ORIGINAL RESEARCH

Associations between dopamine D2 receptor gene polymorphisms and schizophrenia risk: a PRISMA compliant meta-analysis

Hairong He¹ Huanhuan Wu^{1,2} Lihong Yang¹ Fan Gao¹ Yajuan Fan³ Junqin Feng³ Xiancang Ma^{1,3}

¹Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, ²College of Pharmacy, Xi'an Medical University, ³Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China

Correspondence: Xiancang Ma Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi 710061, People's Republic of China Tel +86 29 8532 3614 Fax +86 29 8532 3473 Email maxiancang@163.com

Objective: To determine the relationships between dopamine D2 receptor gene polymorphisms and the risk of schizophrenia using meta-analysis.

Method: The PubMed, Embase, and China National Knowledge Infrastructure databases were searched to identify relevant literature published up to February 2016. The allele contrast model was used. Stata software was used for statistical analysis, with odds ratios (ORs) and 95% confidence intervals (CIs) calculated to evaluate the associations between dopamine D2 receptor gene polymorphisms and the risk of schizophrenia. Meta-regression and publication bias, trim-and-fill, subgroup, sensitivity, cumulative, and fail-safe number analyses were also performed.

Results: This meta-analysis included 81 studies. The rs1801028 and rs1799732 were associated with schizophrenia risk among Asians (P=0.04, OR =1.25, 95% CI =1.01–1.55; P<0.01, OR =0.76, 95% CI =0.63–0.92, respectively), while the rs6277 was associated with schizophrenia risk in Caucasians (P<0.01, OR=0.72, 95% CI =0.66–0.79). The rs1800497 was also associated with schizophrenia risk in population-based controls (P<0.01, OR =0.84, 95% CI =0.72–0.97). The rs6275, rs1079597, and rs1800498 were not associated with schizophrenia risk. In addition, meta-regression indicated that the controls may be sources of heterogeneity for the rs1801028 single-nucleotide polymorphism (SNP), while ethnicity may be sources of heterogeneity for the rs6277 SNP. Publication bias was significant for the rs1801028 SNP, and this result changed after the publication bias was adjusted using the trim-and-fill method.

Conclusion: This meta-analysis demonstrated that the rs1801028 may be a risk factor for susceptibility to schizophrenia among Asians, while the rs1799732 may be a protective factor for that population. Large-sample studies are necessary to verify the results of this meta-analysis. **Keywords:** dopamine D2 receptor, polymorphisms, schizophrenia

Introduction

Schizophrenia is a severe mental disorder characterized by changes in its higher functions and deterioration of behavior, cognition, emotions, motivation, and perception, and is marked by socio-occupational dysfunction. Schizophrenia manifests with a wide variety of positive (auditory hallucinations and paranoid delusions), negative (affective flattening, anhedonia, and alogia), and cognitive (declined attention and memory) symptoms.¹ It is a complex multifactorial psychiatry disorder involving genetic and environmental factors, with a global lifetime prevalence of 0.5%–1%.²

Family, twin, and adoption studies have shown that genetic factors play a significant role in the pathogenesis of schizophrenia, with the heritability of schizophrenia being estimated at 70%–80%.^{3,4} Additionally, Lee et al estimated that 23% of variation in

Neuropsychiatric Disease and Treatment 2016:12 3129-3144

3129

 Commercial use of this work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution — Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nd/3.0). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). liability to schizophrenia is captured by single-nucleotide polymorphisms (SNPs).⁵ For schizophrenia, some genetic factors were shared with other psychiatric disorders (bipolar disorder, major depressive disorder, autism spectrum disorders, and attention-deficit/hyperactivity disorder),⁶ and some genetic factors associated with its risk were overlapped with those associated with reproduction traits (eg, age at first birth).⁷ In short, schizophrenia is highly polygenic.⁸

The dopamine hypothesis is one of the main ideas for explaining the etiology of schizophrenia.⁹ There are several lines of evidence implicating dopamine D2 receptor (DRD2) as the main candidate gene for the risk of schizophrenia.¹⁰ In humans, the DRD2 gene is located on chromosome 11 at q22-q23, extends over 270 kb, and has eight exons.¹¹ Associations between schizophrenia risk and four SNPs have been widely studied: rs1799732 (-141C Ins/Del), rs1801028 (311 Ser/Cys), rs1800497 (TaqIA), and rs6277 (C957T).^{12,13} The rs1799732 SNP is located in the DRD2 promoter region and has been demonstrated to affect gene expression in vitro.14 The rs1801028 SNP is the missense variant 960C/G in exon 7 of the DRD2 gene¹⁵ that can alter the physiology and function of the D2 receptor.12 The rs1800497 SNP was previously thought to be located in the DRD2 3'-untranslated region and was recently identified as being in exon 8 of the ankyrin repeat and kinase domain containing 1 (ANKK1) gene. This SNP has been considered to alter substrate-binding specificity.¹⁶ The rs6277 SNP is located in exon 7 of the DRD2 gene and alters mRNA folding, leading to a decrease in mRNA stability and translation, and markedly changing dopamine-induced up-regulation of DRD2 expression.¹⁷ In addition, associations between schizophrenia risk and the rs6275 (C939T), rs1079597 (TaqIB), and rs1800498 (TaqID) SNPs have been widely reported.18,19

While associations between *DRD2* gene polymorphisms and the risk of schizophrenia have been studied extensively, there are still some uncertainties about these associations. The present meta-analysis was therefore performed to further identify the associations between *DRD2* gene polymorphisms and schizophrenia risk. Meta-regression and publication bias, nonparametric trim-and-fill, subgroup, sensitivity, cumulative, and fail-safe number analyses were also performed.

Method

Search strategy

The PubMed, Embase, and China National Knowledge Infrastructure databases were independently searched by two reviewers (He and Wu) to collect the literature related to associations between *DRD2* gene polymorphisms and schizophrenia risk. The last search update was performed in February 2016, and the following keywords were used in the literature search: "schizophrenia", "psychosis", "schizophrenic," "DRD2," "dopamine receptor 2," "dopamine receptor D2", "dopamine D2 receptor", "polymorphism", "variant", "variation", "allele", and "genotype". The species was limited to human. Moreover, the literature references in all of the included documents were searched to find more studies that were consistent with the eligibility criteria.

Eligibility criteria

- 1. Studies that met the following inclusion criteria were included:
 - a) Research study with a case-control design.
 - b) Written in Chinese or English.
 - c) Investigation of the associations between *DRD2* gene polymorphisms and the risk of schizophrenia.
 - d) Providing sufficient allele or genotype distribution data of the included cases and controls.
- 2. Studies that met any of the following exclusion criteria were excluded:
 - a) Repetition of information in other literature.
 - b) A review, comment, or conference proceedings.
 - c) Results obtained in an animal model.
 - d) Series of reports or case reports.

Research screening

The studies were first screened by browsing the titles and abstracts of the identified documents. Secondary screening was then performed by reading the full text of selected reports. Finally, data extraction and quality assessment were performed for the included studies.

Data extraction

In our present study, two reviewers (He and Wu) independently extracted the following information from the included literature: first author, publication year, mean age of the cases and controls, country, ethnicity, source of controls, numbers of cases and controls, *DRD2* gene locus, diagnostic criteria of schizophrenia, genotyping method, and conformity with Hardy–Weinberg equilibrium (HWE) for the controls. If the allele or genotype distribution data of the cases and controls were not reported in the original articles, the corresponding author was contacted by mail to obtain this information.

Quality assessment

Two authors (HH and HW) independently performed quality assessment using quality scoring criteria²⁰ based on criteria previously applied in observational studies for addressing genetic epidemiological issues, with the scores ranging from 0 points (worst) to 9 points (best) (Table S1). A study was classified as being of low quality when it scored <6 points. Sensitivity analysis was conducted by deleting these low-quality studies.

Statistical analysis

Odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the strengths of the associations between *DRD2* gene polymorphisms and schizophrenia risk. Pooled effect sizes were calculated using the random-effects model. This model evaluated different underlying influences considering both within- and between-study variations, which provided the advantage of accommodating diversity between studies and yielding a more conservative estimate of the assessed effect.²¹ The present study used an allele comparison model because this maximized the number of included studies.

