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Abstract: Pathogens that can colonize the upper respiratory tract include Streptococcus pneu-

moniae, Hemophilus influenzae, Neisseria meningitidis, Moraxella catarrhalis, and Staphylococ-

cus aureus. While these pathogens commonly asymptomatically colonize the nasopharynx of 

healthy adults, disease progression may occur in some individuals. In addition to these respiratory 

pathogens, there are a large number of commensal species also found in the upper respiratory 

tract which only very rarely cause disease, creating a complex community of bacterial species 

in the nasopharynx. This review addresses the novel, potential strategies that utilize the inter-

actions between both homologous and heterologous species in the nasopharynx to vaccinate 

individuals against pathogenic bacteria. These strategies include the mechanisms employed by 

colonizing bacteria to regulate the presence of other species in the nasopharynx and the effect 

that colonization of the nasopharynx has on the host immune response. Interventional strategies 

investigated so far include the introduction of nonpathogenic bacteria to the nasopharynx to 

immunize against a closely related species, controlled colonization using both wild-type and 

attenuated species, and the use of other nonpathogenic colonizers to express antigens from poten-

tial pathogens. All these approaches harness the ability of the colonization to induce a mucosal 

immune response that can protect against future infection. In this review, S. pneumoniae and N. 

meningitidis colonization are used as case studies for this approach as the immunological effects 

of colonization have been widely studied in animal and human models. Colonization-based 

strategies have great potential, and, in particular, the attenuated strain approach has produced 

some encouraging data in animal models. However, the strategy for attenuating virulence must 

be stringent and caused by highly stable mutations that are unlikely to revert. In addition, the 

consequences of artificial administration of genetically modified bacteria to the nasopharynx 

on the usual host microbiome are unknown and would need to be monitored carefully.

Keywords: Streptococcus pneumoniae, colonization, adaptive immunity, antibody, protein 

antigen, capsular antigen, Neisseria sp.

Introduction
Nasopharyngeal commensal species
The upper respiratory tract is a host to many commensal bacterial species that create 

a complex community of microbes. These commensal species include a number of 

potentially pathogenic bacteria that usually colonize the nasopharynx without further 

progression to disease, but occasionally can spread from the nasopharynx to the lungs 

or blood to cause serious infections such as pneumonia, septicemia, and meningitis. 

Potential pathogens found in the nasopharynx include Streptococcus pneumoniae, 
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Hemophilus influenzae, Neisseria meningitidis, Moraxella 

catarrhalis, and Staphylococcus aureus.1 The nasophar-

ynx provides a relatively stable environment in which the 

commensal flora can flourish and be transmitted to other 

hosts.2,3 The duration of carriage varies for each species and 

also between the different strains of the same species, from 

weeks to months and likely to be years for some species. The 

dynamics of nasopharyngeal colonization by different species 

are delicately balanced, and disturbances to this ecology may 

allow pathogenic organisms to cause disease.4 Factors that 

affect this balance include the acquisition of different spe-

cies, interspecies interactions, bacterial interactions with the 

host, and interference by environmental factors. For instance, 

nasopharyngeal colonization by S. pneumoniae protects 

against S. aureus carriage,5 and conversely reduction in S. 

pneumoniae carriage by vaccination could lead to increased 

carriage of S. aureus. Similarly, in animal models, bacterial 

species compete in establishing colonization.6

Colonization of the nasopharynx by bacteria can influence 

the host immune system even in the absence of overt disease. 

Epidemiologic studies have shown that the development of 

asthma7–9 and chronic obstructive pulmonary disease10,11 is 

related to the diversity of colonizing organisms in the nasal 

flora. In mice, lack of microbial colonization increases aller-

gic airway inflammation,12,13 and colonization with multiple 

species protects against airway inflammation.14 Importantly, 

nasopharyngeal colonization by bacterial pathogens can 

be an immunizing event, stimulating both humoral and 

cellular adaptive immune responses that protect against 

either re-colonization or subsequent invasive disease.15–21 

These observations suggest that novel vaccine strategies 

could harness the immunizing effects of nasopharyngeal 

colonization to prevent serious infections, and this is the 

subject addressed in this review with a particular focus on the 

potential of nasopharyngeal colonization for the prevention 

of S. pneumoniae and N. meningitidis infections, which are 

used as case studies that illustrate the benefits and potential 

drawbacks of this approach.

