE, standard error; FITC, fluorescein isothiocyanate; TIMP1, tissue inhibitor of metalloproteinase-1; NF, nanoformulation; MNPs, 
magnetic nanoparticles; NS, not significant; ctrl, control; M, Magnet.
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was observed on applying longer period of magnetic field 

as shown in Figure 2B.

Further, the integrity/intactness of BBB was evaluated 

using paracellular transport of FITC–dextran as described 

earlier in the methodology, with FITC molecule used as the 

detection moiety to confirm the membrane intactness. As can 

be seen from Figure 2C, only 7.25%±3% FITC is transported 

(upper to lower chamber) for both MNPs and MNPs + TIMP1 

NF in comparison to ~100% transport for negative control 

(transwell without any BBB cells), thus proving that MNPs + 

TIMP1 NF transmigration under external magnetic field does 

not affect the BBB integrity and that the nanoformulation is 

safe to be used for clinical application.

In vitro cytotoxicity and cell uptake studies
To explore the effect of different amounts of free TIMP1, 

MNPs, and MNP-tagged TIMP1 on SK-N-MC cells infected 

with HIV, the MTT assay was used. We did not observe 

any significant cytotoxicity in HIV-infected SK-N-MC cells 

exposed to free TIMP1 (up to 1 µg), MNPs (up to 20 µg), and 

MNP-tagged TIMP1 (5 µg MNPs + 5 µg TIMP1) combina-

tion when compared to the control uninfected and untreated 

SK-N-MC cells (Figure 3), thus suggesting NF is nontoxic 

in nature and should not have any safety concerns for any 

preclinical use.

Also, the quantitative analysis of MNPs + TIMP1 NF 

for cell uptake was performed by using the flow-cytometry. 

Our results showed that maximum cell uptake took place as 

early as 3 hours (~50%) and that there was no significant 

difference in cell uptake (percentage of cells positive for 

FITC-tagged NF) with longer incubation time, ie, up to 

24 hours (as shown in Figure 4).

Decreased hIV-1 infection in sK-N-Mc 
neuronal cells exposed to MNP-bound 
TIMP1
SK-N-MC cells were infected with HIV for 5 days, and 

free TIMP1 alone or MNP-tagged TIMP1 was added to the 

infected cells and incubated further for 48 hours. After a total 

of 7 days of infection, supernatant was collected and HIV 

infectivity in these cells was measured using the p24 ELISA. 

Although we did not expect any difference in HIV infection 

with TIMP1 treatment, surprisingly, we observed significant 

reduction of HIV infection in TIMP1-treated (starting from 

250 ng of TIMP1) and MNPs + TIMP1 NF-treated SK-N-MC 

cells (Figure 5).

reduced oxidative stress in hIV-infected 
sK-N-Mc neuronal cells exposed to free 
TIMP1 or MNP-bound TIMP1
HIV infection is known to induce oxidative stress by pro-

duction of ROS in different types of cells. To see the effect 

of HIV infection on ROS production in SK-N-MC cells 

and to investigate the neuroprotective role of TIMP1, we 

analyzed the ROS production in HIV-infected cells exposed 

to the solution-phase free TIMP1 and MNPs + TIMP1 NF. 

We observed significant reduction of ROS production in 

HIV-infected SK-N-MC cells exposed to solution-phase 

free TIMP1 when compared to the cells infected with HIV 

alone. In case of MNPs + TIMP1 NF exposed HIV-infected 

SK-N-MC cells, we observed significantly reduced ROS 

production when compared to the cells infected with HIV 

alone. We did not find significant difference in ROS produc-

tion between HIV-infected cells exposed to free TIMP1 and 

MNPs + TIMP1 NF (Figure 6).

TIMP1 recovers spine density in 
hIV-infected neurons
In the HIV-infected SK-N-MC cells, we observed significantly 

reduced spine density when compared to the uninfected con-

trol cells. When these cells were exposed to free TIMP1 alone 

Figure 3 cytotoxicity studies in sK-N-Mc cells for free and TIMP1 + MNPs 
nanoformulation components.
Notes: Figure shows the percentage of cells viable after treatment with different 
amounts of MNPs (5–20 µg/ml) or free TIMP1 (50 ng–1 µg) or MNPs + TIMP1 
nanoformulation. sK-N-Mc cells (1×105 cells) were grown in the six-well culture 
plates, and cells were infected with 20 ng of hIV-1 clade B overnight. Unbound virus 
was washed, and cells were infected for 7 days. On fifth day of infection, TIMP1/
MNPs/MNPs + TIMP1 was added at different amounts into the respective wells and 
incubated for 48 hours. seven days postinfection, cell viability was measured using 
the MTT assay. *P#0.05.
Abbreviations: HIV, human immunodeficiency virus; TIMP1, tissue inhibitor of 
metalloproteinase-1; NF, nanoformulation; MNPs, magnetic nanoparticles; Ns, not 
significant.
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or MNP-bound TIMP1, we observed significant recovery of 

spine density when compared to the HIV-infected cells. We 

did not find significant difference in the recovery of the spine 

density between free TIMP1-treated cells and MNP-bound 

TIMP1-treated cells (Figure 7).

