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Abstract: From previous studies, it has been found that curcumin exhibits an anti-inflammatory 

activity and is being used for the treatment of skin disorders; however, it is hydrophobic and 

has weak penetrating ability, resulting in poor drug transport through the stratum corneum. 

The aim of this study was to develop liquid crystalline systems for topical administration of 

curcumin for the treatment of inflammation. These liquid crystalline systems were developed 

from oleic acid, polyoxypropylene (5) polyoxyethylene (20) cetyl alcohol, and water as the 

surfactant, oil phase, and aqueous phase, respectively. These systems were characterized, 

and polarized light microscopy showed anisotropy with lamellar mesophases (Formulation 1) 

and hexagonal mesophases (Formulations 2 and 3), which were confirmed by the peak ratio 

measured using small-angle X-ray scattering. In addition, rheological tests revealed that the 

formulations exhibited gel-like behavior (G′.G″), as evidenced by the increased G′ values 

that indicate structured systems. Texture profile analysis showed that hexagonal mesophases 

have high values of hardness, adhesiveness, and compressibility, which indicate structured 

systems. In vitro studies on bioadhesion revealed that the hexagonal mesophases increased the 

bioadhesiveness of the systems to the skin of the pig ear. An in vivo inflammation experiment 

showed that the curcumin-loaded hexagonal mesophase exhibited an anti-inflammatory activity 

as compared to the positive control (dexamethasone). The results suggest that this system has 

a potential to be used as a bioadhesive vehicle for the topical administration of curcumin. 

Therefore, it is possible to conclude that these systems can be used for the optimization of drug 

delivery systems to the skin.

Keywords: lamellar mesophase, hexagonal mesophase, liquid crystalline mesophase, self-

assembly structures, water-surfactant-oil based-structures, curcumin, paw edema

Introduction
Liquid crystal (LC) state, also known as a mesophase, is a special state of matter 

that exhibits both ordered properties of solids and flow characteristics of liquids.1,2 

Surfactant-based LCs contain amphiphilic surfactants that dissolve in water3 and self-

assemble into various ordered mesophases.4 These mesophases are lamellar, hexago-

nal, or cubic5 in shape and have attracted attention in the pharmaceutical industry as 

they have distinctive structures and physicochemical properties,4 such as viscosity, 

bioadhesion proprieties, the ability to control the release of drugs, and loading of 

hydrophilic or lipophilic drugs.6–10 LCs have been utilized as semisolid vehicles for 

topical administration of drugs.11–16

Curcumin has a long history of use in Ayurvedic medicine treatment for inflamma-

tory conditions17,18 as it has an ability to inhibit nuclear factor κB.19 It has been used in the 
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treatment of various skin diseases and conditions,20 especially 

wounds,21 psoriasis,22,23 radiation-induced dermatitis,24 allergic 

dermatitis,25 and skin cancer.26–28 Although it exhibits favor-

able biological activities on the skin, some properties of 

curcumin limit its potential as a therapeutic agent, such as 

poor water solubility and low bioavailability,29 resulting in 

limited skin penetration30 and poor transport through the 

stratum corneum.31

Bioadhesion includes adhesion to the skin, and it can be 

described as a formation of a mechanical joint between the 

surfaces of adherent (skin) and the adhesive dosage forms. 

Various theories have attempted to explain the bioadhesion 

process: there is a bonding force as a result of physicochemical 

interaction between skin dosage forms; viscoelastic properties 

can interact due to elastic–viscous behavior of these materials; 

or the diffusion or interpenetration can explain these adhesion 

processes because the molecules of dosage forms interact with 

the skin surface at the molecular level.32 The adhesion process 

is complex and can be governed by synergic/combinatory 

effects described by the above theories.