Colonization and existing vaccines 
for S. pneumoniae and N. meningitidis 
S. pneumoniae
Colonization with S. pneumoniae is universal in the first few 

months of life, with between 50% and 90% of children aged 

under 2 years colonized at any one time,22–27 sometimes with 

multiple strains.28 Peak carriage rates occur at 3–5 years of 

age and then wane to ~10% in adult life.6,29 Carriage preva-

lence depends on geographical location, and is generally 

higher in the developing world.30–32 While initial colonization 

events may persist for up to 4 months, duration appears to 

shorten with increasing age to 2–4 weeks in adults.33 The 

proportion of S. pneumoniae colonization events associated 

with disease is low in healthy adults. However, as colonization 

is very common, S. pneumoniae is a leading cause of acute 

otitis media (OM), pneumonia, sepsis, and meningitis glob-

ally34–36 causing an estimated 2,858,000 severe pneumonia 

episodes and 411,000 deaths annually worldwide in infants.37 

The use of vaccines targeting polysaccharide capsule antigen 

in children has reduced the overall incidence of pneumococ-

cal disease.38,39 However, the adult vaccine fails to protect 

against pneumonia,40 a key cause of respiratory morbidity and 

mortality in elderly subjects with comorbidities. In addition, 

the existing vaccines have a high cost of manufacture and 

have major limitations in strain coverage, only protecting 

against between seven and 23 of the 93+ S. pneumoniae 

capsular serotypes. This restricted serotype coverage has led 

to the replacement of S. pneumoniae vaccine serotypes by 

non-vaccine serotypes as both colonizers of the nasopharynx 

and causes of disease.31,41–43 Hence, there is a strong interest 

in alternative vaccine strategies that target all S. pneumoniae 

strains and could also prevent lung infection.

In addition to the profound effect on the relative preva-

lence of vaccine and non-vaccine S. pneumoniae serotypes, 

the introduction of the pneumococcal conjugate vaccine to 

infant immunization schedules has also disrupted the ecol-

ogy of the nasopharyngeal flora in general.44,45 Although 

the short- and long-term consequences of these changes 

are not yet clear, they still raise some potential concerns 

about the effects of vaccination. The complete eradication 

of all S. pneumoniae from the nasopharynx may remove the 

competition that S. pneumoniae exerts on other potentially 

pathogenic organisms, perhaps allowing their overgrowth. 

This could in turn lead to a greater incidence of disease 

caused by H. influenzae, N. meningitidis, S. aureus, or M. 

catarrhalis.1 This disruption to the nasal flora will likely 

have implications on the incidence of disease and antibiotic 

strategies in the future.5,46

N. meningitidis
N. meningitidis is a pathogenic member of the Neisseria 

family, several of which are common human nasopharyn-

geal commensal species.47 N. meningitidis is a major cause 

of rapidly progressive meningitis and septicemia, which, 

although rare, often result in death or permanent disability. 

Nevertheless, N. meningitidis is an asymptomatic nasopha-

ryngeal colonizer in ~10% of healthy individuals at any 
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time.48,49 The carriage rate is the lowest in young children and 

highest in young adults, with the UK rates of 3% of children 

under 4 years, 24%–37% of the age group of 15–24 years, 

and <10% in older age groups.49,50 Similar to S. pneumoniae, 

carriage rates are higher in smokers and after viral respiratory 

tract infections.48,51

Twelve different meningococcal serogroups have been 

defined based on capsular polysaccharide structure, of 

which A, B, C, W135, and Y are responsible for the majority 

of the disease. In addition, serogroup X has more recently 

been identified as the cause of sepsis and meningitis in 

Africa.52 Group A causes large-scale epidemics mainly in 

Africa but also in Asia, whereas the majority of cases of 

N. meningitidis disease in Europe and America are caused 

by serogroups B and C strains. As with S. pneumoniae, 

vaccines are currently polysaccharide based with newer 

vaccines utilizing protein conjugation to offer improved 

protection in children. In the UK, a conjugate vaccine to 

protect against serotype C has been in use since 1999 in 

infants, and also for teenagers and young adults. Unlike 

the serotype replacement seen with the introduction of 

the pneumococcal conjugate vaccine, the introduction of 

a vaccine for meningococcus C has not seen a rise in car-

riage or disease by meningococcus B. A conjugate vaccine 

targeting groups A, C, W135, and Y has been administered 

to adolescents since early 2016. Serogroup B has a capsule 

that is particularly poorly immunogenic, and the menin-

gococcus B vaccine is based on outer membrane vesicles 

and protein antigens rather than capsular polysaccharide. 