Cochran's Q statistic was used to estimate the degree of heterogeneity in the included studies. Heterogeneity was considered to be high when the *P*-value was <0.1. The heterogeneity was also quantified using the l^2 statistic and was considered high when $l^2>50\%$. Based on clinical knowledge, the ethnicity and source of controls were considered to be responsible for heterogeneity, and so these parameters were set as covariates in the meta-regression. A subgroup analysis was also conducted. Publication bias was analyzed using Begg's funnel plots. An asymmetrical funnel plot indicated the presence of significant publication bias. The symmetry of Begg's funnel plots was judged using Egger's linear regression, and a *P*-value of <0.05 was considered to indicate that the funnel plots were significantly asymmetrical. The trim-and-fill method was used to correct for publication bias and also to assess the impact of publication bias on the results.

Sensitivity analysis was used to assess both the potential impact of single studies on the pooled effect size and the impact of removing low-quality studies on the obtained results. Cumulative analysis by publication year was used to explore temporal trends in the results. Finally, the fail-safe number of negative studies that would be required to nullify (ie, make P>0.05) the effect size was calculated.

All of the statistical analyses were conducted using Stata software, version 12.0 (Stata Corporation, College Station, TX, USA).

Results

Study characteristics

A flow chart of the study selection procedure is shown in Figure 1. Briefly, 1,267 studies were identified after eliminating 304 duplications. After reviewing the abstracts or reading full texts carefully according to eligibility criteria,

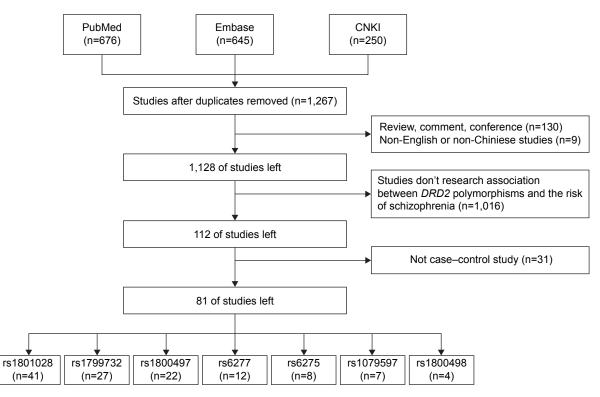


Figure I Flow diagram of the study selection process.

Abbreviations: CNKI, China National Knowledge Infrastructure; DRD2, dopamine D2 receptor.

a further 1,186 studies were excluded. Finally, 81 studies were identified for exploring the associations between *DRD2* gene polymorphisms and susceptibility to schizophrenia in a meta-analysis.

The main features of the included studies are listed in Table 1. The 81 studies comprised 45 studies focused on Caucasians, 34 on Asians, and 2 on mixed populations. The distributions of genotypes in the control groups deviated from HWE for the rs1801028, rs1800497, and rs1800498 SNPs in seven studies.^{11,22–27} The quality assessment revealed that four studies were of low quality.^{26,28–30}

Association between the rs1801028 (311 Ser/Cys) and schizophrenia risk

A meta-analysis of 42 case–control studies (9,771 cases and 11,900 controls) revealed that the variant allele G (Cys) was associated with increased schizophrenia risk in all populations (P=0.009, OR =1.23, 95% CI=1.05–1.44; Figure 2A). The fail-safe number was 104.52, and there was moderate heterogeneity (P=35%). Meta-regression indicated that the source of controls may have been responsible for this heterogeneity (P<0.01). The subgroup analysis, whose results are presented in Table 2, revealed that the G allele was associated with increased susceptibility to schizophrenia in Asians (P=0.04, OR =1.25, 95% CI=1.01–1.55) and hospital-based controls (P<0.01, OR =1.91, 95% CI =1.39–2.61).

Sensitivity analysis indicated that no single study qualitatively changed the pooled ORs (Figure 3). Removing the low-quality studies^{26,29,30} did not change the results. Four of the studies deviated from HWE,^{22,24,26,27} but removing them from the analysis did not change the results. Cumulative analysis by publication year confirmed that pooled ORs and 95% CIs were stable and that there was a reliable temporal trend in the results from 1996³¹ (Figure 4).

In terms of publication bias, Egger's linear regression showed that the funnel plots were asymmetrical (P=0.023). The trim-and-fill method suggested that eight studies were missing, and the results for the association between the rs1801028 SNP and schizophrenia changed after replacing the data for these eight studies (OR =1.063, 95% CI =0.892–1.266; Figure 5). This indicates that our analyses were not stable and that future research is very likely to produce different results.

Association between the rs6277 (C957T) and schizophrenia risk

A meta-analysis of 12 case–control studies (2,919 cases and 3,600 controls) revealed that the variant allele T was associated with decreased schizophrenia risk (P=0.002, OR =0.80, 95% CI =0.69–0.92; Figure 2B). The failsafe number was 91.00, there was high heterogeneity (I^2 =58.5%), and meta-regression indicated that ethnicity may have been responsible for this heterogeneity (P<0.01). A subgroup analysis based on ethnicity showed that the T allele was associated with decreased susceptibility to schizophrenia in Caucasians (P<0.01, OR =0.72, 95% CI =0.66–0.79).

Cumulative analysis by publication year did not show a reliable temporal trend. Sensitivity analysis showed that no single study qualitatively changed the pooled ORs. In terms of publication bias, Egger's linear regression showed that the funnel plots were symmetrical (P=0.119).

Association between the rs1799732 (-141C Ins/Del) and schizophrenia risk

A meta-analysis of 27 case-control studies (6,770 cases and 7,347 controls) demonstrated that the rs1799732 SNP was not associated with schizophrenia risk (P=0.26, OR =0.91, 95% CI =0.78-1.07; Figure 2C). There was high heterogeneity ($l^2=76\%$), and meta-regression indicated that neither ethnicity (P=0.119) nor the source of controls (P=0.452) was responsible for this heterogeneity. A subgroup analysis based on ethnicity showed that the variant type (-141C Del) was associated with decreased susceptibility to schizophrenia in Asians (P=0.004, OR =0.76, 95% CI =0.63–0.92). A subgroup analysis based on the source of controls found no significant association between the rs1799732 SNP and schizophrenia risk in population-based controls or hospital-based controls. In terms of publication bias, Egger's linear regression showed that the funnel plots were symmetrical (P=0.173).

Association between the rs1800497 (TaqIA) and schizophrenia risk

A meta-analysis of 22 case–control studies (4,017 cases and 4,209 controls) demonstrated that the rs1800497 SNP was not associated with schizophrenia risk (P=0.06, OR =0.87, 95% CI =0.75–1.01; Figure 2D). There was high heterogeneity (l^2 =72%), and meta-regression indicated that neither ethnicity (P=0.612) nor the source of controls (P=0.372) was responsible for this heterogeneity. A subgroup analysis based on the source of controls revealed that the variant allele A (A2) was associated with decreased schizophrenia risk in population-based controls (P<0.01, OR =0.84, 95% CI =0.72–0.97). A subgroup analysis based on ethnicity revealed that the rs1800497 SNP was also not associated with susceptibility to

