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Abstract: Three-dimensional speckle tracking echocardiography (3D STE) is a novel technique 

for the quantification of cardiac deformation based on tracking of ultrasonic speckles in gray 

scale full-volume 3D images. Developments in ultrasound technologies have made 3D speckle 

tracking widely available. Two-dimensional echocardiography has intrinsic limitations regard-

ing estimation of left ventricular (LV) volumes, ejection fraction, and LV mechanics, due to its 

inherent foreshortening errors and dependency on geometric models. The development of 3D 

echocardiography has improved reproducibility and accuracy. Data regarding the feasibility, 

accuracy, and clinical applications of 3D STE are rapidly assembling. From the tracking results, 

3D STE derives several parameters, including longitudinal, circumferential and radial strain, as 

well as a combined assessment of longitudinal and circumferential strain, termed area strain. 

3D STE can also quantify LV rotational movements such as rotation, twist, and torsion. 3D 

STE provides a better insight on global and regional myocardial deformation. Main applications 

include detection of subclinical myocardial involvement in heart failure, arterial hypertension, 

dyssynchrony, and ischemic heart disease. Emerging areas of application include a large spec-

trum of heart-involving systemic conditions, such as prediction of rejection in heart transplant 

patients, early detection of cardiotoxicity in patients receiving chemotherapy for cancer, and 

deeper physiological understanding of LV contraction mechanics in different types of athletes. 

Aim of this review is to discuss background, technical acquisition and processing aspects as 

well as recognized and developing clinical applications of this emerging ultrasound technology. 

Keywords: speckle tracking echocardiography, three-dimensional echocardiography, myocardial 

deformation, validation, clinical applications

Introduction
Ultrasonic myocardial deformation imaging techniques allow the quantitative analy-

sis of strain (i.e., the relative lengthening or shortening of the myocardial segment 

expressed as a percentage of its initial length) and strain rate (i.e., the rate of this 

lengthening or shortening). Both these measurements are gaining field in either clini-

cal or research purposes. Speckle tracking echocardiography (STE), due to its ability 

to discriminate between active and passive myocardial segment movements, estimate 

myocardial deformation, and quantify intraventricular dyssynchrony, allows a com-

prehensive assessment of myocardial function.1

From its introduction in the clinical setting, real-time three-dimensional (RT3D) 

echocardiography has clearly demonstrated the ability in improving the accuracy of 

evaluation of cardiac chamber volumes by eliminating the need for geometric mod-

eling and the errors caused by foreshortened apical views.2,3 As a result, more and 
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improved imaging modalities are available for evaluating 

cardiac anatomy, ventricular function, blood flow velocity, 

and valvular diseases. Since 2006, one of the most significant 

advances in this field has been the development and refine-

ment of RT3D-STE. This new ultrasound equipment and 

technique improves and expands the diagnostic capabilities of 

cardiac ultrasound, providing superior image quality, greater 

accuracy, and have the potential to overcome many of the 

limitations of two-dimensional (2D) STE. 3D echocardio-

graphic imaging has developed software that track the motion 

of speckles and allow a homogeneous spatial distribution 

of each component of the myocardial displacement vector, 

irrespective of the speckle direction.4

Our purpose is to review the scientific basis for and the 

clinical use of 3D ultrasound imaging of the heart and provide 

readers with an update on the latest developments and the 

current status of this noninvasive imaging tool. The different 

potential applications of RT3D echocardiography imaging 

will be described here separately, and each application will 

be discussed.

3D STE offers the advantage of a complete analysis of 

the left ventricle from a single volume of data obtained from 

the apical transducer position. 3D speckle tracking in RT3D 

echocardiography data sets has the potential to overcome the 

intrinsic limitations of 2D STE (Table 1) since it does not 

rely on 2D views that can be foreshortened, and the motion 

tracking of the speckles is done within the scan volume, 

heedless of their direction, having the advantage to assess 

left ventricular (LV) deformation inside a volumetric image 

rather than into bidimensional sections.5 In addition, its use 

is less time consuming; it considerably reduces the duration 

of analysis to one-third in comparison with 2D STE as it 

calculates all the strain components within the same heart 

beat, that is at the same heart rate and under the same load-

ing conditions.6 These circumstances cannot be obtained by 

2D STE, which needs the acquisition of multiple views to 

determine the different directional strains.