This vaccine was added to the UK infant immunization 

schedule in 2015. Vaccine-related reduction in carriage 

may have contributed to herd immunity as was seen for 

S. pneumoniae.53,54

Regulation by commensal species
The nasal flora is acquired shortly after birth and is influenced 

by the environment, including contact with other persons.55 

The competition between potentially pathogenic bacteria 

and commensal species in the nasopharynx contributes to 

the regulation of pathogenic species, which are also influ-

enced by host responses. Environmental changes such as 

the season will influence the makeup of the nasal flora,56 as 

will therapeutic interventions such as vaccination or anti-

microbials. For example, children with pneumococcal OM 

treated with antibiotics, or those who were immunized with 

the pneumococcal conjugate vaccine, had a decrease in the 

prevalence of Streptococcaceae and Corynebacteriaceae 

commensal species in the nasopharynx.57 Nasopharyngeal 

commensal species could prevent respiratory and invasive 

disease caused by pathogenic commensal species through a 

number of different mechanisms. These include the inhibi-

tion of colonization by potential pathogens by competition, 

either passively (occupying the same ecological niche) or 

actively (via direct growth inhibition or killing of competitor 

species). For example, in the gut, competition for nutrients 

causes a process referred to as colonization resistance, which 

is integral to controlling pathogenic bacteria such as entero-

hemorrhagic Escherichia coli, or Clostridium difficile,58,59 and 

similar processes are likely in the nasopharynx. Commensal 

species can also produce antimicrobial peptides that directly 

affect pathogen growth or survival. For example, the poorly 

pathogenic commensal species, Streptococcus salivarius, 

produces bacteriocins that inhibit S. pneumoniae,60,61 and in 

the gut enterohemorrhagic E. coli is inhibited by bacteriocins 

produced by other E. coli strains.62 On the skin, the com-

mensal species, Staphylococcus epidermidis, produces anti-

microbial proteins that prevent S. aureus growth.63 Another 

mechanism that directly inhibits other bacteria species is the 

production of hydrogen peroxide (H
2
O

2
). S. pneumoniae is 

remarkably tolerant to H
2
O

2
 and although potential pathogens 

such as S. aureus and H. influenzae produce a catalase to neu-

tralize H
2
O

2,
 the concentrations produced by S. pneumoniae 

overwhelm these catalases without killing the S. pneumoniae 

itself.46,64 Another strategy employed by S. pneumoniae is the 

production of neuraminidase, an enzyme that degrades H. 

influenzae cell-surface sialic acids, impairing the ability of 

H. influenzae to colonize the host.65 Commensal nasopharyn-

geal flora can inhibit the growth of group A Streptococcus, 

although the mechanisms are not clear.66 Finally, the impact 

of nasopharyngeal bacteria and viruses on other species can 

also be mediated via the modulation of the host’s immune 

response.4 For example, in a mouse model, initial colonization 

with H. influenzae stimulated an innate immune response via 

immune recognition of cell wall components that enhanced 

phagocytosis of S. pneumoniae and inhibited colonization.67

Immunizing effect of colonization
Both human and animal data demonstrate that colonization 

is an immunizing event that prevents subsequent S. pneu-

moniae infection by both homologous and heterologous 

strains. Antibodies targeting capsular polysaccharides are 

detected in the serum of children following colonization,68 

although the strength of the immune response depends on 

the infecting serotype.69,70 Exposure to a greater number of 

serotypes also enhances immune responses.71 In addition 

to anti-capsular antibodies, colonization in humans and in 
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animal models induces antibodies to surface and intracellular 

S. pneumoniae protein antigens, many of which are protec-

tive.6,72 Unlike anti-capsular responses, anti-protein responses 

are rapidly detectable in the first year of life.68,73,74 However, 

an epidemiological study in infants did not find evidence 

that anti-protein antibodies protected against subsequent 

colonization.75 Colonization of adult volunteers with serotype 

23F or 6B strains of S. pneumoniae led to the production 

of serum IgG to the protein antigens PspC and PspA and 

salivary IgA to PspA76 and preexisting serum anti-PspA IgG 

levels correlating with protection against experimental colo-

nization.77 In another experimental human challenge model, 

nasopharyngeal colonization with a serotype 6B strain of S. 

