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Abstract: In the present study, we report the interaction of an artificial oligolysine (referred 

to as AOL) realized in our laboratory with targets of biomedical importance. These included 

polyinosinic acid (poly rI) and its complex with polycytidylic acid (poly I:C), RNAs with well-

known interferon-inducing ability, and double-stranded (ds) DNA. The ability of the peptide 

to bind both single-stranded poly rI and ds poly I:C RNAs emerged from our circular dichro-

ism (CD) and ultraviolet (UV) studies. In addition, we found that AOL forms complexes with 

dsDNA, as shown by spectroscopic binding assays and UV thermal denaturation experiments. 

These findings are encouraging for the possible use of AOL in biomedicine for nucleic acid 

targeting and oligonucleotide condensation, with the latter being a key step preceding their 

clinical application. Moreover, we tested the ability of AOL to bind to proteins, using serum 

albumin as a model protein. We demonstrated the oligolysine–protein binding by CD experi-

ments which suggested that AOL, positively charged under physiological conditions, binds to 

the protein regions rich in anionic residues. Finally, the morphology characterization of the 

solid oligolysine, performed by scanning electron microscopy, showed different crystal forms 

including cubic-shaped crystals confirming the high purity of AOL.

Keywords: nucleic acid binding, polyinosinic acid, double-stranded nucleic acids, oligolysine, 

circular dichroism

Introduction
The importance of nucleic acids in biology relies on their ability to form complexes 

driven by complementary base pairing or to form other unique architectures.1 Taken 

together, these features make them important targets for biomedical strategies aimed at 

modulating the nucleic-acid-driven processes on the basis of pathological dysfunctions. 

Different approaches to interfere with the nucleic acid cellular machinery make use of 

different classes of oligonucleotide analogs, such as nucleobase-containing peptides.2–11 

Apart from these latter, whose nucleic acid binding ability is due to their nucleobase-

decorated nature, other compounds can serve as efficient nucleic acid binders. These 

include alkaloids,12 benzodifurans,13,14 or pure peptides, which are more often used 

for modulating protein-based processes.15 In particular, in case of basic peptides the 

nucleic acid binding is due to their ionic interaction with anionic phosphate groups 

in nucleic acids.16

Polylysines (PLLs) are important cationic peptides with several biomedical 

applications. In fact, they suppress prion accumulation in spleen in neurodegenerative 

diseases17 and are part of contrast agent probes for magnetic resonance imaging18 and 

gene/drug delivery tools.19 The PLLs, produced chemically or microbiologically for 

various biotechnological purposes,20–22 are oligomers/polymers formed by amidation 

of ε-amino groups of l-lysines. Moreover, intensive efforts led to the synthesis of 
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dendrimeric α,ε-poly-l-lysines, tested as oligonucleotide 

delivery agents,23 and linear α,ε-oligo-l-lysines (AOL),24 

object of our preliminary biological studies.24,25

The encouraging properties such as water solubility and 

serum stability, previously found for the artificial AOL, 

prompted us to deepen its evaluation as a nucleic acid con-

densation agent. In addition, we explored the interaction of 

AOL with proteins, using bovine serum albumin (BSA) as 

a protein model.

Materials and methods
Materials
Polyinosinic acid (poly rI), polyribocytidylic acid (poly rC),  

and BSA were purchased from Sigma-Aldrich Co., while 

dA
12

 and dT
12

 (DNA) were obtained from Biomers. To obtain 

dA
12

/dT
12

 and poly rI:poly rC double-stranded (ds) systems, 

single-stranded (ss) nucleic acids were mixed in a 1:1 ratio 

and annealed by heating the sample to 95°C (over 5 minutes) 

and slowly cooling it to 4°C over 12 hours. Synthesis of 

(alpha-epsilon-lys)
8
–NH

2
 (AOL) was conducted according 

to a literature procedure.24 Circular dichroism (CD) spectra 

were recorded at 15°C on a Jasco J-715 spectropolarimeter, 

while ultraviolet (UV) spectra were recorded on an UV-vis 

Jasco model V-550 spectrophotometer equipped with a Peltier 

ETC-505T temperature controller, using a Hellma quartz 

cell with a light path of 1 cm and a Hellma Tandem quartz 

cell 2×0.4375 cm. CD and UV spectra were recorded in the 

200–260 or 200–320 nm wavelength range.