Different studies have described that longitudinal strain 

(LS) values do not differ substantially between 3D STE and 

2D STE.7,8 However, significantly higher absolute 3D STE-

derived circumferential (CS) values than those derived by 

2D STE were found, due to the “out of plane phenomenon”. 

Accordingly, the same authors showed that LV twisting also 

affects LS values: higher twisting is a major determinant of 

differences between 2D and 3D LS values. Based on these 

findings, 3D STE can have a better insight in LV translation 

and rotation effects and may provide reliable deformation 

data compared to 2D STE for the assessment of LV con-

traction.9 Based on all these findings, RT3D-STE appears 

potentially to be more accurate and efficient than 2D STE in 

the assessment of LV myocardial function.10–15

3D technique has required rigorous testing and comparison 

against other accepted techniques on different levels. The accu-

racy of the new RT3D echocardiography side by side with 2D 

STE against cardiac magnetic resonance (CMR) reference val-

ues, in patients with a wide range of LV sizes and functions, has 

been validated for LV volume and mechanics measurements, 

demonstrating its superior accuracy and reproducibility over 

2D STE.16 3D measurements of LV volumes and mechanics 

were found to be in close agreement with the CMR reference 

values, and the levels of agreement, in the same population, 

had higher correlation coefficients, smaller biases, and tighter 

limits of agreement, and therefore were higher than for 2D 

measurements.16–19 Moreover, 3D measurements showed lower 

interobserver and intra-observer variability levels and thus are 

more reproducible than the corresponding 2D measurements.16

Despite growing interest in applying 3D STE to measure 

LV myocardial deformation in various diseases, normal 

values for 3D STE parameters and effects of demographic, 

hemodynamic, and technical factors on these values are still 

subject of study. Normal ranges of global and regional LV 

strain using 3D STE have been established for clinical use 

(Table 2). Sex and age-related differences in the magnitude 

of LV strain, which may reflect myocardial maturation and 

aging, as well as differences between different myocardial 

segments, walls, and levels as part of the functional nonuni-

formity of the normal left ventricle, were observed.17 This 

suggests the use of segment-specific normal ranges for radial 

and longitudinal strains. Circumferential and area strains 

demonstrate the most consistent normal ranges overall.17–20 

In healthy subjects, reference values of LV 3D strain param-

eters are significantly influenced by demographic, cardiac, 

and technical factors. Limits of normality of LV strain by 

3D STE should not be used interchangeably with 2D STE 

or with 3D STE software.20,21

Table 1 Advantages and limits of real-time three-dimensional 
speckle tracking echocardiography

Advantages Limits

Absence of geometric assumptions Lower spatial resolution
Absence of tracking errors Lower temporal resolution
Analysis of all strain components in 
one single heart beat

Not always feasible for 
multi‑beat acquisition 
(arrhythmias, dyspnea, etc.)

No need of multiple plane acquisition Necessity of a protocol 
standardization 

Less time consuming Different three-dimensional 
software packages
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Technical aspects
RT3D echocardiography allows for the simultaneous acqui-

sition of full-volume data sets; it is usually performed dur-

ing a breath hold by multi-beat acquisition to ensure high 

temporal and spatial resolution and to avoid stitch artifacts. 

New transducer technology is able to provide a one-beat 

full-volume acquisition, particularly useful in patients with 

irregular heartbeats, such as atrial fibrillation, and in children 

in whom breath hold may be challenging.

A 3D echocardiographic study combines an integrated 

assessment of biventricular volumes and function, valvular 

morphology, and hemodynamic conditions. 

3D echocardiography is inherently volumetric, on the 

contrary of 2D echocardiography, in which standard views 

rely on a single plane. From an apical approach, acquisition 

of full-volume scans is made using a frame rate (in volume 

per second) higher than 40% of the individual heart beat or 

>25 frames per second, in order to raise the recognition of 

the “speckles” in successive frames. Accordingly, during 

end-expiratory apnea, up to 6 ECG-gated consecutive beats 

are acquired (multi-beat acquisition) producing a full-volume 

scan from single-beat sub-volumes, securing an appropriate 

frame rate for following analysis. 