pneumoniae was established in healthy adults. Rechallenge 

failed to result in a second carriage event by the same strain, 

with protection persisting for up to 1 year.21 In these challenge 

studies, colonization resulted in cellular and humoral immune 

responses to S pneumoniae. Data from mouse colonization 

models indicate that nasopharyngeal colonization leads to 

Th17-cell responses16,18,19 that enhance phagocyte recruitment 

to the nasopharynx,18,78 and are critical for both the initial 

clearance of the colonizing strain and subsequent protec-

tion against recolonization. The impact of these phagocytic 

responses is enhanced by the effects of specific antibody via 

opsonization and agglutination of S. pneumoniae.79 A murine 

model of group A Streptococcus nasopharyngeal infection 

has also been established.80 In this model, rapid clearance 

of recolonization was also dependent on an antigen-specific 

Th17-cell response.81 These data raise the possibility that 

Th17-cell mechanisms may be broadly important in the 

control of bacterial colonization of the nasopharynx.

Human colonization also leads to serum antibody 

responses that are able to protect against sepsis caused by 

heterologous strains in mouse challenge models,76 indicating 

that colonization-induced anti-protein responses are sufficient 

to enable protection. In addition to Th17-cell responses, 

the antibody response to colonization is also important for 

protection against S. pneumoniae lung infection in a mouse 

model.19 In the human experimental challenge model, colo-

nization augmented S. pneumoniae-specific IL-17-secreting 

CD4+ T-cells in the human lung,20 suggesting that there may 

also be a role for colonization-induced Th17 cells in limiting 

lung infection in humans.

Overall, these observations demonstrate that coloniza-

tion of healthy humans induces a mucosal and systemic 

immune response that protects against further colonization 

(in humans) or sepsis (in mice), and support data from 

animal models show similar findings.15,16,18,19 Importantly, 

intranasal administration of the 6B strain without success-

ful colonization also augmented local mucosal serological 

responses,82 showing that exposure of the nasopharynx to the 

organism can stimulate an immunological response even if 

colonization was not detected.

Colonization of the upper airways with N. meningitidis is 

also an immunizing event that induces an antibody response 

persisting several weeks following acquisition.83,84 Interest-

ingly, childhood nasopharyngeal exposure to commensal 

strains of Neisseria increases antibody levels which is largely 

strain-specific but has some degree of cross-reactivity with 

N. meningitidis, and which perseveres for several months.85–87

Overall, there is now an abundance of data indicating 

that nasopharyngeal colonization with potentially pathogenic 

bacteria elicits both humoral and cellular protective adaptive 

immune responses in humans and mouse models. These data 

support colonization as a novel alternative vaccine strategy 

to induce protection against bacterial pathogens.88,89

Colonization as a vaccine strategy
There are two potential strategies by which colonization could 

be used to prevent disease. The first is through harnessing 

the regulatory effects of commensal species on colonization 

by potential pathogens through competition for resources, 

immune modulatory effects, the secretion of bacteriocins, or 

other direct inhibitory mechanisms. The second is by stimu-

lating a protective adaptive immune response, which unlike 

the first strategy requires colonization by an organism with 

significant antigenic overlap to the target pathogen.

Prevention of colonization using 
commensal species
The delivery of nonpathogenic commensal species as “pro-

biotics” has been investigated for the prevention of OM. In 

some cases, the impact on bacterial nasopharyngeal coloniza-

tion has also been assessed.90 These avirulent organisms were 

administered orally or via nasal spray, and the preliminary 

results suggest that they can reduce the incidence of upper 

respiratory infections.91 In a study of adults given an oral mix-

ture of organisms (containing Lactobacillus rhamnosus GG, 

Bifidobacterium, Lactobacillus acidophilus, and Streptococ-

cus thermophilus), there was a significant reduction in nasal 

colonization with potential pathogens, including S. aureus, 

S. pneumoniae, and β-hemolytic streptococci.92 Studies 

in children given milk supplemented with Lactobacillus 

rhamnosus GG tend to show a reduction in respiratory infec-

tions, including OM, but have produced mixed results in the 

impact on the carriage of pathogens such as S.  pneumoniae 
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and H. influenzae.93,94 These studies delivered the commensal 