Author	Year	Country	Ethnicity	No of	No of sample	Control	Mutation	Criteria	SNP	HWE	Quality
				Cases	Controls	sources	analysis method			(P-value)	score
Caprini et al ²⁸	2011	Scandinavia	Caucasians	837	1,471	PB	1	ICD-10 + DSM-III-R + DSM-IV	TaqID	Yes	S
Dollfus et al ³⁵	1996	France	Caucasians	62	161	PB	PCR-RFLP	DSM-III-R	TaqIA	Yes	8
Luo ²⁴	2008	China	Asians	211	201	PB	Direct sequencing	DSM-IV	-141C Ins/Del	Yes	9
Watanabe et al ³⁶	2012	Japan	Asians	648	664	PB	TaqMan	DSM-IV	Ser 311 Cys	Yes	7
Crawford et al ³¹	1996	America	Caucasians	84	81	HB	Direct sequencing	DSM-III-R	Ser 311 Cys	Yes	9
Dubertret et al ¹³	2010	France	Caucasians	50	50	PB	PCR	DSM-IV	TaqlB	I	I
									TaqlA	Yes	7
Himei et al ³⁷	2002	Japan	Asians	190	103	PB	PCR-RFLP	DSM-IV	Ser 311 Cys	Yes	7
									-141C Ins/Del	Yes	7
Jonsson et al ⁸⁷	1996	Sweden	Caucasians	118	78	PB	PCR	DSM-III-R	TaqIA	Yes	7
Kunii et al ⁶²	2014	Japan	Asians	12	12	PB	PCR-RFLP	DSM-IV	TaqIA	Yes	8
Srivastava et al ⁴	2010	India	Caucasians (Indians)	233	224	PB	PCR-RFLP	DSM-IV	-141C Ins/Del	Yes	8
									TaqIA	Yes	8
									TaqlB	I	I
									Ser311Cys	Yes	8
Arinami et al ⁴⁷	1996	Japan	Asians	136	279	PB	PCR	ICD-10 + DSM-III-R	Ser 311 Cys	Yes	7
Arinami et al ⁵⁷	1 99 T	Japan	Asians	260	312	PB	PCR-RFLP	DSM-III-R	-141C Ins/Del	Yes	7
Aslan et al ²³	2010	Turkey	Caucasians	66	601	PB	PCR	DSM-IV	TaqIA	No	9
Behravan et al ^{l l}	2008	Iran	Caucasians	38	63	PB	PCR	DSM-IV	TaqlB	Yes	7
									TaqIA	No	6
Betcheva et al ¹	2009	Bulgaria	Caucasians	255	556	PB	PCR	DSM-IV	C957T	Yes	œ
									С939Т	Yes	8
Breen et al ⁶³	666 I	England	Caucasians	439	437	PB	PCR	DSM-III-R + DSM-IV	-141C Ins/Del	Yes	7
Chen et al ³⁸	1996	China	Asians	114	88	PB	PCR	DSM-III-R	Ser311Cys	Yes	9
Cordeiro et al ¹⁴	2009	Brazil	Mixed	229	733	PB	I	DSM-IV	-141C Ins/Del	Yes	8
Cordeiro and Vallada ¹⁶	2014	Brazil	Mixed	235	834	PB	PCR	DSM-IV	TaqIA	Yes	8
Dubertret et al ¹⁵	2004	France	Caucasians	103	83	PB	PCR-RFLP	DSM-IV	-141C Ins/Del	Yes	7
									TaqIB	I	I
									TaqID	I	I
									Ser311Cys	Yes	7
									TaqIA	Yes	7
Dubertret et al ¹³	2010	France	Caucasians	144	142	PB	TaqMan	DSM-IV	TaqlA	Yes	8
									C957T	I	I
									Ser311Cys	Yes	œ
									-141C Ins/Del	Yes	œ
									TaqID	I	I
									TaqlB	I	I
Fan et al ³⁹	2010	China	Asians	421	404	PB	PCR	DSM-IV	Ser 311 Cys	Yes	7
									C957T	Yes	7
									C939T	Yes	7
al ⁴⁰	2011	Russia	Caucasians	366	387	PB	PCR	ICD-10	Ser311Cys	Yes	œ
Gupta et al ⁴¹	2009	India	Caucasians (Indians)	254	225	PB	PCR	DSM-IV	-141C Ins/Del	Yes	œ