Before storing the volume data set, a 12-slice display 

mode may be selected to check the acquisition quality and 

to certify that the entire LV cavity and walls are included in 

the full-volume scan (Figure 1).

The software provides image automatic or semiautomatic 

alignment. Endocardial boundaries are defined in the end-

diastolic volume and propagated to end systole, allowing 

the estimation of volumes and LV ejection fraction (LVEF). 

Next step is the definition of the subepicardial borders and 

subsequently the estimation of LV mass. For the conserva-

tion of mass as a restriction, end-systolic and end-diastolic 

masses are comparable.

The 3D strain post-processing tracks ‘speckles’ from 

frame to frame inside the 3D image in each of the three 

dimensions over time. The previously established borders, 

during LV mass acquisition stage, are used to define a region 

of interest (ROI), which encompasses the LV myocardial wall 

(i.e., from the endocardium to the epicardium). ROI’s shape 

may be corrected by placing attractor points to pull the nearby 

ROI border toward. This represents a further quality check 

for the correct processing of the data set. All areas inside 

the ROI are tracked. Software generates regional and global 

directional strains, longitudinal (GLS) (Figure 2A), circum-

ferential (GCS) (Figure 2B), and radial (GRS) (Figure 2C), 

as well as the area strain (GAS) (Figure 2D) and presents 

them through strain curves and 17-segment color-coded bull’s 

eye plot. Directional strains are calculated from variations of 

distance in their own respective directions. On the contrary, 

the area strain (AS) and GAS are, respectively, the measure 

of the relative % change in the area of a given myocardial 

segment and in the whole chamber. Hence, they represent 

the myocardial surface percentage change from its initial 

dimensions.

RT3D-STE software also generates LV basal and apical 

rotation angles and LV twist time curves, from which peak 

basal rotation, peak apical rotation, peak LV twist, and peak 

LV torsion are automatically measured.22 In a normal heart, 

the base and apex are rotating in opposite directions. The bull’s 

eye is divided into 4 rings: base, mid, and apical regions and 

apex; for base, mid, and apical regions, a single curve (yellow) 

is displayed. LV twist represents the amount of rotation of the 

different sections of the left ventricle, expressed in degrees. 

The white curve shows the difference between the apical and 

base rotation, which is known as twist, by using the following 

formula: rotation of the apex – rotation of the base (Figure 3A). 

LV torsion represents the amount of rotation in degrees normal-

ized by the length of the left ventricle (°/cm). Again, for base, 

mid, and apical regions, a single curve (yellow) is displayed, 

Table 2 Normal ranges of three-dimensional speckle tracking 
echocardiography 

Parameters Kleijn et al20 Muraru et al21 Kaku et al17

GLS –15.9% ± 2.4% –17% to –21% –20.3% ± 3.2%
GCS –30.6% ± 2.6% –17% to –20% –28.9% ± 4.6%
GAS –42.0% ± 2.4% –31% to –36% –37.6% ± 4.8%
GRS 35.6% ± 10.3% 47% to 59% 88.0% ± 21.8%

Abbreviations: GLS, global longitudinal strain; GCS, global circumferential strain; 
GAS, global area strain; GRS, global radial strain.

Figure 1 Three-dimensional 12-slice display of full-volume acquisition. Nine short 
axis views (three basal, three middle, and three apical of the left ventricle) and three 
apical views (four chamber, two chamber, and long axis) are displayed. The operator 
can ensure that the entire left ventricular cavity and walls are included in the full 
volume before storing the volume data set.
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showing the torsion of this segment. The white curve shows 

the global torsion, which is calculated by dividing the twist 

by the length of the left ventricle (Figure 3B).

Clinical applications
3D STE has been applied in several clinical subsettings, 

mainly for research purposes (Table 3).

Coronary artery disease 
Systolic LV function based on visual wall motion analysis and 

LVEF measurement and visual wall motion abnormalities 

Figure 2 3D longitudinal (A), circumferential (B), radial (C), and area (D) strain imaging, based on speckle tracking in a healthy volunteer. For each panel, the upper part 
shows a plot with yellow traces for each of the 17 segments, in addition to a white trace for the global strain. The lower part shows a color-coded bull’s eye plot with 
instantaneous strain values. The instantaneous global strain is shown marked with a “G:” to the lower left of the bull’s eye plot. (Care should be taken when comparing 2D 
AFI and 3D strain, as the strain values in 2D AFI are the peak systolic values, including positive peaks, while in 3D strain representation the strain values from the current 
frame, typically the end systolic frame, are used.)
Abbreviations: 3D, three dimensional; 2D, two dimensional; AFI, .