organisms to the gut where they might enhance general muco-

sal immunity through  interactions with the gut-associated 

immune system.92

Children who suffer from repeated episodes of OM are 

less likely to carry the oropharyngeal commensal alpha-

hemolytic streptococci (AHS), whereas H. influenzae is more 

prevalent.95 This observation perhaps suggests that AHS 

have inhibitory effect on H. influenzae growth, similar to 

the ability of Streptococcus oralis to inhibit S. pneumoniae 

growth.96 This potential effect has been exploited by the oral 

administration of another AHS species S. salivarius, which 

was associated with a reduction in S. pyogenes infections 

in humans97,98 and inhibition of S. pneumoniae infection in 

mouse models.99,100 Furthermore, nasal spray administration 

of five strains of AHS from three species (Streptococcus 

sanguis, Streptococcus mitis, and S. oralis) reduced the 

incidence of recurrent OM and secretory OM in children.101 

However, in another study, there was no significant change 

in the incidence of OM although there was a trend toward 

reduced carriage of H. influenzae.102 It is possible that in these 

studies, the administration of antibiotics prior to the bacterial 

nasal spray may have enabled stable colonization with AHS 

strains and therefore may make a positive result more likely.

Colonization to induce adaptive immunity
The remainder of this review focuses on using intranasal 

administration of bacteria as an immunizing event; these 

approaches are summarized in Table 1. This approach has 

a number of potential advantages to using conventional 

vaccines. A whole bacterial cell approach means that the 

immunological response is not restricted to selected antigens 

and will induce redundant responses to multiple antigens, 

improving cross-reactivity between strains and reducing the 

potential for naturally occurring vaccine escape mutations. 

In addition, the vaccine would be inexpensive to manufacture 

and would not need an adjuvant as antigens are presented 

in an immunostimulatory context of the whole bacterium. 

Nasal administration also offers the advantages over par-

enteral administration of higher safety levels, needleless 

delivery, and improved immunity at the mucosal surface 

which may be more likely to prevent respiratory tract infec-

tions. The key principles of colonization-induced immunity 

(Figure 1) are detailed in the following sections.

Cross-reactive protection between commensal and 
potentially pathogenic species
Colonization with a commensal species could potentially 

enhance the clearance of a closely related potential pathogen 

if there are shared antigens between the species. This has been 

explored for the closely related species Neisseria  lactamica 

and N. meningitidis. N. lactamica expresses antigens similar 

to those expressed by N. meningitidis, and sera from mice 

immunized with N. lactamica enhance N. meningitidis 

killing,103 and human carriage of N. lactamica results in a 

high titer of antibodies to N. meningitidis.104 Outer mem-

brane proteins and lipooligosaccharide structures common 

to both species are the major antigenic sources of cross-

protection.105 N.  lactamica colonization has been studied as 

a vaccination strategy to prevent N. meningitidis disease. In 

one study of colonization of healthy volunteers, the mucosal 

and systemic antibody response against N. lactamica was 

cross-reactive against N. meningitidis. However, while these 

antibodies were opsonophagocytic in vitro, they had poor 

Table 1 Examples and potential mechanisms for inducing adaptive immunity to bacterial pathogens by nasopharyngeal colonization 
with live bacteria

Type of approach Target pathogen Species/mutation(s) Description References

Commensal  
cross-reactivity

N. meningitidis N. lactamica Induction of cross-reactive antibody 103, 104

Attenuated 
pathogenic bacteria

S. pneumoniae cps, ply, and pspA Virulence factor deletion 107
S. pneumoniae cps, teichoic acids, ply Virulence factor deletion 108, 109
S. pneumoniae pep27 Capsule reduction 110
S. pneumoniae ftsY, caxP/mgtA Metabolic component deletion 111
S. pneumoniae pabB Auxotroph 112
S. pyogenes speB and gidA mutation Impaired tRNA modification 113
Salmonella enterica serovar 
Typhimurium

gidA mutation Impaired tRNA modification 114

Heterologous  
antigen expression

S. pneumoniae PspA expression by Lactobacillus casei Protective antigen expression 118
S. pneumoniae PspA, PpmA, PsaA, PppA, and SlrA 

expression by L. lactis
Protective antigen expression 119

S. pneumoniae Cps expression by L. lactis Protective antigen expression 120, 121

Abbreviations: L. lactis, Lactococcus lactis; N. lactamica, Neisseria lactamica; N. meningitidis, Neisseria meningitidis; S. pneumoniae, Streptococcus pneumoniae; S. pyogenes, 
Streptococcus pyogenes..
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serum bactericidal effect. Furthermore, experimental N. 