Cates Controls sources analysismethod 1 2006 Finland Cancasiane 88 384 PS PCR DSH1V 1 2006 Finland Cancasiane 13 314 PS PCR DSH1V 1 2006 Finland Cancasiane 13 314 PS PCR DSH1V 1 2006 Finlan Cancasiane 13 314 PS PCR DSH1V 2001 Spain Adams 13 134 PS PCR DSH1V 2006 India Cancasiane 13 134 PB PCR DSH1V 2001 Turleey Cancasiane 131 184 PB PCR DSH1V 2003 Finland Cancasiane 131 184 PB PCR DSH1V 2004 Finland Cancasiane 131 134 PB PCR DSH1V 2005 Finland	Author	Year	Country	Ethnicity	No of	No of sample	Control	Mutation	Criteria	SNP	HWE	Quality
etal 300 Finand Constant 18 344 PE CCR DSM-IV CSPT etal 300 Finand Canciante 18 344 PE CCR DSM-IV CSPT etal 300 Finand Canciante 18 344 PE CCR DSM-IV Serial Constante CSPT etal 200 Finan Canciante 13 346 PE CCR DSM-IV Serial Constante CSPT etal 200 Finan Canciante 13 346 PE CCR DSM-IV Serial Constante CSPT etal 200 Financ 13 346 PE CCR DSM-IV Serial Constante CSPT etal 2001 Turkey Canciante 101 145 PE CCR DSM-IV Serial Constante CSPT etal 2001 Turkey Canciante 101 145 PE DSM-IV DSM-IV					Cases		sources	analysis method			(P-value)	score
eel ¹ 200 Filment 283 File C877 eel ¹ 200 Spin Auman 281 File C877 eel ¹ 200 Spin Auman 281 284 C877 eel ¹ 200 Spin Auman 281 284 C877 eel ¹ 200 Spin Auman 21 284 C877 C937 eel ¹ 200 Spin Auman 21 264 DSH-M SeiTIC eel ¹ 2005 Spin Auman 21 264 PC DSH-M SeiTIC eel ¹ 2005 File PC DSH-M DSH-M SeiTIC SeiTIC eel ¹ 2006 File PC DSH-M DSH-M SeiTIC eel ¹ 2006 File PC DSH-M DSH-M SeiTIC eel ¹ 2006 File PC DSH-M DSH-M SeiTIC eel ¹ </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Ser311Cys</td> <td>Yes</td> <td>8</td>										Ser311Cys	Yes	8
etal 203 Final Curation 28 34 PC Constant 23 Constant 23 Constant 23 Constant 23										C957T	Yes	8
etal 2006 Final Cuestant 18 384 18 PCR DSM/V C557 etal 2006 Span Asins 21 20 Par SSM/V SM/V SSM/V SSM/V SSM/V SSM/V SM/V										C939T	Yes	8
41 197 Ppin Adams 70 101 HB PCR DSM-UIR Se311Cys Se311Cys </td <td>Hanninen et al⁶⁴</td> <td>2006</td> <td>Finland</td> <td>Caucasians</td> <td>188</td> <td>384</td> <td>PB</td> <td>PCR</td> <td>DSM-IV</td> <td>C957T</td> <td>Yes</td> <td>8</td>	Hanninen et al ⁶⁴	2006	Finland	Caucasians	188	384	PB	PCR	DSM-IV	C957T	Yes	8
etal ⁶ 2006 Spin Curstants 13 34 PB PCR DSM/V C577 1 2001 ppan Adims 21 20 PB PCR DSM/V S9311Cys 1 2001 ppan Adims 51 13 24 201 PCR DSM/V S9311Cys 1 2003 ppan Adims 51 13 26 PB PCR DSM/V S9311Cys 1 2006 India Carcians 73 20 PB PCR DSM/V S9311Cys 1 2001 Turkuy Carcians 21 14 PB PCR DSM/V S9311Cys 1 2005 Australia 201 Turkuy Carcians 213 14 PCR DSM/V	Harano ⁴²	1997	Japan	Asians	70	101	HB	PCR	DSM-III-R	Ser311Cys	Yes	9
0 2001 Ippan Asian 241 201 PB PCR DSH-IV Sed11Cys 11 2003 Jppan Asians 51 53 HB PCR DSH-IV Sed311Cys 11 2003 Jppan Asians 51 53 HB PCR DSH-IV Sed311Cys 11 2005 India Caucisation 101 145 PB PCR DSH-IV Se311Cys 11 2006 India Caucisation 101 145 PB PCR DSH-IV Se311Cys 11 2006 India Caucisation 101 145 PB PCR DSH-IV Se311Cys 12 2011 Turkley Caucisation 101 145 PB PCR DSH-IV Se311Cys 12 2011 Turkley Caucisation 121 PB PCR DSH-IV Se311Cys 12 2014 PR PCR DSH-IV </td <td>Hoenicka et al⁶⁵</td> <td>2006</td> <td>Spain</td> <td>Caucasians</td> <td>131</td> <td>364</td> <td>PB</td> <td>PCR</td> <td>DSM-IV</td> <td>C957T</td> <td>Yes</td> <td>7</td>	Hoenicka et al ⁶⁵	2006	Spain	Caucasians	131	364	PB	PCR	DSM-IV	C957T	Yes	7
1 1	Hori et al ⁴³	2001	Japan	Asians	241	201	PB	PCR	DSM-IV	Ser311Cys	Yes	7
(H) 203 PID PCR_RLP DSM-IV Secility										-141C Ins/Del	Yes	7
at 199 Swelen Curcatans 123 149 PCR DSM-III.R s-141C include at at 997 Jawa Curcatans 73 126 HB PCR DSM-III.R s-141C include at at 997 Jawa Curcatans 73 126 HB PCR DSM-III.R s-141C include at 2006 Inda Curcatans 73 60 PB PCR DSM-III.R s-141C include at 2001 Turkey Caucatans 73 60 PB PCR DSM-III.R s-141C include at 2003 Famic Caucatans 13 146 PR DSM-III.R S-311C/5 at 1794 Famic Caucatans 151 145 HB PCR DSM-III.R S-311C/5 at 1796 Famic Caucatans 151 145 HB PCR DSM-III.R S-311C/5 at 170 145 F	lwata et al ⁴⁴	2003	Japan	Asians	51	63	PB	PCR-RFLP	DSM-IV	Ser311Cys	Yes	7
etal 203 Swelen Cancains 173 236 HB PCR DSF-HIJR Ser31(Cs 1 106 rigin 2037 78 112 78 FCR DSF-HIJR Ser31(Cs 1 201 Turkey Cancasins 73 60 PB PCR DSF-HJV Ser31(Cs 1 2011 Turkey Cancasins 73 60 PB PCR DSF-HJV C9377 1 208 Spain Cancasins 113 184 PB PCR DSF-HJV C9377 1 208 Karsnia Cancasins 113 144 PB - 143(Lins/Del 1 198 PCR DSF-HJV DSF-HJV C9377 143(Lins/Del 1 198 PCR DSF-HJV DSF-HJV C9377 146(Lins/Del 1 198 PCR DSF-HJV DSF-HJV DSF-HJV 146(Lins/Del 1 198 PCR	Jonsson et al ⁶⁶	6661	Sweden	Caucasians	129	179	ΗB	PCR	DSM-III-R	-141C Ins/Del	Yes	9
a c aff 197 pan Asans 78 112 PB PCR RDC - DSN-IV Ser31Cps e aff 2001 Turkey Caucasines (indians) 101 145 PB PCR DSN-IV Ser31 Ser31 e aff 2001 Turkey Caucasines 73 60 PB PCR DSN-IV Caucasine C9337 e aff 2001 Turkey Caucasine 113 184 PB DSN-IV C337 C337 e aff 199 France Caucasine 131 184 PB DSN-IV Tadia e aff 199 Rusia Laucasine 131 344 PB - DSN-IV DSN-IV Tadia e atf 199 Rusia Caucasine 131 344 PB PCR DSN-IV	Jonsson et al ⁴⁵	2003	Sweden	Caucasians	173	236	ΕB	PCR	DSM-III-R	Ser 311 Cys	Yes	9
cal 2006 Inda Carasians (Indians) 101 145 PB PCR DSM-IV C9577 ecal ^{al} 2001 Turkey Carasians 73 60 PB PCR DSM-IV 73 61 HB PCR DSM-IV 7461 C9577 ecal ^{al} 2008 Spain Carasians 13 184 PB PC DSM-IV 7461 TagA etal ^{al} 2008 Russia Carasians 13 184 PB PC DSM-IV 141C Ins/De etal ^{al} 2008 Russia Carasians 13 148 PC DSM-IV 141C Ins/De etal ^{al} 2008 Russia Carasians 13 148 PC DSM-IV 141C Ins/De etal ^{al} 1996 Enrope Carasians 13 148 PCR DSM-IV 141C Ins/De a ^{al} 1996 Bpan Asians 13 154 PB PCR DSM-IV	Kaneshima et al ⁴⁶	1997	Japan	Asians	78	112	PB	PCR	RDC + DSM-IV	Ser311Cys	Yes	7
n 2011 Turkey Caucasins 73 60 PB PCR.RELP DSM-V -141C ins/Del cali 2008 Spain Caucasins 73 60 PB PCR DSM-V -141C ins/Del cali 2008 Spain Caucasins 113 184 PB - -141C ins/Del cali 2005 Australia Caucasins 151 145 HB PCR DSM-V -141C ins/Del vect ll* 2005 Australia Caucasins 151 145 HB PCR DSM-V -141C ins/Del vect ll* 2005 Spain Caucasins 151 145 HB PCR DSM-V -141C ins/Del alt 1996 Expent Caucasins 121 PB PCR DSM-V -141C ins/Del alt 1998 PCR DSM-V DSM-V DSM-V -141C ins/Del alt 1998 PCR DSM-V DSM-V DSM-V	Kukreti et al²	2006	India	Caucasians (Indians)	101	145	PB	PCR	DSM-IV	C957T	Yes	8
0 2011 Turkey Caucasians 23 60 PB PCR.RFLP DSN-IV -14/C Ins/Del etal [#] 2008 Spain Caucasians 243 291 HB PCR DSN-IV -14/C Ins/Del etal [#] 1994 France Caucasians 113 194 PB - - -14/C Ins/Del etal [#] 1998 Ergland Caucasians 113 144 PB PCR DSN-IV -14/C Ins/Del etal [#] 1998 Ergland Caucasians 151 145 HB PCR DSN-IV -14/C Ins/Del etal [#] 1998 Ergland Caucasians 151 145 PR PCR DSN-IV -14/C Ins/Del etal [#] 1998 Ergen Caucasians 170 121 PB PCR DSN-IV -14/C Ins/Del a ¹⁷ 1998 Ergen Caucasians 137 2007 Spain -44/C Ins/Del a ¹⁸ 2007<										C939T	Yes	8
ec alle 2008 Spain Curcaians 243 291 HB PCR DSN-IV TadiA tall 1934 France Curcaians 113 184 PB DSN-IIV -141C ins/Del et all 1936 Austrains 151 146 PB DSN-IV -141C ins/Del et all 2008 Austrains 151 134 PB PCR DSN-IV -141C ins/Del vet all 2008 Russin 151 134 PB PCR DSN-IV -141C ins/Del all 1936 Jpan Asians 151 121 PB PCR DSN-IV -141C ins/Del all 1936 Jpan Asians 170 121 PB PCR DSN-IV -141C ins/Del all 1936 Jpan Asians 170 121 PB PCR DSN-IV -141C ins/Del all 1936 Jpan Caucasians 123 <td>Kurt et al⁶⁷</td> <td>2011</td> <td>Turkey</td> <td>Caucasians</td> <td>73</td> <td>60</td> <td>PB</td> <td>PCR-RFLP</td> <td>DSM-IV</td> <td>-141C Ins/Del</td> <td>Yes</td> <td>7</td>	Kurt et al ⁶⁷	2011	Turkey	Caucasians	73	60	PB	PCR-RFLP	DSM-IV	-141C Ins/Del	Yes	7
tat ¹¹ 1994 France Curcasians 113 184 PB DSM-II-R Sea311C/s et allo 2005 Australia Caucasians 13 144 PB DSM-IV vet allo 2005 Australia Caucasians 13 14 PB DSM-IV vet allo 2008 Russia Caucasians 13 14 PB PCR DSM-IV 141C Ins/Del all 1936 Epgan Caucasians 13 14 PB PCR DSM-IV -141C Ins/Del all 1938 Epan Asins 170 121 PB PCR DSM-IV -141C Ins/Del all 1938 Epon Caucasians 13 121 PB PCR DSM-IV -141C Ins/Del all 1938 Europe Caucasians 137 235 PB PCR.RELP DSM-IV -141C Ins/Del<	Lafuente et al ⁶⁸	2008	Spain	Caucasians	243	291	НВ	PCR	DSM-IV	TaqIB	Yes	7
tail 194 France Caucasians 113 184 PB 141 ClasTole 1 198 France Caucasians 151 145 HB PC DSM-III.R 55371 1 1998 England Caucasians 151 145 HB PCR DSM-III.R 55371 vectal ¹⁰ 2008 Russia Caucasians 151 145 PB PCR DSM-III.R -141C Ins/Del 1 1998 Japan Caucasians 151 145 PB PCR DSM-III.R -141C Ins/Del 1 1998 Japan Asians 151 121 PB PCR DSM-III.R -141C Ins/Del 1 1998 Japan Asians 151 121 PB PCR DSM-III.R -141C Ins/Del 1 1998 Japan Asians 137 230 231 23 231 23 231 23 231 23 231<										TagIA	Yes	7
cal ⁸ 1994 France Caucasians 113 184 PB - DSN-IL Ser31Cys etal ⁸ 2005 Australia Caucasians 134 148 PB PCR DSN-IL Ser31Cys vetal ⁹⁶ 2008 Russia Caucasians 131 345 HB PCR DSN-IL DSN-IL Ser31Cys vetal ⁹⁶ 2008 Russia Caucasians 153 121 PB PCR DSN-IL Cay577 al ¹ 1996 Jpan Asians 153 121 PB PCR DSN-IL Cay577 al ¹ 1996 Jpan Asians 153 121 PB PCR DSN-IL Cay577 al ¹ 1996 Jpan Asians 170 121 PB PCR DSN-IL Cay17 Cay577 al ¹ 1996 Jpan Asians 170 121 PB PCR DSN-IL Cay11 Cay13 <										-141C Ins/Del	Yes	7
eral ¹⁰ 2005 Australia Carcasians 154 148 PB PCR DSN-IV C957T C957T vetal ¹⁰ 2008 Kussia Carcasians 151 145 HB PCR DSN-IV DSN-IV DSN-IV C957T vetal ¹⁰ 2008 Kussia Carcasians 151 145 HB PCR DSN-IV DSN-IV C957T C957T a ¹¹ 1996 Jpan Asians 153 121 PB PCR DSN-IV C957T C957T a ¹¹ 1996 Jpan Asians 153 121 PB PCR DSN-IV C957T C957T a ¹¹ 1996 Jpan Asians 170 121 PB PCR DSN-IV C957T C957T a ¹¹ 2000 Spain Carcasians 119 165 DSN-IV DSN-IV DSN-IV C957T a ¹² 2000 Spain Carcasians 119	Laurent et al ⁴⁸	1994	France	Caucasians	113	184	PB	I	DSM-III-R	Ser311Cys	Yes	9
198 Engand Caucasians 151 145 HB PCR DSM-IV DSM-IV DSM-IV DSM-IV C937 vecal ¹⁰ 2008 Russia Caucasians 311 344 PB PCR DSM-IV C937 C937 a ¹¹ 1996 Japan Asians 153 121 PB PCR DSM-IV C937 C9397 a ¹¹ 1996 Japan Asians 153 121 PB PCR DSM-IV C937 C9397 a ¹¹ 2007 Spain Caucasians 119 165 PB PCR DSM-IV -141C Ins/Del a ¹¹ 2001 Spain Caucasians 1870 2002 PB PCR DSM-IV -141C Ins/Del a ¹² 1996 Europe Caucasians 237 255 HB PCR DSM-IV -141C Ins/Del a ¹² 1996 Europe Caucasians 237 25	Lawford et al ¹⁰	2005	Australia	Caucasians	154	I 48	PB	PCR	DSM-IV	C957T	Yes	7