Discussion
Neuronal cell death or apoptosis by means of oxidative stress 

in HIV-infected patients is one of the key mechanisms respon-

sible for the cognitive and motor dysfunctions.48,49 In our 

previous studies, we have observed dysregulation of synaptic 

plasticity genes and decreased spine density in HIV-infected 

neuronal cells.6 Therefore, there is a need to investigate the 

therapeutic molecules that can induce neuroprotection in 

HIV-infected patients. In vitro and in vivo models of brain 

trauma and stroke suggest that TIMP1 is neuroprotective 

and that overexpression of TIMP1 prevents the BBB leakage 

and reduces neuronal cell death.50 Downregulation of TIMP1 

was observed in HIV-infected macrophages and vascular 

endothelial cells.51 In our previous studies, among different 

dysregulated genes, TIMP1 was one of the highly downregu-

lated synaptic plasticity genes in HIV-infected neuronal cells.6 

In addition to our in vitro reports, in chronically HIV-infected 

patients, decreased TIMP1 protein expression was observed 

in brain tissue and cerebrospinal fluid.52 TIMP1 is not only 

the inhibitor of MMPs-1–3, -7–13, and -16 but also acts as 

a candidate synaptic plasticity gene (induces expression of 

immediate early response genes) leading to the development 

of long-term potentiation, which plays a major role in forming 

learning and memory.53–55 TIMP1 has been reported to have 

neuroprotective effects equivalent to that of brain-derived 

neurotropic factor.50 Therefore, supplementing TIMP1 may 

Figure 4 Quantitative analysis of uptake of FITc-tagged MNPs + TIMP1 NF in SK-N-MC cells using the flow cytometry.
Notes: sK-N-Mc cells were exposed to 5 µg of FITc-labeled MNPs + TIMP1 NF for 3, 6, 12, and 24 hours. Uptake of the NF was measured by the fluorescence in the 
SK-N-MC cells using the flow cytometry. For each sample, 10,000 events were collected, and cells were gated based on the cells without NF (pink-line histogram) or control 
(A). Colored histograms show cells positive for NF with shifted mean fluorescence intensity compared to controls. The representative figures for uptake at 3 hours (B) and 
24 hours (C) are presented. histograms represent cells treated with 5 µg of FITc-tagged NF for 3 hours (blue) and 24 hours (orange) (D), which show 49.85% and 50% cells 
are positive for MNPs + TIMP1 NF, respectively, when compared with the untreated cells. histograms show an overlay for time points (3 and 24 hours) (D).
Abbreviations: FITC, fluorescein isothiocyanate; TIMP1, tissue inhibitor of metalloproteinase-1; NF, nanoformulation; MNPs, magnetic nanoparticles.
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be helpful in reducing the neuronal damage induced by the 

HIV infection. Due to the selectively permeable nature of 

the BBB, novel and effective delivery methods are needed 

for the successful delivery of therapeutic molecules across the 

BBB. In this study, we used MNPs for the delivery of TIMP1 

protein across the BBB for neutralizing the neuropathogenesis 

induced in HIV infection. We observed successful delivery of 

TIMP1 nanoformulation (~40%) across in vitro BBB model 

on application of external magnetic field. Also, results showed 

no damage to BBB integrity after transmigration of NF as 

shown in Figure 2. The percentage of transmigration of free 

MNPs or MNP-bound TIMP1 NF transmigration across the 

BBB is in the range of our previous studies.43,56

We also did not observe neuronal cytotoxicity of the free 

TIMP1 (up to 1 µg), free MNPs (up to 20 µg), and MNP-

bound TIPM1 NF. In this study, surprisingly, we observed 

significantly reduced HIV infection in SK-N-MC cells in 

the presence of free TIMP1 and MNP-bound TIMP1 NF 

when compared with HIV controls. But we did not see any 

significant difference in the HIV infection between the group 

of SK-N-MC cells grown in the presence of free TIMP1 and 

MNP-bound TIMP1 protein. Although TIMP1 controls the 

activity of MMP-1–3, -7–13, and -16, it has the strongest 

affinity for the MMP-2 and -9. In HIV-infected patients, 

increased secretion of MMP-2 and MMP-9 induces extra-

cellular matrix degradation, which leads to the disruption 

of endothelial barriers, thus facilitating the spread of HIV 

infection in tissues.57 Reduced TIMP1 expression over time 

has been reported to potentially contribute to an increased 

propensity of HIV infection within the brain parenchyma.58 

Based on our results and previous reports, it is indicative that 

supplementation of soluble-phase TIMP1 or MNP-bound 

TIMP1 results in the reduced infectivity levels in the neuronal 

cells and that this may be due to the inhibition of MMP-2 

and MMP-9 activity. In a similar fashion, in glial cells and 

peripheral blood mononuclear cells, antiretroviral therapy 

was reported to inhibit the expression of MMP, indicating that 

the beneficial effects of antiretroviral therapy in HIV-infected 

patients may also be due to the reduction of MMP levels.57,59 

Therefore, mechanisms for reducing HIV infectivity in the 

presence of TIMP1 need to be further investigated in various 

types of peripheral and CNS cells.