A B C D

using 2D echocardiography is subjective and poorly sensi-

tive and reproducible. Myocardial deformation indexes, 

strain and strain rate, have emerged as helpful tools for a 

comprehensive assessment of myocardial function,23 being 

superior to wall motion analysis and LVEF in detecting early 

myocardial dysfunction and outcomes in ischemic patients.24 

However, 2D strain suffers for the intrinsic limitations of 2D 

imaging, which prevents a full assessment of the complex 

myocardial deformation, for radial and circumferential 

strains in particular. RT3D-STE, having the potentials to 

overcome these limitations,25,26 provides a more accurate and 

convenient assessment in this clinical setting. The possible 

incremental value of resting 3D STE in the detection of 

early-stage LV impairment in patients with coronary artery 

disease has been widely assessed.7,27,28 RT3D-STE, in par-

ticular GAS,29 has been evaluated for regional wall motion 

indexes, demonstrating its superiority over 2D STE.26 When 

compared to single-photon emission computed tomography 

and magnetic resonance imaging, longitudinal and area 

strains by 3D STE correlate with infarct size, providing 

an accurate and reproducible measurement of myocardial 

deformation in patients with ischemic LV dysfunction. 

The superiority of RT3D-STE is salient for regional strain 

values; in particular, area, longitudinal, and circumferential 

Figure 3 Three-dimensional torsion (A) and twisting (B) strain imaging, based on 
speckle tracking in a healthy volunteer.

A B
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3D strains correlate with global scar extent.30–32 RT3D-STE 

may provide indirect means for the accurate determination 

of transmural involvement in infarct segments.33,34 In this 

context, one of the major potentials for RT3D-STE’s future 

is the possibility to widen knowledge into cardiac patho-

physiology and disease process.

Moreover, RT3D-STE may provide a new way to assess 

myocardial viability35 and ischemia-related changes in 

myocardial deformation before the stage of wall motion 

abnormality in patients with acute myocardial infarction.36,37 

In patients with myocardial bridging, GLS and AS correlated 

with the increasing severity of systolic compression of the 

mural coronary artery and were significantly lower in patients 

with reduced fractional flow reserve (<0.75) than in those 

with normal fractional flow reserve. These data suggest that 

RT3D-STE can detect subtle myocardial dysfunction in 

patients with myocardial bridging.38

New initial experiences with 3D-derived STE highlight 

the potential usefulness of this technique during stress 

echo, in both animals and humans.39,40 However, this kind 

of application is still far from being of current clinical 

practice. 

Arterial hypertension
Heart involvement in patients affected by arterial hyperten-

sion has been extensively evaluated by standard echocardiog-

raphy. Measurements of LV mass identify LV hypertrophy, 

which is an independent predictor of morbidity and mortal-

ity,41 whereas LV concentric or eccentric (normal) geometry 

is differentiated by relative wall thickness.42

Measures of LV systolic function derived from standard 

2D echocardiography and Doppler indices of LV diastolic 

function, as well as innovative evaluation of myocardial 

deformation by two-dimensional STE, are used in a large 

number of studies in hypertensive cohorts. By this technique, 

longitudinal strain has been demonstrated to be lower in 

hypertensive patients with LV hypertrophy than in those 

without LV hypertrophy.43 2D GLS is the earliest systolic 

deformation component to be impaired in native hypertensive 

patients when diastolic abnormalities are already detectable, 

but LV geometry is still normal.44

In this context, RT3D-STE can easily provide additional 

insight.45 RT3D echo has been successfully compared in 

different clinical contexts, with CMR for the assessment of 

the LV mass.46–48

In the assessment of LV function, comparative studies 

have shown that global strains derived from RT3D-STE are as 

accurate as LVEF obtained by 2D and 3D echocardiography. 