cD studies
For ssRNA, the CD spectra were recorded in the 200–320 nm 

wavelength range, before and after AOL/poly rI complex-

ation by a tandem cell. Titration experiments with different 

AOL/poly rI ratios and fixed RNA concentration were con-

ducted. Regarding ds nucleic acids, sum and complex CD 

spectra for AOL/dsDNA and AOL/dsRNA were obtained. 

We recorded them at different time points, to allow the 

system to reach equilibrium, in the same wavelength range as 

indicated earlier. Further, titration experiments with different 

AOL/(poly rI:poly rC) and AOL/(dA
12

:dT
12

) ratios were con-

ducted by varying the concentrations of the peptide added to 

the complex solutions. CD spectra for BSA and AOL/BSA 

complex were obtained in a tandem cell by using a 4 mg/L 

concentration of protein.

UV melting studies
We recorded the UV melting curves for the following sys-

tems: dA
12

/dT
12

, AOL/dA
12

/dT
12

, poly rI/poly rC, AOL/poly 

rI/poly rC, and AOL (pure peptide solution:control). The 

denaturation profiles were obtained by monitoring the 

absorbance change at 260 nm with temperature (1.0°C/min). 

Melting temperature (T
m
) values were determined from the 

first derivatives of the UV melting curves.

SEM analysis
A few drops of a 0.5 mM aqueous solution of AOL were 

deposited on an aluminum stub and allowed to evaporate in 

air. The sample metallized with an Au–Pd alloy was observed 

under a field-emission scanning electron microscope (SEM, 

Nova NanoSEM 450; FEI) at 3.00 kV using an Everhart-

Thornley detector and through the lens detector systems.

Results and discussion
AOL binds to poly rI and poly I:C
Poly rI is a synthetic RNA homopolymer of inosine endowed 

with interesting properties. In fact, it triggers leukocyte 

production of important components of inflammatory 

homeostasis26 and induces innate responses by activating 

the immune cells such as B lymphocytes, dendritic cells, 

and macrophages.27 Its complex with poly rC, poly I:C, 

potentiates nonspecific immunotherapy in bladder cancer 

treatment28 and provokes prostate cancer cell apoptosis 

with an enhanced effect when treated with interferon-γ.29 

In addition, poly I:C is a potential therapeutic agent useful 

for attenuating neuronal damage and promoting recovery 

after brain ischemia.30 However, stability issues limit the 

clinical application of poly rI and poly I:C that undergo facile 

enzymatic degradation. Hence is the need for technological 

approaches aimed to improve the delivery and consequent 

efficacy of these RNAs.31

Our previous works24,25 showed the ability of AOL to 

bind ss- and dsRNA. However, we had no information 

on the interaction of the same oligolysine with RNAs of 

therapeutic importance. For this purpose, we explored the 

potential of AOL as delivery agent of particular RNAs: poly 

rI and poly I:C. First, we studied the binding between AOL 

and the poly rI by CD spectroscopy by using a two-chamber 

quartz cell. Upon mixing the poly rI and AOL solutions in a 

1:5.4 (rI/–NH
3
+) ratio, we recorded a CD spectrum different 

from that preceding the complexation process (Figure 1). In 

particular, we observed significant changes in intensity and 

position of the CD bands (bathochromic shift), which sug-

gested, therefore, an AOL-induced conformational change 

of the poly rI.

After this binding assay, we conducted a CD titration 

to deduce quantitative information on the complexation 
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process. We added increasing amounts of AOL to the poly rI 

solution and recorded the consequent CD spectra. From this 

study, we found a slight variation in the RNA CD spectrum 

caused by AOL. We observed no further change in the spec-

troscopic signal at AOL concentrations higher than 3.33 µM 

(1:6.7=rI/–NH
3
+ ratio).

Similarly, we investigated the ability of AOL to bind a 

preformed poly I:C complex by CD and UV spectroscopies. 