vec al ¹⁶ 2008 Russia Caucasians 311 364 PB PCR DSN-IV C9571 al ¹ 1996 Japan Asians 153 121 PB PCR DSN-IV C9371 al ¹ 1996 Japan Asians 153 121 PB PCR DSN-IV C9371 al ¹ 1996 Japan Asians 153 121 PB PCR DSN-IV C141C Ins/Del 2 2001 Spain Caucasians 119 165 PB PCR-RFLP DSN-IV -141C Ins/Del 2 2001 Spain Caucasians 1370 2.002 PB PCR-RFLP DSN-IV -141C Ins/Del 2 2010 Spain Caucasians 2.002 PB PCR DSN-IV -141C Ins/Del 2 2010 Spain Caucasians 2.002 PB PCR DSN-IV -141C Ins/Del 2 1996 Europe Cauca	Li et al ⁷⁰	1998	England	Caucasians	151	I 45	HB	PCR	DSM-IV + DSM-III-R	-141C Ins/Del	Yes	9
196 Japan Asians 153 121 PB PCR DSM-IV C33311C/s 1988 Japan Asians 170 121 PB PCR DSM-IV	Monakhov et al ⁶⁹	2008	Russia	Caucasians	311	364	PB	PCR	DSM-IV	C957T	Yes	7
196 Japan Asians 153 121 PB PCR DSM-IV TaqIA 2007 Spain Asians 170 121 PB PCR DSM-IV 587-311Cys 587-311Cys 2007 Spain Caucasians 119 165 PB PCR-RFLP DSM-IV -141C Ins/Del 2010 Spain Caucasians 288 4.21 PB PCR-RFLP DSM-IV -141C Ins/Del 2008 Europe Caucasians 2.88 4.21 PB PCR-RFLP DSM-IV -141C Ins/Del 2008 Europe Caucasians 2.3 2.55 HB PCR-RFLP DSM-IV -141C Ins/Del 1996 Europe Caucasians 273 255 HB PCR DSM-IV -141C Ins/Del 1998 Europe Caucasians 273 255 HB PCR DSM-IV -141C Ins/Del 1998 German Caucasians 260 290 PR PCR										C939T	Yes	7
19% Japan Asians 153 121 PB PCR DSN-IV Ser311Cys 1998 Japan Asians 170 121 PB PCR DSN-IV -141C Ins/Del 2007 Spain Caucasians 119 165 PB PCR-RFLP DSN-IV -141C Ins/Del 2010 Spain Caucasians 288 4.21 PB PCR-RFLP DSN-IV -141C Ins/Del 2010 Spain Caucasians 288 4.21 PB PCR-RFLP DSN-IV -141C Ins/Del 2010 Spain Caucasians 233 213 255 HB PCR DSN-IV -141C Ins/Del 1996 Europe Caucasians 273 255 HB PCR DSN-III-R Ser311Cys 1998 Europe Caucasians 260 290 PB PCR DSN-III-R Ser311Cys 1998 Fernoma Caucasians 50 51 PB PCR DS										TaqIA	Yes	7
1998 Japan Asians 170 121 PB PCR DSM-IV -141C Ins/Del 2007 Spain Caucasians 119 165 PB PCR-RFLP DSM-IV -141C Ins/Del 2010 Spain Caucasians 119 165 PB PCR-RFLP DSM-IV -141C Ins/Del 2010 Spain Caucasians 288 421 PB PCR DSM-IV -141C Ins/Del 2008 Europe Caucasians 233 235 HB PCR DSM-II -141C Ins/Del 1996 Europe Caucasians 273 235 HB PCR DSM-II -141C Ins/Del 1998 Europe Caucasians 260 290 PB PCR DSM-II -141C Ins/Del 1998 Europe Caucasians 260 290 PB PCR DSM-II -141C Ins/Del 1999 America Caucasians 260 290 PB PCR DSM-II	Ohara et al ³	966	Japan	Asians	153	121	PB	PCR	DSM-IV	Ser311Cys	Yes	7
2007 Spain Caucasians 119 165 PB PCR-RFLP DSM-IV -141C Ins/Del 2010 Spain Caucasians 288 421 PB PCR-RFLP DSM-IV -141C Ins/Del 2010 Spain Caucasians 288 421 PB PCR-RFLP DSM-IV -141C Ins/Del 2008 Europe Caucasians 1.870 2.002 PB PCR-RFLP DSM-IV -141C Ins/Del 1996 Europe Caucasians 273 255 HB PCR DSM-III-R Ser311Cys 1998 German Caucasians 273 255 HB PCR DSM-III-R Ser311Cys 1998 German Caucasians 260 290 PB PCR DSM-III-R Ser311Cys 1999 America Caucasians 260 290 PB PCR DSM-III-R Ser311Cys 1999 America Caucasians 50 51 PB PCR D	Ohara et al ⁷¹	1998	Japan	Asians	170	121	PB	PCR	DSM-IV	-141C Ins/Del	Yes	8
2010 Spain Caucasians 288 4.21 PB PCR-RFLP DSM-IV -141C Ins/Del 2008 Europe Caucasians 1,870 2.002 PB TaqMan DSM-IV -141C Ins/Del 2008 Europe Caucasians 2,373 2,55 HB PCR DSM-IV -141C Ins/Del 1996 Europe Caucasians 273 255 HB PCR DSM-III-R Ser311Cys 1998 Europe Caucasians 260 290 PB PCR DSM-III-R Ser311Cys 1999 America Caucasians 260 290 PB PCR DSM-III-R Ser311Cys 2011 Japan Asians 106 106 PCR DSM-III-R Ser311Cys 2011 Japan Asians 103 97 PB PCR DSM-IV -141C Ins/Del 1997 Japan Asians 103 97 PB PCR DSM-IV -141C Ins/Del	Parsons et al ²⁵	2007	Spain	Caucasians	611	165	PB	PCR-RFLP	DSM-IV	-141C Ins/Del	Yes	7
2010 Spain Caucasians 288 4.21 PB PCR-RFLP DSM-IV -141C Ins/Del 2008 Europe Caucasians 1,870 2,002 PB TaqMan DSM-IV -141C Ins/Del 2008 Europe Caucasians 1,870 2,002 PB TaqMan DSM-IV -141C Ins/Del 1996 Europe Caucasians 273 255 HB PCR DSM-IILR Ser311Cys 1998 Europe Caucasians 273 255 HB PCR DSM-IILR Ser311Cys 1999 America Caucasians 260 290 PB PCR DSM-IILR Ser311Cys 1995 Japan Asians 106 106 PCR DSM-IILR Ser311Cys 2011 Japan Asians 106 106 PCR DSM-IILR Ser311Cys 2011 Japan Asians 106 106 PCR DSM-IV COB-100 I-141C Ins/Del										TaqIA	No	9
2008 Europe Caucasians 1,870 2,002 PB TaqMan DSN-IV Ser311Cys 1946 Europe Caucasians 273 255 HB PCR DSN-III-R Ser311Cys 1948 Europe Caucasians 273 255 HB PCR DSN-III-R Ser311Cys 1948 Europe Caucasians 273 250 PB PCR DSN-III-R Ser311Cys 1948 German Caucasians 260 290 PB PCR DSN-III-R Ser311Cys 1994 Japan Asians 106 106 PB PCR DSN-III-R Ser311Cys 2011 Japan Asians 106 106 PB PCR DSN-III-R Ser311Cys 2011 Japan Asians 106 106 PR PCR DSN-IV C9577 2011 Japan Asians 52 26 PB PCR DSN-IV C9577 <t< td=""><td>Saiz et al⁷²</td><td>2010</td><td>Spain</td><td>Caucasians</td><td>288</td><td>421</td><td>PB</td><td>PCR-RFLP</td><td>DSM-IV</td><td>-141C Ins/Del</td><td>Yes</td><td>6</td></t<>	Saiz et al ⁷²	2010	Spain	Caucasians	288	421	PB	PCR-RFLP	DSM-IV	-141C Ins/Del	Yes	6
1996 Europe Caucasians 273 255 HB PCR DSM-III-R 5er311Cys 1998 Europe Caucasians 373 413 PB PCR DSM-III-R Ser311Cys 1998 German Caucasians 373 413 PB PCR DSM-III-R Ser311Cys 1999 America Caucasians 50 51 PB PCR DSM-III-R Ser311Cys 1994 Apan Caucasians 50 51 PB PCR DSM-III-R Ser311Cys 1996 Japan Asians 106 106 PC PCR DSM-III-R Ser311Cys 2011 Japan Asians 106 106 PC PCR DSM-III-R Ser311Cys 2011 Japan Asians 106 106 PC PCR DSM-III-R Ser311Cys 2011 Japan Asians 52 26 PB PCR DSM-IV C9577 2003 Finland Caucasians 103 97 PB PCR <t< td=""><td>Sanders et al⁴⁹</td><td>2008</td><td>Europe</td><td>Caucasians</td><td>1,870</td><td>2,002</td><td>PB</td><td>TaqMan</td><td>DSM-IV</td><td>Ser311Cys</td><td>Yes</td><td>8</td></t<>	Sanders et al ⁴⁹	2008	Europe	Caucasians	1,870	2,002	PB	TaqMan	DSM-IV	Ser311Cys	Yes	8
196 Europe Caucasians 273 255 HB PCR DSM-III-R Ser311Cys 1998 Europe Caucasians 373 413 PB PCR DSM-III-R Ser311Cys 1998 German Caucasians 373 413 PB PCR DSM-III-R Ser311Cys 1999 America Caucasians 50 51 PB PCR DSM-III-R Ser311Cys 1996 Japan Asians 106 106 PB PCR DSM-III-R Ser311Cys 2011 Japan Asians 106 106 PB PCR DSM-III-R Ser311Cys 2011 Japan Asians 106 106 PB PCR DSM-III-R Ser311Cys 2011 Japan Asians 103 97 PB PCR DSM-II C9577 2003 Finland Caucasians 103 97 PB PCR DSM-IV HCD-IO Ser311Cy										-141C Ins/Del	Yes	8
1998 Europe Caucasians 373 413 PB PCR DSM-III-R Ser311Cys 1998 German Caucasians 260 290 PB PCR DSM-III-R Ser311Cys 1999 America Caucasians 50 51 PB PCR DSM-III-R Ser311Cys 1996 Japan Asians 106 106 PB PCR DSM-III-R Ser311Cys 2011 Japan Asians 106 106 PB PCR DSM-III-R Ser311Cys 2011 Japan Asians 407 384 PB PCR DSM-III-R Ser311Cys 2011 Japan Asians 103 97 PB PCR DSM-IV C9577 2003 Finland Caucasians 103 97 PB PCR DSM-IV Ser311Cys 2002 Japan Asians 52 2.6 PB PCR DSM-IV -141C Ins/Del	Sasaki et al ²⁶	966	Europe	Caucasians	273	255	HB	PCR	DSM-III-R	Ser 311 Cys	Yes	5
1998 German Caucasians 260 290 PB PCR ICD-10 141C Ins/Del 1999 America Caucasians 50 51 PB PCR DSM-III-R 141C Ins/Del 1996 Japan Asians 106 106 PB PCR DSM-III-R 141C Ins/Del 1996 Japan Asians 106 106 PB PCR DSM-III-R -141C Ins/Del 2011 Japan Asians 106 106 PB PCR DSM-III-R Ser311Cys 2017 Italy Caucasians 103 97 PB PCR DSM-III-R Ser311Cys 1997 Japan Asians 52 2.6 PB PCR DSM-II-R Ser311Cys 2003 Finland Caucasians 93 94 PB PCR DSM-IV -141C Ins/Del 2002 Japan Asians 213 196 PB PCR DSM-IV -141C Col0	Spurlock et al ⁵⁰	1998	Europe	Caucasians	373	413	PB	PCR	DSM-III-R	Ser311Cys	Yes	7
1999 America Caucasians 50 51 PB PCR DSM-III-R -141C Ins/Del 1996 Japan Asians 106 106 106 PB PCR DSM-III-R -141C Ins/Del 2011 Japan Asians 106 106 PB PCR DSM-III-R Ser311Cys 2011 Japan Asians 407 384 PB PCR DSM-III-R Ser311Cys 1997 Italy Caucasians 103 97 PB PCR DSM-III-R Ser311Cys 1997 Japan Asians 52 2.6 PB PCR DSM-III-R Ser311Cys 2003 Finland Caucasians 93 94 PB PCR DSM-IV -141C Ins/Del 2002 Japan Asians 213 196 PB PCR DSM-IV -141C Ins/Del 2007 India Caucasians (Indians) 213 196 PB PCR DSM-IV	Stöber et al ⁷³	1998	German	Caucasians	260	290	PB	PCR	ICD-10	-141C Ins/Del	Yes	7
1996 Japan Asians 106 106 PB PCR DSM-III-R Ser311Cys 2011 Japan Asians 407 384 PB PCR- RFLP DSM-III-R Ser311Cys 2011 Japan Asians 407 384 PB PCR- RFLP DSM-IV C957T 1997 Italy Caucasians 103 97 PB PCR DSM-IV C9571 1997 Japan Asians 52 2.6 PB PCR DSM-IV + ICD-10 Ser311Cys 2003 Finland Caucasians 9.3 9.4 PB PCR DSM-IV -141C Ins/Del 2002 Japan Asians 213 196 PB PCR DSM-IV -161C-10 Ser311Cys 2007 India Caucasians (Indians) 213 196 PB PCR DSM-IV TaqlB	Tallerico et al ⁷⁴	666	America	Caucasians	50	51	PB	PCR	DSM-III-R	-141C Ins/Del	Yes	7
2011 Japan Asians 407 384 PB PCR-RFLP DSM-IV C957T 1997 taly Caucasians 103 97 PB PCR DSM-IV C957T 1997 taly Caucasians 103 97 PB PCR DSM-III-R Ser311Cys 1997 Japan Asians 52 2.6 PB PCR DSM-IV HCD-10 Ser311Cys 2003 Finland Caucasians 9.3 9.4 PB PCR DSM-IV -1.41C Ins/Del 2002 Japan Asians 4.8 PB PCR DSM-IV -1.41C Ins/Del 2007 India Caucasians (Indians) 213 196 PB PCR DSM-IV TaqlB	Tanaka et al ⁵¹	1996	Japan	Asians	901	106	PB	PCR	DSM-III-R	Ser311Cys	Yes	7
197 Italy Caucasians 103 97 PB PCR DSM-III-R Ser311Cys 1997 Japan Asians 52 26 PB PCR DSM-III-R Ser311Cys 1997 Japan Asians 52 26 PB PCR DSM-IV HCD-10 Ser311Cys 2003 Finland Caucasians 93 94 PB PCR DSM-IV -141C Ins/Del 2002 Japan Asians 48 PB PCR DSM-IV -16D-10 Ser311Cys 2007 India Caucasians (Indians) 213 196 PB PCR DSM-IV TaqlB	Tsutsumi et al ²²	2011	Japan	Asians	407	384	PB	PCR-RFLP	DSM-IV	C957T	Yes	7
197 Italy Caucasians 103 97 PB PCR DSM-III-R Ser311Cys 1997 Japan Asians 52 26 PB PCR DSM-IV + ICD-10 Ser311Cys 2003 Finland Caucasians 93 94 PB PCR DSM-IV - I 41C Ins/Del 2002 Japan Asians 48 48 PB PCR DSM-IV - I 41C Ins/Del 2007 India Caucasians (Indians) 213 196 PB PCR DSM-IV TaqIB										Ser311Cys	No	9
197 Japan Asians 52 26 PB PCR DSM-IV + ICD-10 Ser311Cys 2003 Finland Caucasians 93 94 PB PCR DSM-IV - 1 -1 -1 1 1 2003 Japan Asians 48 PB PCR DSM-IV - 1 -1 1 1 Caucasians -1 48 PB PCR DSM-IV + ICD-10 Ser311Cys -1 2007 India Caucasians (Indians) 213 196 PB PCR DSM-IV TaqIB TaqIB -1 -	Verga et al ⁵²	1997	ltaly	Caucasians	103	97	PB	PCR	DSM-III-R	Ser311Cys	Yes	7
2003 Finland Caucasians 93 94 PB PCR DSM-IV -1141C Ins/Del 2002 Japan Asians 48 48 PB PCR DSM-IV +1CD-10 Ser311Cys 2007 India Caucasians (Indians) 213 196 PB PCR DSM-IV TagIB	Fujiwara et al ^{s4}	1997	Japan	Asians	52	26	PB	PCR	DSM-IV + ICD-I0	Ser311Cys	Yes	7
2002 Japan Asians 48 48 PB PCR DSM-IV + ICD-10 Ser311Cys 2007 India Caucasians (Indians) 213 196 PB PCR DSM-IV TaqIB	Kampman et al ⁷⁵	2003	Finland	Caucasians	93	94	PB	PCR	DSM-IV	-141C Ins/Del	Yes	7
2007 India Caucasians (Indians) 213 196 PB PCR DSM-IV TagIB	Morimoto et al ⁵⁵	2002	lapan	Asians	48	48	PB	PCR	DSM-IV + ICD-I0	Ser311Cys	Yes	7
	Vijayan et al ¹⁹	2007	India	Caucasians (Indians)	213	196	PB	PCR	DSM-IV	TaqIB	Yes	œ