Numerous nanotechnology-based drug delivery systems, 

have been developed to enhance the solubility of drugs, such 

as LCs.33 The oil phase present in LCs allows for dissolution 

of lipophilic drugs. Nevertheless, several studies have shown 

that lamellar-, hexagonal-, or cubic-mesophase-based formu-

lations are capable of penetrating the skin and act as good 

candidates for topical drug delivery systems.5,15,16,34–37

Experimental data
Materials
Polyoxypropylene (5) polyoxyethylene (20) cetyl alcohol 

was purchased from Volp Indústria Comércio (Osasco, São 

Paulo, Brazil), and oleic acid was purchased from Synth 

(Diadema, São Paulo, Brazil). Lambda carrageenan and 

curcumin were acquired from Sigma-Aldrich (St Louis, MO, 

USA). Commercial dermatological cream containing dexam-

ethasone acetate (1 mg/g) was purchased from local pharmacy 

(Araraquara, São Paulo, Brazil). Porcine ears were acquired 

from a local slaughterhouse (Tupã, São Paulo, Brazil).

Ternary phase diagram
This diagram was constructed by combining PPG-5- 

CETETH-20, oleic acid, and water as described by Carvalho 

et al amongst others.38,39 The percentages of these three com-

ponents range from 10%–80% (w/w) and were calculated 

to obtain the points that defined the boundaries between 

the regions of the ternary phase diagram. After 24 hours, 

the formulations were visually classified by using phase 

separation, opacity, viscosity systems, and by translucency. 

Three formulations were selected for further physicochemical 

characterization (Table 1). In these formulations, curcumin 

was loaded at a concentration of 5 mg/g.

Polarized light microscopy
Samples for polarized light microscopy (PLM) were prepared 

by placing a drop of each formulation between a coverslip and 

a glass slide, and in order to analyze various visual fields of 

each sample, these samples were examined under a polarized 

light using a polarized light microscope (Axioskop®, Zeiss, 

Germany) at room temperature. The isotropic and anisotropic 

behaviors of the samples were examined, and photomicro-

graphs were obtained at ×40 magnification.

small-angle X-ray scattering
Data were collected using the Synchrotron small-angle 

X-ray scattering (SAXS) beamline at the National Labora-

tory of Synchrotron Light (LNLS; Campinas, Brazil). The 

beamline was equipped with a monochromator (λ=1.488 Å), 

a vertical detector located at ~1.5 m from the sample, and a 

multichannel analyzer, which recorded the intensity of the 

scattering pattern (I) and the scattering vector modulus (q). 

The intensity values of the mica and air were subtracted from 

the total scattered intensity (I). Each spectrum was recorded 

for ~45 seconds, and the scattering vector modulus, q, was 

calculated at ~0.1–5 nm−1. The analyses were performed at 

25°C±1°C.

From the SAXS curves, the position of the first peak (q
1
) 

was used to assess the lattice parameters of the lamellar and 

hexagonal phases and the distance between planes (d) and hexa-

gon edge (a) according to Equations 1 and 2, respectively:
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Table 1 composition (%) of water, the oil phase (oleic acid), and 
surfactant (PPg-5-ceTeTh-20) in the formulations

Formulations Components (%)

Water Oleic acid PPG-5-CETETH-20

F1 30 30 40
F2 40 20 40
F3 50 10 40

Abbreviation: PPg-5-ceTeTh-20, polyoxypropylene (5) polyoxyethylene (20) 
cetyl alcohol.
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rheological oscillatory analysis
Rheological oscillatory analysis was performed using a rheo-

meter (AR 2000EX; TA Instruments, New Castle, USA) of 

parallel plate–plate and cone–plate geometry, according to 

the consistency of each formulation. Oscillatory analysis 

of each sample was carried out after the linear viscoelastic 

region in which stress is directly proportional to strain and the 

storage modulus remains constant was identified. Frequency 

sweep analysis was carried out at the frequency range of 

0.1–10 Hz at a constant stress of 1 Pa. All measurements 

were taken at 25°C±0.25°C.