There is a good correlation between 2D GLS and 3D GLS 

as well as good intra-observer, interobserver, and test–retest 

agreements. Time for image acquisition to post-processing 

analysis was significantly reduced with RT3D-STE compared 

with 2D STE.49

Galderisi et al50 first assessed LV structure, systolic 

function, and strain components using RT3D-STE as an 

alternative to standard echocardiography in newly diagnosed 

hypertensive patients. Myocardial deformation impairment 

involved GLS, GRS, and GAS and was manifest in patients 

without LV hypertrophy and with normal EF, showing 

an additional and reliable detection of early myocardial 

deformation abnormalities. Interestingly, all the parameters 

obtained by RT3D-STE had good reproducibility and thus 

appear amply reliable in the setting of hypertensive patients. 

In another study,51 impaired LV mechanics and functional 

capacity were found in uncontrolled and untreated hyperten-

sive patients in comparison with controls and well-controlled 

hypertensives. 3D GLS, GCS, GRS, and GAS were signifi-

cantly decreased in patients with untreated or inadequately 

Table 3 Clinical applications of real-time three-dimensional 
speckle tracking echocardiography

Diseases

Coronary artery disease Accurate assessment of LV function and 
detection of early-stage LV dysfunction,31,37 
wall motion abnormalities,7,26,28,29 infarction 
size,30–34 and myocardial viability35

Arterial hypertension Better assessment of LV mass and early 
detection of LV dysfunction50–53

Heart failure Assessment of global LV deformation,56,57 
prediction of LV filling pressure degree,58 
diagnosis and monitoring of posttransplant 
acute rejection,59,60 and prediction of 
cardiovascular events61

Dyssynchrony Improvement in CRT candidate selection81 
and prediction of response to CRT79,80

Valvular heart disease Most sensitive and appropriate method 
to evaluate LV myocardial deformation 
in aortic stenosis and regurgitation,92 
assessment of the effects on LV function 
after TAVI93,94 and MitraClip97,99

Athlete’s heart Better assessment of determinants 
of LV performance and myocardial 
deformation99–101

Cardiotoxicity Early detection of cardiotoxicity and 
cardiotoxicity risk prediction105,106

Cardiomyopathies Subclinical myocardial deformation 
impairment in DM1 patients,111 amyloidosis 
“function-pattern-based” differentiation 
from HCM112

Abbreviations: LV, left ventricle; CRT, cardiac resynchronization therapy; TAVI, 
transcatheter aortic valve implant; DM1, dystrophia myotonica type 1; HCM, 
hypertrophic cardiomyopathy. 
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controlled hypertension, but were comparable among the 

normal group and well-controlled hypertensive patients. 

Accordingly, LV torsion and twist rate had analogous trends. 

On the contrary, LV untwisting rate progressively worsened 

from the controls, through the well-controlled group, to the 

patients with untreated or uncontrolled hypertension. 

LV phasic strain rate, subendocardial strain rate during 

systole, assessed by RT3D-STE proved to be a valuable tool 

for the prediction of subclinical LV layer dysfunction in 

hypertensive patients.52 RT3D-STE was investigated in well-

treated type 2 diabetes patients with or without hypertension. 

3D STE was able to detect even subclinical changes. In fact, 

impaired LV strain shown in early-stage diabetic patients 

with well-controlled blood glucose and blood pressure was 

deteriorated by concomitant hypertension.53

Heart failure
Early diagnosis and treatment of patients with asymptomatic 

LV systolic dysfunction and overt heart failure (HF) are pro-

moted by recent major HF guidelines,54 as this population’s 

life expectancy and prevalence of cardiovascular risk factors 

in general population are rising globally. LVEF is the most 

used echocardiographic index of myocardial systolic func-

tion, despite its low sensitivity. Early myocardial dysfunction 

may alternatively be comprehensively detected using strain, 

a direct measure of myocardial tissue deformation.55

In this context, the newly developed RT3D-STE is an 

encouraging tool to accurately measure LV strain.7,16 GLS, 

GCS, GRS, and in particular GAS, accordingly with LVEF, 

have shown a downward trend from normal controls to 

patients with end-stage HF.56,57 Measurement of GAS is a 

sensitive and reproducible tool for an accurate and compre-

hensive assessment of global LV deformation.56 GAS and in 

particular the early diastolic area change rate (E-ACR) have 

been tested: E and E-ACR ratio (E/E-ACR) can accurately 

predict LV filling pressure degree in both patients with 

reduced and preserved EF (≥50 %).58 RT3D-STE has also 

been evaluated in the identification of myocardial patho-

physiological mechanics in heart transplant recipients and 

for noninvasive monitoring and diagnosis of posttransplant 

acute rejection.59,60 Significantly impaired global and regional 

mechanics obtained with RT3D-STE, particularly evident 

for GLS, had independent association with NYHA func-

tional class, highlighting a relationship between myocardial 

mechanics and clinical status in heart transplant recipients. 