							TaqlD C939T	Yes Yes	ω ω ά
2	Asians	120	001	PB	PCR	DSM-IV-TR	Ser311Cys —141C Ins/Del	Yes Yes	8 2
	Caucasians	87	69	면	PCR	DSM-III-R	TaglA	Yes	7
	Caucasians	55	51	PB	PCR-RFLP	DSM-III-R + RDC	TaqIA	Yes	80
	Caucasians	80	80	PB	PCR-RFLP	DSM-III-R	TaqIA	Yes	7
.00	Asians	50	011	PB	PCR-RFLP	DSM-III-R	Ser 311 Cys	Yes	7
					SSCP analysis				
	Caucasians	60	60	PB	PCR	DSM-III-R	TaqIA	Yes	7
.00	Asians	156	300	ЯB	PCR	DSM-III-R	Ser 311 Cys	Yes	9
	Caucasians	112	64	BB	PCR	DSM-III-R	Ser 311 Cys	Yes	9
	Caucasians	901	113	8 H	PCR-RFLP	DSM-III-R	Ser 311 Cys	Yes	7
.0	Asian	001	001	PB	PCR-RFLP	DSM-III-R	Ser 311 Cys	No	9
<u>.</u>	Asian	001	001	PB	PCR	DSM-III-R	Ser 311 Cys	Yes	9
n	Caucasians	179	138	PB	PCR	DSM-III-R	Ser 311 Cys	Yes	7
ă	Caucasians	147	001	ΗB	PCR	DSM-III-R	Ser 311 Cys	٥N	S
^o	Caucasians	338	1,914	ΗB	I	I	Ser 311 Cys	Yes	S
Asian		234	94	PB	PCR	ICD-I0	-141C Ins/Del	Yes	80
ă	Caucasians	366	267	ΗB	I	I	Ser 311 Cys	Yes	I
Asian		156	300	ΒB	SSCP	DSM-III-R	Ser 311 Cys	Yes	7
		291	579		PCR				
Asian		915	421	РВ	PCR-AFLP	ICD-I0 + CCMD-II-R	TaqIA	Yes	7
					Sequenom Mass ADD AV				
,		L (00				()	>	r
Asian		201 7 1 C	801	22 2	PCK		Ser311Cys	Yes	- r
Asian		317	310	8	PCK		I aqlA	Yes	- 1
Asian		128	124	BB	PCR-RFLP	CCMD-3	-141C Ins/Del	Yes	7
Asian		512	480	BB	PCR	DSM-IV	-141C Ins/Del	Yes	7
							Ser 311 Cys	No	9
							C957T	Yes	7
							C939T	Yes	7
							TaqlA	No	9
Asian		120	001	PB	PCR	DSM-IV	-141C Ins/Del	Yes	7
Asian		67	77	PB	PCR	CCMD-II-R	TaqIA	Yes	9
Asian		92	96	PB	PCR	1	C957T	Yes	9
							C939T	Yes	9
							Ser 311 Cys	Yes	9
<u>ם</u> .	Asian	101	105	PB	PCR	DSM-IV + CCMD-3	-141C Ins/Del	Yes	7