Texture profile analysis
Texture profile analysis (TPA) was carried out by using a 

TA-XTplus texture analyzer (Stable Micro Systems, Surrey, 

UK) as described by Calixto et al.40 The samples were 

weighed (7 g), placed in 50 mL centrifuge tubes (Falcon; BD 

Biosciences®, Franklin Lakes, NJ, USA), and centrifuged (Sor-

val TC 6 centrifuge; Du Pont, Newtown, CT, USA) to remove 

the air bubbles present in the samples. Then, the samples were 

allowed to stand for 24 hours until analysis. Thereafter, each 

sample was placed below the 10 mm analytical probe, which 

was lowered at a constant speed of 1 mm⋅s−1 until it reached the 

sample. Contact was detected by a triggering force of 2 mN, 

and then the probe continued down to 10 mm depth in the 

sample. Then, the probe returned to the surface (0.5 mm⋅s−1), 

and after 5 seconds, a second compression was initiated. The 

test results were used to plot a force–time curve, from which 

the mechanical parameters were calculated such as hardness, 

compressibility, adhesiveness, and cohesion. This process was 

repeated seven times at 25°C±0.5°C.

Bioadhesion measurement
The bioadhesive force between the skin of the pig ear and the 

samples was assessed using the TA-XTplus texture analyzer 

as described by Cintra et al.41

Fresh ears of healthy 6-month-old pigs were obtained 

from a local slaughterhouse and were prepared for the 

analysis as described by Dick and Scott.42 The ears were 

cleaned with purified water (25°C±0.5°C), and injured ears 

were not included for the analysis. The undamaged skin was 

removed from the cartilage with a scalpel, and a 400 μm-thick 

layer (stratum corneum and epidermis) was separated from 

the adipose tissue with a dermatome (Nouvag TCM 300; 

Goldach, USA). The prepared skin samples were frozen 

at −20°C and were stored no longer than 4 weeks.

Each skin sample was thawed in a physiological saline 

solution made up of 0.9% (w/v) NaCl at 25°C±0.5°C for 

30 minutes. Then, the hairs were cut with scissors and 

attached to the end of a cylindrical probe (diameter, 10 mm) 

with a rubber ring. A 50 mL centrifuge tube containing the 

samples was placed below the probe and immersed in a water 

bath at 32°C±0.5°C. The probe was lowered at a constant 

speed of 1 mm⋅s−1 until the skin and sample were made to 

be in contact with each other, as detected by a triggering 

force of 2 mN. The skin and sample were kept in contact 

for 60 seconds, and no external force was applied during 

this time interval. After 60 seconds, the skin was drawn 

upward (0.5 mm⋅s−1) until the contact between the surfaces 

was broken. During this experiment, a force–time curve was 

plotted, and the work of adhesion and peak adhesion were 

calculated from this plot. The process was repeated five times 

at 32°C±0.5°C.

Evaluation of anti-inflammatory effects 
in vivo
The in vivo evaluation was performed on male Swiss 

mice (each weighed 25–35 g). The mice were kept in a 

temperature-controlled environment (22°C) in a 12 h light/

dark cycle and were provided with free access to food and 

water, except during the experiments. The animal procedures 

were performed in accordance with the protocol approved by 

the Animal Ethics Committee of the School of Pharmaceuti-

cal Sciences – UNESP (approval number, 67/2015).

The mice were subdivided into six groups with five per 

group: Group I mice were not treated (negative control); 

Group II received topical dexamethasone (positive con-

trol); Group III received Formulation 1 (F1) without curcumin; 

Group IV received F1 with curcumin; Group V received F2 

without curcumin; and Group VI received F2 with curcumin.

Paw edema was induced by intraplantar injection of 

100 μL of 1% (w/v) λ-carrageenan into the paw of the 

mice. After 30 minutes, dexamethasone or LC formulations 

(100 mg) were applied to the paw. Then, 5 hours after the 

administration of carrageenan, the thickness of the paws 

were measured (in mm) by using a digital micrometer. The 

means and standard deviation of thickness were calculated 

for each group. One-way analysis of variance (ANOVA) was 

perfomed, followed by post hoc Dunnett’s test was used to 

detect differences between the mean of treated animals and 

control group were considered significant at P0.05.