lactamica colonization did not protect against subsequent 

natural N. meningitidis carriage acquisition.104 In fact, there 

has been some evidence to suggest that N. lactamica even 

protects N. meningitidis during colonization by triggering 

antibody-independent responses that do not induce a memory 

response.106 Nonetheless, the immunological response to col-

onization with N. lactamica could potentially protect against 

systemic infection with N. meningitidis, and further investiga-

tion of this strategy is ongoing. A similar strategy, in theory, 

could be applicable to other related pairs of pathogenic and 

nonpathogenic species, such as S. pneumoniae and S. mitis.

Attenuated pathogenic bacteria
Observations that natural mucosal exposure induces antibody 

and cellular immune responses to a range of bacterial antigens 

suggest that an alternative to current vaccine strategies could 

be the colonization of the nasopharynx with whole bacteria. 

This would reflect a more natural situation than subunit vac-

cines. To avoid the potential for causing active invasive infec-

tion, vaccination by artificial colonization of the nasopharynx 

would need to use attenuated strains unable to cause serious 

infection. This can now be achieved by targeted mutation of 

important virulence determinants, although these mutations 

could reduce the antigenicity of the attenuated strain. A criti-

cal aspect in the design of a live attenuated mucosal vaccine 

is achieving the balance between virulence attenuation for 

safety while retaining immunogenicity.

The use of attenuated S. pneumoniae as vaccines has 

been explored by several groups in animal models. In one 

example, genes encoding the capsule, Ply, and PspA were 

deleted rendering these strains avirulent yet still able to colo-

nize and induce both systemic and mucosal antibodies that 

protected against disease in mice.107 A similar approach was 

the SPY1 mutant strain, where the capsule, teichoic acids, 

and Ply were deleted from a D39 S. pneumoniae strain and 

used for intranasal immunization. This protected against 

colonization and invasive disease caused by heterologous 

strains of S. pneumoniae in a T-cell- and B-cell-dependent 

manner.108,109 Further examples include the deletion of pep27 

leading to an avirulent strain with reduced capsule expression 

which when used to immunize mice intranasally protected 

against colonization and systemic infection110 and double 

mutation of the signal recognition pathway component ftsY 

and the calcium/magnesium transporter caxP/mgtA which 

when administered to the nasopharynx induces heterologous 

protection against OM, pneumonia, and invasive disease 

in a CD4+ cell-dependent manner.111 Another strategy for 

generating live vaccines is by creating auxotrophic organ-

isms. In this way, key protective surface antigens such as 

PspA and the polysaccharide capsule for S. pneumoniae 

can be retained. For example, the deletion of the pabB gene 

Figure 1 Summary of the principles employed in nasal vaccination strategies.
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creates an S. pneumoniae mutant strain auxotrophic for 

para-aminobenzoic acid and unable to replicate in the mam-

malian host. Systemic vaccination with this mutant was able 

to protect from homologous challenge in mouse models of 

sepsis and pneumonia.112 The attenuated mutant approach 

has been investigated for other bacteria. For example, in S. 

pyogenes, the deletion of the SpeB protease creates a mutant 

that is impaired in tRNA modification and has the potential 

to be used in vaccination strategies.113 Mutation of gidA in 

Salmonella enterica serovar Typhimurium also lends itself 

to a novel vaccine strategy for this bacterium.114

A potentially significant problem is that mouse and human 

data indicate that a reduced duration of nasopharyngeal colo-

nization by S. pneumoniae significantly weakens the induced 

adaptive immune response.82,111,115 In mice, attenuated strains 

often have a reduced duration of colonization compared to 

wild-type bacteria,107,111,115 and this may therefore affect the 

efficacy of using attenuated mutants for preventing S. pneu-

moniae infections. For example, the pabB deletion strain is 

very rapidly cleared from the mouse nasopharynx and was 

only weakly immunogenic after nasopharyngeal administra-

tion.112 Repeated dosing of poorly colonizing strains may 

overcome this issue.82,107,110,115

Another potential problem is the surprising lack of 

cross-protection induced by attenuated strains in some of 

these studies. For example, although the protein antigens 

targeted by protective responses are largely conserved 

between S. pneumoniae strains, adaptive responses to one 

episode of colonization or systemic vaccination with a live 

attenuated vaccine either were not or only weakly cross-pro-

tective against heterologous strains in mouse models.112,115 

The reasons for this poor cross-protective immunity are 

not clear and require further investigation to ensure that 

nasopharyngeal administration with a single strain can 

provide the broad heterologous protection required for an 

effective vaccine.