Α	Study	ID
~	Study	ıυ

Study ID	OR (95% CI)	% weight
Watanabe et al ³⁶ (2012)	0.89 (0.59, 1.36)	5.19
Crawford et al ³¹ (1996)	2.30 (0.59, 9.07)	1.13
Himei et al ³⁷ (2002)	1.75 (0.69, 4.46)	2.10
Srivastava et al ⁴ (2010)	0.90 (0.55, 1.47)	4.60
Arinami et al ⁴⁷ (1996)	1.93 (0.87, 4.30)	2.63
Chen et al ³⁸ (1996)	0.61 (0.16, 2.31)	1.19
Dubertret et al ¹⁵ (2004)	1.63 (0.40, 6.62)	1.08
Dubertret et al ¹³ (2010)	0.99 (0.28, 3.44)	1.32
Fan et al ³⁹ (2010)	1.27 (0.75, 2.13)	4.33
Golimbet et al ⁴⁰ (2011)	➡ 2.24 (1.20, 4.18)	3.57
Gupta et al41 (2009)	1.09 (0.71, 1.68)	5.07
Harano ⁴² (1997)	1.47 (0.54, 4.01)	1.88
Hori et al43 (2001)	1.24 (0.66, 2.33)	3.54
Iwata et al44 (2003)	0.13 (0.01, 2.50)	0.27
Jonsson et al ⁴⁵ (2003)	4.93 (1.61, 15.12)	1.58
Kaneshima et al ⁴⁶ (1997)	0.82 (0.23, 2.84)	1.33
Laurent et al ⁴⁸ (1994)	2.75 (0.65, 11.63)	1.03
Ohara et al ³ (1996)	0.26 (0.03, 2.53)	0.45
Sanders et al ⁴⁹ (2008)	0.73 (0.54, 0.98)	6.39
Sasaki et al ²⁶ (1996)	— 1.02 (0.45, 2.33)	2.50
Spurlock et al ⁵⁰ (1998)	- 0.91 (0.45, 1.86)	3.04
Tanaka et al ⁵¹ (1996)	1.13 (0.43, 2.99)	1.98
Tsutsumi et al ²² (2011)	0.75 (0.46, 1.22)	4.56
Verga et al ⁵² (1997)	◆ 2.13 (0.73, 6.25)	1.69
Fujiwara et al ⁵⁴ (1997)	1.00 (0.09, 11.29)	0.40
Morimoto et al ⁵⁵ (2002)	1.00 (0.31, 3.22)	1.47
Vijayan et al ¹⁹ (2007)	1.02 (0.65, 1.61)	4.91
Fan et al ⁵⁶ (1996)	 1.73 (0.41, 7.34) 	1.03
Luo ²⁴ (2008)	0.80 (0.46, 1.39)	4.05
Itokawa et al ⁵⁸ (1993)	 1.79 (0.47, 6.82) 	1.18
Arinami et al ⁹ (1994)	3.09 (1.43, 6.67)	2.75
Asherson et al ⁵⁹ (1994)	1.14 (0.10, 12.74)	0.40
Gejman et al ⁶¹ (1994)	0.80 (0.18, 3.60)	0.95
Hattori et al ²⁷ (1994)	- 0.87 (0.31, 2.45)	1.80
Nanko et al ⁶⁰ (1994)	1.00 (0.34, 2.91)	1.71
Shaikh et al ²⁹ (1994)	4.85 (0.59, 39.76)	0.52
Sobell et al ³⁰ (1994)	- 1.01 (0.55, 1.89)	3.61
Itokawa et al ⁵³ (2010)	3.09 (1.43, 6.67)	2.75
Itokawa et al ⁵³ (2010)	◆ 2.12 (1.19, 3.76)	3.92
Serretti et al ⁸¹ (2000)	◆ 1.84 (1.00, 3.39)	3.67
Zheng ¹⁸ (2012)	1.58 (0.44, 5.71)	1.26
Nothen et al ³⁴ (1993)	0.61 (0.16, 2.30)	1.19
Overall (<i>I</i> ² =34.7%, <i>P</i> =0.016)	1.23 (1.05, 1.44)	100
0.00707 1	142	
	• •=	