Results and discussion
Ternary phase diagram
The formulations were visually classified by using the follow-

ing: phase separation that is referred to as the segregation of 
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components that results in the formation of two phases; liquid 

translucent systems that are liquid systems that have flow 

properties similar to water; a low-viscosity system that tends 

to be translucent and has a relatively low viscosity, as indi-

cated by the fluidity in inverted vials; a high-viscosity system 

that tends to adhere to vials even after inversion; opaque and 

milky systems that were characterized as emulsions.

The ternary phase diagram in Figure 1 shows that it was 

possible to obtain a liquid optically transparent system in the 

regions where the surfactant concentration, oil phase, and 

water concentration were .30%, 0%–70%, and 0%–30%, 

respectively. Transparent semisolid systems were formed 

when the concentrations of the surfactant, oil phase, and 

aqueous phase were 35%–60%, 0%–60%, and 35%–90%, 

respectively. We found that an increase in the concentration 

of water in this region yielded more viscous gels (high-

viscosity system), as a result of solvation of the polar head 

of the surfactant, forming more organized structures such as 

hexagonal mesophases.43–45

Emulsion systems were obtained in the regions with a 

low surfactant concentration (0%–30%) and a high aque-

ous phase concentration (80%–100%). Phase separation 

took place when the surfactant concentration increased in 

the emulsion regions (.70%) and at aqueous concentra-

tions .75%, indicating that dilution with water resulted in 

poor stability.

The most popular approach to rationalization of different 

structures found in the lyotropic LCs is based on the critical 

packing parameter (CPP), which is equal to ν
s
/a

0
l.46,47 CPP 

is a geometric value that constitutes the ratio of the volume 

of the hydrophobic tail (ν
s
) to the product of volume of the 

polar head area (a
0
) and length of the hydrophobic tail (l). 

A change in CPP values can roughly predict the order of sur-

factant transition associated with the change in the curvature 

of the water or oil interface.44 Increasing the number of water 

molecules increases the CPP values by an increase in the 

volume of the lipophilic moiety and a reduction in the chain 

length and the head-group area.48 Furthermore, this change 

leads to an increase in the curvature and therefore induces 

the formation of cubic and hexagonal mesophases.44,48

The approach of CPP is limited to a qualitative interpreta-

tion of phase diagrams and cannot assess the structural com-

plexity of the mesophases or the supramolecular mechanisms 

that regulate its structural organizational behavior.49

PlM and saXs
F1, F2, and F3 were selected for characterization as shown in 

the phase diagram in Figure 2; Table 2 shows their composi-

tion. The surfactant concentration was fixed at 40%, whereas 

the proportions of water and oil varied. Figure 2 shows the 

PLM images.

PLM analysis of F1 showed Malta crosses, and this 

formulation was characterized as anisotropic, indicating lamel-

lar mesophases.50 The lamellar phase consists of bilayers that 

are separated by the layers of surfactants and solvents, form-

ing a one- or two-dimensional network.51 In contrast, F2 and 

F3 were characterized as hexagonal mesophases, evidenced 

by stretching in the photomicrographs.50 The hexagonal phase 

Figure 1 a ternary phase diagram of PPg-5-ceTeTh-20 (surfactant), oleic acid 
(oil phase), and water.
Abbreviations: eM, emulsion; hVs, high-viscosity system; lTs, liquid translucent 
system; lVs, low-viscosity system; PPg-5-ceTeTh-20, polyoxypropylene (5) 
polyoxyethylene (20) cetyl alcohol; Ps, phase separation.

Figure 2 Macroscopic features and polarized light microscopy of the formulations 
(F1, F2, and F3).
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consists of long parallel cylindrical aggregates arranged in 

two- or three-dimensional structures.52

SAXS was carried out in order to confirm the arrangement 

of the liquid crystalline formulations obtained from PLM. 