To this scope, we realized a complex by mixing equimolar 

amounts of the two RNAs and heating at 95°C, with sub-

sequent slow cooling (annealing, 12 hours). At this point, 

we performed a CD binding study in a tandem quartz cell 

containing AOL in a chamber and dsRNA in the other one. 

AOL provoked drastic changes in the poly I:C CD spectrum, 

corresponding to a conformational alteration in the secondary 

structure of the dsRNA, condensed by AOL (Figure 2A). 

In addition, we studied the kinetic behavior of the AOL/

poly I:C complex by recording the CD spectra at different 

time points after the first addition of AOL. We found that the 

complex was completely formed only after 30 minutes from 

the solution mixing. Indeed, CD spectra varied continuously 

(Figure 2A and B) before that time, whereas that obtained 

after 37 minutes did not differ significantly from the previous 

one (Figure 2A and B).

Moreover, we investigated the stoichiometry of the 

AOL/poly I:C complex by performing another CD experi-

ment, ie, by adding increasing amounts of oligolysine to 

the poly I:C solution and recording the associated spec-

tra. The complex stabilized after the addition of 85 nmol 

(in –NH
3

+) of AOL, which corresponds to a ~11 –NH
3

+/

rI/rC ratio (Figure 3). We evaluated the influence of the 

interaction with AOL on the thermal stability of poly I:C by 

Figure 1 (A) sum ( ) and complex ( ) cD spectra, recorded at 15°C in a tandem cell, relative to poly rI (8 nmol in I) and AOL (43 nmol in –NH3
+) dissolved each in 

0.8 ml of 1× PBs buffer (ph 7.5). Blue and green lines correspond to further additions of aOl (concentrations 3.3 [ ] and 5 µM [ ], respectively). (B) Variation of the cD 
values recorded at 270 nm relative to the solution of poly rI as function of the AOL concentration.
Abbreviations: AOL, artificial oligolysine; CD, circular dichroism; PBS, phosphate-buffered saline; Poly rI, polyinosinic acid.

Figure 2 (A) cD spectra (T=15°C) for a solution of poly rI/poly rC (8 nmol in rI/rC) and AOL (43 nmol –NH3
+) in 1× PBs buffer (ph 7.4) before ( ) and after ( ) 

complexation and at different time points (6 , 10 , 17 , 27 , and 37 minutes) after mixing. (B) Variation of the CD values recorded at 236 nm for the AOL/poly I:C 
complex in 1× PBs buffer (ph 7.5) as function of time.
Abbreviations: AOL, artificial oligolysine; CD, circular dichroism; PBS, phosphate-buffered saline; poly I:C, complex of poly rI with poly rC; poly rI, polyinosinic acid.
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Figure 3 (A) cD spectra (T=15°C) for a solution of poly I:C (8 nmol in rI/rC) in 1× 
PBs buffer (ph 7.5) and increasing amounts of aOl (ie, 43 , 85 , and 128  nmol 
in –Nh3

+). Variation of cD values recorded at (B) 236 nm and (C) 270 nm for a solution 
of AOL/poly I:C in 1× PBs (ph 7.5) buffer as function of aOl concentration.
Abbreviations: AOL, artificial oligolysine; CD, circular dichroism; PBS, phosphate-
buffered saline; poly I:C, complex of poly rI with poly rC; poly rI, polyinosinic acid.

°

Figure 4 comparison of the denaturation curves for the following complexes (in 
1× PBS buffer, pH 7.5): poly I:C ( , Tm=62°C); AOL ( ); AOL/poly I:C ( ).
Abbreviations: AOL, artificial oligolysine; Tm, melting temperature; PBS, phosphate-
buffered saline; poly I:C, complex of poly rI with poly rC; poly rI, polyinosinic acid; 
abs, UV absorbance.

Figure 5 cD spectra (T=15°c) for a solution of da12/dT12 (8 nmol in dA/dT) and 
aOl (43 nmol in –Nh3

+) before ( ), immediately after ( ) mixing, and at different 
time points after complexation (3 , 7 , 19 , 24 , and 32  minutes) in 1× PBs 
buffer (ph 7.5).
Abbreviations: AOL, artificial oligolysine; CD, circular dichroism; PBS, phosphate-
buffered saline.