Reversion to wild type with loss of the attenuating muta-

tion is a significant safety risk in the use of live attenuated 

bacteria as vaccines. This is a particular concern for patho-

gens such as S. pneumoniae that are naturally competent and 

are known to undergo recombination events during coloniza-

tion. To avoid this, attenuated strains would need to contain at 

least two independent mutations. Another strategy to mitigate 

this risk would be to delete the competence machinery, ren-

dering the strain unable to uptake foreign DNA and thereby 

preventing recombination events with the resident nasal flora 

which may possess similar virulence factors. In addition, the 

effect of administration of genetically modified bacteria to 

the nasopharynx on the existing nasal flora is not known, 

and will need to be evaluated carefully to ensure there are 

no unforeseen deleterious consequences.

Heterologous expression of protective antigens
An alternative approach has been to express recombinant 

protein in nonpathogenic species. Such strategies provide 

effective protection at the mucosal surface and during 

invasive disease.116 Lactic acid bacteria (LAB) are com-

monly used to manufacture foodstuffs and are therefore a 

safe alternative which are also known to elicit systemic and 

mucosal responses.117 The LAB, Lactobacillus casei, has 

been developed as an intranasal vaccine which expresses the 

S. pneumoniae protein antigen PspA and induces antibod-

ies that protect mice from a systemic challenge.118 Another 

LAB, Lactococcus lactis, has also been used to express S. 

pneumoniae protein antigens including PspA, PpmA, PsaA, 

PppA, and SlrA119 or serotype 3120 and serotype 14121 capsu-

lar polysaccharides. Colonization with the L. lactis strains 

expressing S. pneumoniae capsules led to the induction of 

specific IgG and IgM antibodies.120,121 The oral commensal 

species Streptococcus gordonii, which also stimulates muco-

sal immunity,122 has been engineered to express protective 

antigens from S. pyogenes which are immunogenic in mouse 

models when inoculated intranasally and orally.123 S. gordonii 

was also investigated as a means to express N. meningitidis 

antigens which induced bactericidal antibodies in intranasally 

immunized mice124 and Bordetella pertussis antigens which 

when used in oral colonization induced systemic and muco-

sal antibodies.122,125 These animal models and early studies 

in humans indicate that S. gordonii is a suitable vector for 

presenting heterologous antigens for a colonization approach 

vaccination strategy.126 However, a limitation of this strategy 

is the use of a limited number of antigens, which could restrict 

the range and strength of any protective immune response. 

Nevertheless, these early results indicate that this may be an 

area of potential future development applicable to a number 

of bacteria species, perhaps in combination with the use of 

closely related nonpathogenic species discussed earlier. For 

example, the expression of important N. meningitidis antigens 

in N. lactamica could increase the strength of cross-protective 

immunity induced by colonization with the modified N. 

lactamica strain.

Overview and future directions
Colonization of the nasopharynx is central to disease 

development and adaptive immune responses to potentially 

pathogenic organisms. Modulation of host–pathogen interac-
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tions at this site could be a powerful method of preventing 

serious bacterial infections for a range of common pathogens. 

There are several important characteristics which an attenu-

ated microorganism must have to serve as a potential live 

human vaccine: 1) mutations must be stable and severely 

attenuate virulence to prevent the strain from causing lung 

or systemic infection; 2) two or more virulence genes should 

be mutated to minimize the chance of revertants developing; 

3) the attenuated strain should retain the ability to stimulate 

significant increases in adaptive immune responses after 

nasopharyngeal administration, including mucosal immune 

responses that prevent lung infection; and 4) adaptive 

immunity to the mutant strain should result in cross-strain 

protection. Currently, most data showing the utility of naso-

pharyngeal colonization with attenuated or nonpathogenic 

organisms as a vaccination strategy have been obtained using 

animal models. However, the development of human models 

of nasopharyngeal carriage104,127–129 now allows the strategies 

using colonization to prevent infection to be tested in humans 

and to assess whether their potential can be fulfilled.
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