Moreover, some authors have proved that the assessment of 

contractile reserve during dobutamine infusion using 3D 

GCS in patients with idiopathic dilated cardiomyopathy may 

predict cardiovascular events, with clinical implications for 

these patients’ management.61

Dyssynchrony 
LV dyssynchrony has been studied in assessing cardiac 

resynchronization therapy (CRT) patients’ selection and 

responses. CRT is an established therapy for patients with 

advanced chronic HF with electromechanical delay.62,63 In 

patients with HF and cardiac dyssynchrony, CRT has benefits 

on symptoms, functional capacity, cardiac function, and prog-

nosis.64 QRS morphology and width are important determi-

nants of response to CRT, although approximately one-third 

of patients do not improve after CRT.65 Moreover, little is 

known on how to select patients for CRT for class IIa or IIb 

indication (with non-left bundle branch block morphologies 

or QRS duration of 120–149 ms). In this context, baseline 

mechanical dyssynchrony may contribute to further selection 

criteria and add prognostic information.66 The presence and 

grade of baseline mechanical dyssynchrony, along with the 

intercourse with QRS duration and morphology, is studied in 

relation to CRT response and following outcomes. Despite 

several imaging techniques and standard echocardiographic 

parameters have been evaluated for the identification of LV 

mechanical dyssynchrony, in a multicenter study none of 

them showed evident improvement in CRT candidate selec-

tion when compared to standard criteria.67

3D echocardiographic measurement of LV systolic 

dyssynchrony index (SDI) may be a valuable and feasible 

tool for the prediction of short- and long-term response 

to CRT and further improve patient selection for CRT.68,69 

Moreover, different studies have demonstrated the superior-

ity of 3D echocardiography over tissue Doppler imaging in 

the assessment of LV reverse modeling and identification 

of optimal pacing site.70,71 SDI quantifies the severity of 

cardiac dyssynchrony as it is the deviation of the time taken 

to reach minimum regional volume for each segment. It is 

reproducible and has good interobserver and intra-observer 

correlation coefficients.72 There is an inverse relationship 

between SDI and 3DLVEF.73 Baseline SDI predicts acute 

hemodynamic response74 and long-term outcomes65,73,75 of 

CRT. Delgado et al76 found that SDI was higher in dilated 

cardiomyopathy patients compared with healthy volunteers 

and after receiving CRT, the SDI presented an immediate 

and progressive decrease.

STE is a promising tool to assess mechanical dys-

synchrony as it overcomes the intrinsic limits of standard 

techniques. A combined assessment of radial, circumfer-

ential, and longitudinal SDI can improve the prediction of 
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responders.77 Radial dyssynchrony, assessed with 2D STE, 

was associated with significant ameliorations in clinical 

outcomes after CRT, independently of QRS duration or 

morphology.78

Newly developed 3D STE system quantifies endocardial 

area change ratio (area strain) and area strain dyssynchrony 

index (i.e., the average difference between peak and end-sys-

tolic area strain derived from 16 segments). GAS coupled with 

GLS and GCS are considered the best predictors of response 

to CRT;79 in particular, GAS is superior to other 3D strain 

measurements.80 Interestingly, some authors have suggested 

that 3D STE may be used to select HF patients with narrow 

QRS for CRT.81 It is also worthy to note that LV dyssynchrony 

has been often detected in hypertensive patients with normal 

LV systolic function, with or without LV hypertrophy and with 

no evidence of HF.82,83 In patients with LV hypertrophy, dys-

synchrony might be a mechanism involved in the progressive 

worsening of clinical status, toward systolic heart failure.84,85 

In this clinical setting, LV dyssynchrony assessed by 3D 

imaging may have an additional role.86

Valve heart disease
The use of RT3D-STE has been expanded to anatomical and 

functional assessment of cardiac structures. We will focus 

our attention on aortic and mitral valves and their disorders.