UV thermal melting experiments. In particular, we recorded 

the UV denaturation curves for the following: 1) poly 

I:C, 2) AOL, and 3) AOL/poly I:C in 1× phosphate-buffered 

saline (PBS) buffer (Figure 4). The thermal denaturation 

curve for the oligolysine/dsRNA complex (3, Figure 4) is 

not the superimposition of the other two melting curves 

(1 and 2, Figure 4). This means that the AOL/poly I:C thermal 

behavior is peculiar and is certainly influenced by peptide/

RNA interactive forces, confirming, thus, the above-reported 

AOL/poly I:C binding hypothesis.

AOL-dsDNA interaction: kinetics, 
quantitative aspects, and thermal 
stabilization
Previous studies24,25 showed that AOL was ineffective in 

binding ssDNA. However, the importance of dsDNA in 

biomedicine led us to study the ability of our oligolysine 

to bind dsDNA for possible DNA-delivery applications 

of this oligocation. For this study, we used dA
12

/dT
12

 as a 

dsDNA model, following an approach analogous to that used 

for the AOL/RNA binding studies (Figures 5 and 6).
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Furthermore, the dsDNA CD spectrum changed imme-

diately upon mixing the ligand solutions due to the effect 

of the interaction with AOL. Interestingly, CD bands of the 

AOL/dA
12

/dT
12

 complex showed a progressive temporal 

variation with certain stabilization observable only after 

24 minutes from the addition (Figures 5 and 6).

After this kinetic study, we performed a titration experi-

ment on the AOL/dA
12

/dT
12

 complex solution and recorded 

the CD spectra consequent to the addition of different aliquots 

of oligolysine.

The CD signal underwent stabilization after the addi-

tion of 85 nmol (in –NH
3

+) of AOL or, in other terms, at 

a ~11 –NH
3

+/dA/dT ratio (Figure 7A and B).

In addition, we examined the thermal stability of the 

dsDNA in the presence of AOL. In particular, the dA
12

/dT
12

 

complex in 1× PBS buffer (pH 7.5) at a concentration 

of 5 µM showed a T
m
 of ~31°C. On the other hand, under 

the same experimental conditions, but in the presence of 

AOL (5 µM), we found a T
m
 increase of ~4°C (Figure 8). 

This finding sustains the hypothesized AOL/dsDNA binding, 

essential for dsDNA condensation, and suggests that AOL 

could reinforce the interaction occurring between the DNA 

strands, thus stabilizing the dsDNA.

BSA binding study
Protein–protein interactions or, more in general, protein-

associated processes are subjects of several studies aimed at 

modulating these biomolecular events by organic molecules 

or peptides.32,33

Thus, in order to investigate the interaction of AOL 

with biomolecules different from nucleic acids, we took 

into consideration the family of proteins. More in detail, 

we carried out CD binding experiments on the protein 

BSA as a model protein using a quartz tandem cell. We 

placed BSA (8 mg/L, 1× PBS, pH 7.5) in one cell chamber, 

while the other hosted AOL (1.67 µM, 1× PBS, pH 7.5). 

Figure 6 Variation of the cD values recorded at 220 nm (A) and 266 nm (B) for a solution formed by dA12/dT12 (8 nmol in dA/dT) and AOL (43 nmol in –NH3
+) in 1× PBs 

buffer (ph 7.5) as function of time (0, 3, 7, 19, 24, and 32 minutes).
Abbreviations: AOL, artificial oligolysine; CD, circular dichroism; PBS, phosphate-buffered saline.

Figure 7 (A) cD spectra (T=15°c) for a solution of da12/dT12 (8 nmol in dA/dT) in 1× PBs buffer (ph 7.5) and aOl in growing doses (43 , 85 , and 128  nmol in –Nh3
+). 