This method can detect the scattering of X-rays related to 

the interplanar distances with nanometric dimensions; thus, 

it can characterize systems such as droplets, micelles, and 

crystalline structures.44 SAXS has been widely used to elu-

cidate the structures of liquid crystalline systems, providing 

information such as the size, shape, quantity, and arrange-

ment of object spreaders in a sample. The SAXS curves for 

liquid crystalline systems provide the peaks and the number 

and ratio of the correlation distances, which can determine 

the type of arrangement that forms the matrix.53

Figure 3 shows the intensity of the scattering patterns (I) 

and scattering vector modulus (q; 1/nm−1). F1 yielded broad 

peaks of a liquid crystalline phase, indicating the presence 

of a less ordered phase, probably a micellar solution, in 

admixture with an ordered liquid crystalline phase. The ratio 

of the correlation distances between these samples was 1:2, 

suggesting the presence of lamellar mesophases. For F2 and 

F3, the ratio of correlation distances between these samples 

was 1:1.73:3. In lamellar phases and hexagonal phases, the 

q values of the Bragg peaks are in the ratios 1:2:3:4:5 and 

1:1.73:2:2.64:3:3.46, respectively.44,49,54

The microstructure lattice parameters are represented by 

the distance between planes (d, lamellar structures) and the 

hexagon edge (a) that is related to the distance between the 

planes passing through the two rows of adjacent cylinders 

(d, hexagonal structure).55 The distances between planes (d) 

were 8.49, 7.85, and 8.05 nm for F1, F2, and F3, respec-

tively, and the hexagon edges (a) for F2 and F3 were 9.06 

and 9.30 nm, respectively.

rheological oscillatory analysis
The oscillatory frequency sweep was conducted with F1, 

F2, and F3 in the absence or presence of curcumin. The 

storage modulus G′ and the loss modulus G″ were plotted 

against the frequency, and Figure 4 presents the representa-

tive rheograms.

The storage modulus is a measure of energy stored and 

retrieved by the deformation cycle and reflects the solid 

characteristics of a viscoelastic material.56 A high stor-

age modulus indicates a predominantly elastic and highly 

structured sample. The loss modulus is a measure of energy 

dissipated per cycle and reflects liquid-like characteristics. 

Higher values of the loss modulus mean that a sample is 

predominantly viscous.57

F1 was found to be less viscous than elastic (G′.G″), 

and the poor organization and interaction between the sys-

tem components can explain the high values of loss moduli. 

F2 and F3 exhibited a gel-like behavior, with a higher G′ 
than G″, both independent of frequency. The increase in the 

elastic moduli reflected the higher organization of F2 and F3 

Table 2 Values of qmax (1/nm−1), ratio of distances, and the interplanar distances (d, a) of the formulations

Formulations q q q d2/d1 d3/d1 Mesophase d (nm) a (nm)

F1 0.74 1.49 – 2 – lamellar 8.49 –
F2 0.80 1.40 2.34 1.73 3 hexagonal 7.85 9.06
F3 0.78 1.41 2.34 1.73 3 hexagonal 8.05 9.30

Figure 3 small-angle X-ray scattering patterns of samples F1, F2, and F3.

′
″

Figure 4 storage and loss moduli vs frequency obtained by an oscillatory frequency 
sweep of formulations F1, F2, and F3 at 25°c.
Note: Filled symbols represent g′ modulus, and open symbols represent g″ modulus.
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than that of F1. All samples loaded with curcumin showed 

the rheological profile similar to those without curcumin, 

indicating that this drug did not interfere with the system. 