Aortic valve
In patients with aortic valve stenosis, progressive LV hyper-

trophy is a response to pressure overload and may be due to 

interstitial myocardial fibrosis starting at the subendocardial 

layers and progressing toward replacement fibrosis.87 Suben-

docardial fibers are more vulnerable to increased wall stress 

and decreased myocardial perfusion.88 Reduced LVEF in 

these patients may be due to either afterload mismatch or 

reduced myocardial perfusion and increased myocardial 

oxygen consumption, which lead to impairment of myocar-

dial contractility.88

Strain imaging has demonstrated to be the most sensitive 

and appropriate method to evaluate LV myocardial defor-

mation89 and accordingly enables a better characterization 

of subtle changes in LV performance in aortic stenosis 

patients.90,91 Strains measured by RT3D-STE have shown 

to be useful indices of early-stage LV dysfunction caused 

by aortic valve disease. Longitudinal strain is more vulner-

able to pressure overload caused by aortic stenosis, whereas 

circumferential strain is more sensitive to volume overload 

due to aortic regurgitation.92

The usefulness of RT3D-STE has been proven in the assess-

ment of the effects on LV function after either transcatheter 

aortic valve implantation for aortic stenosis or surgical valve 

replacement for aortic stenosis or regurgitation.93,94 Also, this 

technique has been proven to have an incremental value in 

patients with optimal aortic coarctation repair. The authors 

suggest that decreased GAS found in this population, as index 

of subtle subendocardial microvascular damage, might be an 

early indicator of late cardiovascular complications, highlight-

ing RT3D-STE potential in risk stratification.95

Mitral valve
The mitral valve is crucial in LV and left atrial function; there-

fore, the assessment of its physiology is necessary in mitral 

valve disease diagnosis and treatment. RT3D echo allows a 

precise and accurate evaluation of both mitral annulus size 

and function not only in normal subjects but also in patients 

affected by cardiomyopathies in which anatomic alterations 

of mitral valve apparatus are expected, such as dilated car-

diomyopathy and hypertrophic cardiomyopathy.96 Studying 

mitral valve function expands the knowledge of the underly-

ing pathophysiology of the mitral regurgitation in different 

cardiomyopathies and affects therapeutic decision making, as 

its accurate assessment is crucial either for selection of patient 

in which invasive valve correction procedures are indicated or 

for latter (subsequent) LV function evaluation. In this context, 

RT3D-STE showed lower post-procedural LV strain values 

in patients with worse preexisting right ventricular function 

as well as LV and right ventricular strain improvement after 

MitraClip implantation.97,98

These findings suggest a potential prognostic role of 

RT3D-STE that may help in guiding treatment strategies on 

the basis of marked LV or RV impairment.

Athlete’s heart
RT3D-STE analysis allows a deeper physiological under-

standing of LV contraction mechanics in different types of 

athletes and is thus a feasible and helpful echocardiographic 

technique for the assessment of sport-specific pattern of 

ventricular morphological and functional remodeling.99 

Determinants of LV performance and myocardial deforma-

tion properties in the athlete’s heart have been investigated 

using RT3D-STE. By using 3D STE, GLS and GCS did not 

differ among sedentary controls and athletes with tricuspid or 

bicuspid aortic valve.100 In strength athletes, GLS, GCS, GAS, 

and GRS were lower than in sedentary normal volunteers,99 

whereas competitive endurance athletes showed higher GLS, 

GAS, and GCS in comparison with sedentary controls. Con-

versely, GRS did not differ significantly between endurance 

athletes and controls, it appears therefore not involved in the 

supernormal myocardial function process at rest.101
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Cardiotoxicity
Studies of early myocardial changes induced by chemotherapy 

have demonstrated that alterations of myocardial deformation 

precede significant changes in LVEF. Using 2D STE, GLS 

appears to be the most useful parameter for the prediction of 

cardiotoxicity, most commonly defined as a >5% reduction 

in symptomatic patients (or >10% reduction in asymptom-

atic patients) in LVEF from baseline to an LVEF >55%.102 

Subclinical LV dysfunction is defined as a >15% reduction 

in GLS during treatment, as compared to baseline.103 In late 

cancer survivors, measures of GRS and GCS are consistently 

abnormal, even in the context of normal LVEF. Thus, 2D 

global radial strain is a reliable and sensitive tool for the early 

myocardial damage in this clinical setting.104 Recently, 3D 

strain echocardiography has been developed as a way to further 

increase the sensitivity for early detection of chemotherapy-

induced cardiotoxicity. In breast cancer patients undergoing 

anthracycline-based chemotherapy, 3D-derived GLS and GCS 

were found to be all strongly correlated with 3D LVEF. How-

ever, LV torsion was only weakly correlated to LVEF, suggest-

ing that LVEF is determined less by torsion than by 3D strain. 