(B) Variation of the cD values recorded at 266 nm for a solution composed of da12/dT12 (8 nmol in dA/dT) in 1× PBs buffer (ph 7.5) and increasing aliquots of aOl (C=1.67, 
3.33, and 5 µM, V=1.6 ml).
Abbreviations: AOL, artificial oligolysine; CD, circular dichroism; PBS, phosphate-buffered saline.
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°

Figure 8 UV melting curves for da12/dT12 ( ) and AOL/dA12/dT12 ( ).
Abbreviations: UV, ultraviolet; AOL, artificial oligolysine; Abs, UV absorbance.

Figure 9 (A) Sum and complex CD spectra for the system composed of AOL and BSA in 1× PBs (ph=7.5). (B) Comparison between AOL/BSA and control CD spectra: 
AOL/BSA (sum ; mix ); buffer/BSA (sum ; mix ); and AOL/buffer (sum ; mix ).
Abbreviations: AOL, artificial oligolysine; CD, circular dichroism; BSA, bovine serum albumin.

Microscopy analysis
After the above-reported experiments, we conducted a 

microscopy analysis of a solid sample of AOL in analogy to 

our previous work8 to obtain information on its morphology. 

In particular, the substance, examined under a polarizing 

optical microscope equipped with a micro-furnace, appeared 

in the form of tiny crystals as can be seen from Figure 10A 

(30,000×). In the image, tiny aggregates of crystals of hundreds 

of nanometers are visible at high magnifications. The sample 

obtained from a solution diluted with two volumes of distilled 

water appeared instead with a more regular morphology 

(shown in Figure 10B on a larger scale, 1,000×). Full-grown 

crystals of a few micrometers are observed in this case, as 

shown in Figure 10C in more detail (12,000×), that invariably 

showed a cubic shape. Finally, the absence of non-crystallized 

material revealed the high purity of the substance.

Conclusion
In this work, we demonstrated that AOL is an interesting oli-

gocation able to condense RNA and dsDNA, provoking in this 

latter case a stabilization of the DNA complex. In particular, 

AOL binds to poly rI and poly I:C, potent interferon inducers 

endowed with several other biomedical characteristics, and 

could act, thus, as an effective delivery agent for these RNAs. 

The dsRNA-binding ability of AOL suggests its importance 

for antiviral strategies through the targeting of viral dsRNA, 

as well as in the compaction and cell delivery of therapeutic 

dsRNAs. Our experiments suggest that AOL participates in 

complexes formed by multiple peptide units and the target, as 

testified by the high AOL/nucleic acid stoichiometries found 

in the CD titrations. Moreover, the ability of AOL to interact 

with proteins, eliciting the perturbation of their secondary 

Therefore, we recorded a sum CD spectrum (blue line, 

Figure 9A), corresponding, ie, to the two separate ligands, 

under the above-mentioned experimental conditions. After 

mixing, we obtained a CD spectrum (green line), which 

was different from the sum spectrum (Figure 9A). The 

observed CD spectrum was not the superimposition of the 

“mix” CD spectra of the two controls (Figure 9B). These 

latter were: 1) pure buffer in one chamber and BSA solu-

tion in the other one and 2) AOL solution in one chamber 

and buffer in the other one.

This finding suggests an interaction between the serum 

protein and the basic AOL. This binding provokes a change 

in the CD profile, especially in the spectral region at ~210 nm. 

The interaction involves, in other words, a variation of the 

secondary structure of BSA, probably due to ionic interac-

tions involving AOL and negatively charged regions of the 

protein.
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Figure 10 Micrograph SEM of the oligolysine obtained from a concentrated 
aqueous solution at 30,000× (A) or from a diluted solution at 1,000× (B) and at 
12,000× (C).
Abbreviation: SEM, scanning electron microscopy.
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structure, has emerged from our CD binding experiments 

conducted on the BSA protein.

Overall, these findings, together with the serum stability 

properties that emerged from our previous work,25 high-

light the importance of AOL as a potential molecular tool 

useful in biomedical strategies. In fact, it could play a key 

role in targeting RNA and dsDNA or, more in general, as a 

compacting agent useful for protection and cell delivery of 

therapeutic nucleic acids.
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