The viscous rheological behavior (G″.G′) of microemul-

sions or liquid crystalline lamellar systems and the gel-like 

behavior (G′.G″) of hexagonal and cubic mesophases have 

been reported elsewhere.13,35,38,43,58,59

TPa
TPA is a penetrometric method that has been extensively 

used for mechanical characterization of food materials.60 In 

addition, it has emerged as a useful method in the field of 

pharmaceutical characterization.61,62

The parameters that can be derived from TPA include 

hardness (a force required to attain a required deformation), 

adhesiveness (a quantity that simulates the work required 

to overcome the attractive forces between the surface of the 

sample and the surface of the probe with which the sample 

comes into contact with the surface), compressibility (the 

force per unit of time required to deform the product during 

the first compression cycle of the probe), and cohesiveness 

(the force required to overcome the internal bonds of the 

material).63

Table 3 shows the TPA parameters of F2 and F3 (with 

and without curcumin). It was not possible to perform this 

test on F1 samples as they exhibited a liquid behavior. The 

TPA values of the samples differed between these two 

formulations. Samples with a greater aqueous phase (F3) 

yielded twofold higher values of hardness, compressibility, 

and adhesion than those with F2. The addition of the drug 

did not affect the mechanical behavior of the samples.

It has been reported that both the hardness and compress-

ibility of polysaccharide gels increase when the degree of 

cross-linking increases.64 Some studies have shown that 

there is a relation between hardness and the concentration 

of polymers of polyacrylic acid hydrogels (eg, carbomer 

homopolymer type A [C971] and type B [C974] and 

polycarbophil).40,58

Few studies have elucidated the mechanical properties 

of liquid crystalline systems with structured mesophases. 

The TPA data are in correlation with those of the rheological 

analysis, and in these data, the elastic modulus of the hexagonal 

phase was the highest. Furthermore, the results were consis-

tent with the previous findings that hexagonal phases have 

high hardness and compressibility parameters.13,65

Compressibility reflects the ease of taking the prepared 

formulation from the container and the ease of spreading on 

the application site,66 and adhesiveness is the work required 

to overcome the attractive forces between the surface of 

the sample and the surface of the probe.64 Formulations for 

cutaneous application should have both good hardness and 

adhesiveness.67 On the other hand, formulations with strong 

adhesiveness and cohesiveness ensure prolonged adhesion 

to the surface site and a complete structural recovery of the 

formulation after application.68

Bioadhesion measurements
Bioadhesion refers to the ability of synthetic, biological, 

and hydrocolloidal macromolecules to adhere to biological 

tissues.32 The advantages of using bioadhesive systems as 

drug carriers include prolongation of drug residence time at 

the absorption site, intensified contact with the epithelial bar-

rier, decreased frequency of drug application, and improved 

patient compliance with therapy.69

Table 4 shows the peak and area of bioadhesion of the 

formulations tested. It is shown that the lamellar system (F1) 

has a lower peak and work of adhesion than the hexagonal 

systems do (F2 and F3). This is possibly due to the type of 

mesophase formed because lamellar mesophases are less 

rigid than hexagonal mesophases that have a complex and 

rigid network. The peak and area of adhesion were similar to 

those reported for hydrogels when applied to the skin.58

Several theories have been proposed to explain bioadhe-

sion and mucoadhesion of the formulations.70–78 Viscosity 

plays an important role in mucoadhesion, wherein increased 

viscosity of a pharmaceutical system gradually interacts 

with the substrate surface.69 Some hydrogels exhibit gel-

like behavior in situ only after exposure to an external 

stimulus. These are the so-called environmentally sensitive 

polymers and are called as thermosensitive polymers, for 

Table 3 Mechanical properties (hardness, compressibility, adhesiveness, and cohesiveness) of the liquid crystal (F2 and F3) formulations 
with or without curcumin

Formulations Hardness (N) Compressibility (N⋅s) Adhesiveness (N⋅s) Cohesiveness (N)

F2 0.048±0.003 0.303±0.076 0.329±0.025 0.632±0.064
F2c 0.054±0.008 0.457±0.081 0.339±0.021 0.651±0.103
F3 0.163±0.008 1.099±0.036 1.259±0.171 0.695±0.037
F3c 0.159±0.009 1.259±0.171 1.399±0.122 0.722±0.050