With a further study, 3D strain appears to play an important role 

in chemotherapy cardiotoxicity risk prediction.105 In patients 

receiving anthracycline chemotherapy, reduced GAS was 

found even in patients with preserved LVEF, showing this may 

be a sensitive marker to detect early LV systolic dysfunction.106

Cardiomyopathies
RT3D-STE has been poorly investigated in the setting of 

patients with cardiomyopathies. Structural and electrical 

cardiac abnormalities are prevalent in asymptomatic adults 

with myotonic dystrophy 1 (MD1).107 However, little is 

known about structural cardiac abnormalities, particularly 

in asymptomatic patients with MD. Cardiac involvement in 

MD2 patients compared to MD1 patients is less frequent and 

severe. Careful cardiac evaluation is recommended in this 

patient population to identify patients at risk for potential 

major cardiac arrhythmias.108 Myocardial deformation in 

patients with MD1 has been assessed with 2D STE, show-

ing reduced GLS.109,110 RT3D-STE has demonstrated an 

impairment that involved GCS and GAS components, with 

relatively preserved GLS, in dystrophia myotonica type 1 

(DM1) patients with preserved LVEF.111 These data indirectly 

prove that, even in the early stages of the disease, DM1 might 

induce a loss of myocardial fibers mostly involving the mid-

wall myocardium layer, which is detectable by 3D STE, but 

not by 2D STE. In one single study, 3D speckle tracking 

echocardiographic parameters enabled differentiation of 

cardiac amyloidosis and hypertrophic cardiomyopathy by 

a disease-specific pattern. Comparing cardiac amyloidosis 

and hypertrophic cardiomyopathy, basal GRS was reduced 

in patients with amyloidosis; furthermore the “physiologi-

cal” basal–apical RS gradient had oppositional tendencies 

in cardiac amyloidosis and hypertrophic cardiomyopathy, 

suggesting a “function-pattern-based” differentiation of these 

two pathologies.112

Implications and future directions
Perceiving the drawbacks of nonquantitative measurements 

such as eyeballing evaluation of LVEF and regional myo-

cardial function, an integrative approach with 2D and 3D 

echocardiography is auspicable for an objective quantifica-

tion of LV volumes and functions as well as a complete 

standardization of LV function assessment. In recent years, 

RT3D-STE is proving its additional value over 2D STE in a 

wide spectrum of clinical applications. Nonetheless, as with 

any developing technology, the interest must be supported 

by a critical evidence-based evaluation. The evaluation of 

the particular capabilities provided by a novel technique 

should be coupled with the recognition of its limitations. 

Some of the main limitations of the RT3D-STE method are 

its lower spatial resolution compared to 2DE and the need 

of a single-beat acquisistion in presence of arrythmias. 

One of the main limitations of the RT3D-STE method is its 

lower spatial resolution compared to 2D echocardiography. 

Also, in the presence of arrhythmias multi-beat acquisition 

is not feasible. Future advances in both spatial and temporal 

resolution will improve performance and further widen 

RT3D echocardiography imaging clinical applications. To 

date, the positive results, however, are providing an insight 

on this technique’s potential. The definition of standardized 

processing and analyzing methods as well as appropriate 

utilization criteria should be based on current evidence. In 

relation with some preliminary experiences showing the 

importance of combining the 3D volumetric assessment of 

the right ventricle with 2D STE of the same chamber,113–115 

novel RT3D-STE software of the right ventricle could also 

have successful applications in the clinical setting. Differ-

ent studies of right ventricle 3D STE have highlighted the 

potential of incremental value of this technique, in particular 

in the clinical setting of pulmonary hypertension.115–117
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