There are many strong evidences that support the fact 

that various materials at the nanometer range have the abil-

ity to induce the production of ROS.60 Hence, we wanted to 

determine whether our NFs had any effects on the production 

of ROS as it involved iron oxide nanoparticle as a carrier. 

We did not observe any cytotoxicity/oxidative stress with 

the amount of MNPs that we used in our studies. This is in 

Figure 5 Decreased hIV infection levels in sK-N-Mc cells treated with free TIMP1 
or MNPs + TIMP1 NF.
Notes: sK-N-Mc (1×105 cells) were grown in the six-well culture plates, and cells 
were infected with 20 ng of hIV-1 clade B overnight. Unbound virus was washed 
with PBS, and cells were infected for 7 days. On fifth day of infection, free TIMP1/
MNPs + TIMP1 NF was added into the respective wells and incubated for 48 hours. 
seven days postinfection, hIV infection levels were measured using the p24 elIsa. 
*P#0.05, **P#0.01.
Abbreviations: TIMP1, tissue inhibitor of metalloproteinase-1; NF, nanoformulation; 
MNPs, magnetic nanoparticles; HIV, human immunodeficiency virus; PBS, phosphate-
buffered saline; ELISA, enzyme-linked immunosorbent assay; NS, not significant.

Figure 6 Decreased rOs production in hIV-infected sK-N-Mc cells treated with 
free TIMP1 or MNPs + TIMP1 NF.
Notes: sK-N-Mc (1×105 cells) were grown in the six-well culture plates, and cells 
were infected with 20 ng of hIV-1 clade B overnight. Unbound virus was washed 
with phosphate-buffered saline, and cells were infected for 7 days. On fifth day of 
infection, TIMP1/MNPs/MNPs + TIMP1 NF was added into the respective wells and 
incubated for 48 hours. seven days postinfection, rOs production was measured 
using the rOs assay. *P#0.05, **P#0.01, ***P#0.001.
Abbreviations: ROS, reactive oxygen species; RFU, relative fluorescence unit; 
TIMP1, tissue inhibitor of metalloproteinase-1; NF, nanoformulation; MNPs, 
magnetic nanoparticles; HIV, human immunodeficiency virus; NS, not significant.
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agreement with the previous reports that cytotoxicity and 

oxidative stress induction by MNPs in the cells are dose 

dependent.61 Furthermore, in the presence of both solution-

phase and MNP-bound TIMP1, we observed significantly 

reduced oxidative stress induced by HIV infection. Several 

reports indicate that oxidative stress plays a major role in 

neuronal damage and cognitive disorders in HIV-infected 

patients.62,63 In this study, we observed that reduced oxidative 

stress could be due to the decreased HIV infection because 

of release of TIMP1 from the MNP NF. We also observed 

the effect of free TIMP1 and MNP-bound TIMP1 exposure 

on the recovery of spine density in HIV-infected neuronal 

cells. In both the test groups, we observed recovery of spine 

density compared to the HIV-infected cells. The recovery of 

spine density may also be due to the decreased HIV infec-

tion, reduced oxidative stress, and induced synaptic plasticity 

genes expression. Also, the recovery of spine density plays 

a major role in the generation of long-term potentiation and 

formation of long-term memory. Therefore, recovery of 

spine density may help in the recovery of synaptic plasticity 

and reduce the neurocognitive impairments observed in the 

HIV-infected patients. Therefore, based on these exciting and 

novel findings, in future, we would like to test the efficacy 

of the developed NF in vivo to take it to the clinical level for 

neuroprotection in HIV-infected patients.

Conclusion
Our results indicate that MNP-bound TIMP1 NF may act as a 

neuroprotective agent by decreasing the HIV infection levels 

and oxidative stress, thus enabling the recovery of neuronal 

spine density. Due to the impermeability of the BBB, the 

use of MNP-bound TIMP1 helps in successful delivery of 

the TIMP1 protein across the BBB into the neuronal cells. In 

conclusion, these results highlight a novel function, mecha-

nism, and direct role of TIMP1 as a neuroprotective agent in 

HIV-induced neurotoxicity, signifying MNPs + TIMP1 NF 

delivery as a therapy for neurodegenerative diseases.
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