Note: Values are expressed as mean ± standard deviation of seven replicates.
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example, poloxamers.79–81 These stimuli exist in organisms, 

highlighting the possible suitability of such polymers for the 

development of controlled release and bioadhesive systems 

as they have stimuli-induced viscosity.82–85 Mucoadhesion of 

thermosensitive gels and LCs can be explained by their rheo-

logical properties.39,41,86–91 Moreover, the mucoadhesive force 

of the liquid crystalline phases is determined by their ability 

to take up water from the environment.87 Many theories have 

attempted to explain the biomucoadhesion; however, for 

the systems developed, the elastic behavior (G′.G″) has an 

influence on the bioadhesive process. Materials with elastic 

properties are shown to be optimal for good mucoadhesion 

or bioadhesion.13,40,43,58,92

Evaluation of anti-inflammatory effects 
in vivo
These effects were evaluated as follows, and the following 

groups were analyzed: untreated (negative control), dexa-

methasone (positive control), curcumin-loaded sunflower, 

curcumin-loaded LC formulations (F1C and F2C), and LC 

vehicles (F1 and F2). Figure 5 shows the in vivo results of 

the anti-inflammatory activity of curcumin incorporated in the 

systems. Compared with dexamethasone (positive control), 

the inhibition was similar to that of the curcumin-loaded 

hexagonal mesophase (F2C). Curcumin-loaded hexagonal 

mesophase exhibited an ability to reduce paw edema possibly 

owing to the high bioadhesive ability, which increased the 

contact time with the skin surface, thus promoting the absorp-

tion of curcumin. The LC vehicles (F1 and F2) did not influ-

ence anti-inflammatory activity, according to edema inhibition 

in the mouse paw. Curcumin-loaded LC formulation (F1C) 

and curcumin-loaded sunflower did not inhibit edema; this 

result implies a poor bioadhesive ability of these systems.

Conclusion and future perspectives
The mixture of polyoxypropylene (5) polyoxyethylene (20) 

cetyl alcohol, oleic acid, and purified water exhibited the 

ability to form liquid crystalline lamellar phase systems or 

hexagonal phase systems. In addition, the hexagonal phases 

exhibited good bioadhesive properties on the skin and an anti-

inflammatory activity, and the latter effect was comparable to 

that of dexamethasone-containing commercial cream (positive 

control). Furthermore, curcumin in an oil solution or lamellar 

mesophases did not exhibit the anti-inflammatory activity as it 

has poor bioadhesive ability or probably poor ability to interact 

with the skin surface interface. Thus, it was concluded that 

hexagonal mesophase systems are promising drug delivery plat-

forms and can be used as a vehicle for topical administration of 

curcumin, as demonstrated by the beneficial biological activity 

in vivo. Thus, this work showed the possibility of incorporating 

curcumin in a new vehicle for topical application for the treat-

ments of skin diseases using this curcumin-loaded vehicle.
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Table 4 Parameters of the in vitro bioadhesion test of liquid 
crystals formulations with or without curcumin

Formulations Peak of adhesion (N) Area of adhesion (N⋅s)

F1 0.007±0.002 0.068±0.011

F1c 0.005±0.005 0.060±0.014

F2 0.059±0.021 0.098±0.010

F2c 0.069±0.041 0.095±0.012

F3 0.1078±0.026 0.245±0.049

F3c 0.1101±0.020 0.220±0.056

Notes: Data were collected at 32°c±0.5°c. The values are represented as mean ± 
standard deviation of five replicates.

Figure 5 Anti-inflammatory activity of the LCs with curcumin at 5 mg g−1 (F1c and 
F2c), lc vehicles (F1 and F2), Pc (cream containing dexamethasone at 1 mg g−1), 
and Nc (untreated).
Notes: The data are represented mean ± standard deviation of results on five mice. 
The statistical significance of paw thickness was analyzed using variance analysis by 
Dunnett’s multiple comparison test; *P0.05.
Abbreviations: lc, liquid crystal; Nc, negative control; Pc, positive control.
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