_	Study ID	OR (95% CI)	% weight
	Lawford et al ¹⁰ (2005)	0.58 (0.42, 0.80)	8.69
	Kukreti et al ² (2006)	0.84 (0.58, 1.21)	7.75
	Hanninen et al ⁶⁴ (2006)	0.79 (0.62, 1.01)	10.58
	Hoenicka et al ^{e5} (2006)	0.67 (0.50, 0.89)	9.58
	Luo ²⁴ (2008)	1.35 (0.88, 2.06)	6.60
	Monakhov et al ⁶⁹ (2008)	0.68 (0.55, 0.84)	11.47
	Gupta et al41 (2009)	0.90 (0.69,1.17)	10.23
	Betcheva et al' (2009)	0.70 (0.57, 0.86)	11.58
	Fan et al ³⁹ (2010)	1.58 (1.03, 2.43)	6.51
	Dubertret et al ¹³ (2010)	0.66 (0.47, 0.91)	8.51
	Tsutsumi et al ²² (2011)	0.80 (0.52, 1.23)	6.41
	Zheng ¹⁸ (2012)	0.94 (0.37, 2.36)	2.08
	Overall (P=58.5%, P=0.005)	0.80 (0.69, 0.92)	100
	0.372 1	2.69	

Figure 2 (Continued)

С

Study ID	OR (95% CI)	% weight
Arinami et al ⁵⁷ (1997)	0.60 (0.44, 0.81)	1.49
Stöber et al ⁷³ (1998)	1.15 (0.78, 1.71)	4.08
Ohara et al ³ (1996)	0.60 (0.36, 0.98)	3.57
Li et al ⁷⁰ (1998)	1.39 (0.83, 2.32)	3.47
Breen et al ⁶³ (1999)		1.64
Tallerico et al ⁷⁴ (1999)		1.88
Jonsson et al ⁶⁶ (1999)		3.01
Inada et al ⁸⁰ (1999)		4.01
Hori et al ⁴³ (2001)		4.28
Himei et al ³⁷ (2002)	,	3.86
Dubertret et al ¹⁵ (2003) ← ●		1.51 3.24
Liang ⁸⁶ (2005)		3.42
Parsons et al ²⁵ (2007)		2.81
Luo ²⁴ (2008)		3.85
Lafuente et al ⁶⁸ (2008)	, , ,	3.89
Sanders et al ⁴⁹ (2008)	• 1.13 (0.98, 1.32) §	5.17
Luo ²⁴ (2008)	0.90 (0.66, 1.23)	1.49
Liu et al ⁸³ (2009)	0.50 (0.33, 0.76)	3.92
Cordeiro ¹⁴ (2009)		1.48
Gupta et al ⁴¹ (2009)		3.99
Saiz et al ⁷² (2010)		1.58
Dubertret et al ¹³ (2010)	,	3.37
Srivastava et al ⁴ (2010)		1.20
Shen et al ⁸⁴ (2011)		3.33 3.13
Xiao et al ⁷⁶ (2013) \rightarrow		3.33
Overall (<i>I</i> ² =76.1%, <i>P</i> =0.000)		100
T T		
0.164 D	l l 1 6.11	
Study ID	OR (95%CI)	% weigh
Comings et al ⁷⁷ (1991)	2.77 (1.31, 5.88)	2.56
Sanders et al ⁷⁸ (1993)	0.91 (0.45, 1.87)	2.30
Nothen et al ³⁴ (1993)	1.00 (0.55, 1.83)	3.34
Campion et al ⁷⁹ (1994)	• 1.18 (067, 2.07)	3.62
Jonsson et al ⁸⁷ (1996)	0.93 (0.53, 1.62)	3.67
Dollfus et al ³⁵ (1996)	• 1.11 (0.65, 1.89)	3.78
Dubertret et al ¹³ (2010)	0.48 (0.24, 0.97)	2.79
Zhang et al ⁸⁵ (2003)	- 0.72 (0.45, 1.15)	4.33
Dubertret et al ¹⁵ (2004)	0.31 (0.19, 0.50)	4.23
Parsons et al ²⁵ (2007)	0.48 (0.30, 0.76)	4.37
Vijayan et al ¹⁹ (2007)	- 0.80 (0.60, 1.08)	5.82
Luo ²⁴ (2008)	0.97 (0.80, 1.18)	6.71
Lafuente et al68 (2008)	0.91 (0.67, 1.23)	5.72
Monakhov et al69 (2008)	▲ 1.26 (0.97, 1.65)	6.10
Behravan et al ¹¹ (2008)	1.38 (0.77, 2.47)	3.49
Aslan et al ²³ (2010)	★ 1.10 (0.75, 1.62	5.01
Srivastava et al ⁴ (2010)	- 0.86 (0.65, 1.14)	5.92
Dubertret et al ¹³ (2010)	0.71 (0.48, 1.06)	4.91
Liu et al ³³ (2012)	0.56 (0.44, 0.70)	6.41
		4.00

Figure 2 Calculated OR and 95% CI for the associations between DRD2 gene polymorphism and schizophrenia risk. Notes: (A) rs1801028; (B) rs6277; (C) rs1799732; (D) rs1800497. weights are from random effects analysis. Abbreviations: CI, confidence interval; DRD2, dopamine D2 receptor; OR, odds ratio.

0.86

schizophrenia. There were four studies of the rs1800497 SNP that included controls that did not conform with HWE, but they did not influence the results.^{11,23–25} In terms of publication bias, Egger's linear regression showed that the funnel plots were symmetrical (P=0.861).

Kunii et al62 (2014)

Li⁸² (2014)

Cordeiro and Vallada¹⁶ (2014)

Overall (I2=71.6%, P=0.000)

Association between the other SNPs and schizophrenia risk

3.00 (0.77, 11.63) 1.03

6.56

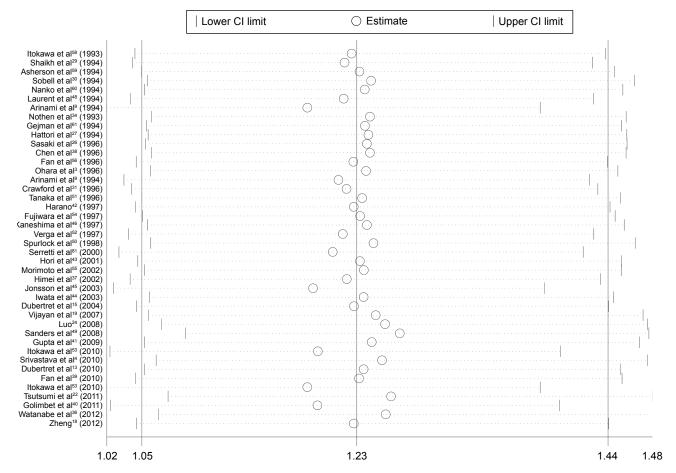
6.92

100

0.82 (0.66, 1.01)

1.00 (0.85, 1.18)

0.87 (0.75, 1.01)


11.6

There was no evidence that the susceptibility to schizophrenia was associated with the rs6275 (T vs C, P=0.10, OR =0.92, 95% CI=0.83-1.02), rs1079597 (T vs C, P=0.12, OR =0.72, 95%

SNP	Subgroup type	Subgroup	N	P-value	OR	95% CI	l² (%)
rs1801028	Control sources	Population-based	31	0.99	1.00	0.88, 1.14	0
		Hospital-based	11	<0.01	1.91	1.39, 2.61	31
	Ethnicity	Caucasians	19	0.09	1.22	0.97, 1.54	41
		Asians	23	0.04	1.25	1.01, 1.55	31
rs6277	Ethnicity	Caucasians	8	<0.01	0.72	0.66, 0.79	0
		Asians	4	0.37	1.17	0.83, 1.64	46
rs 799732	Control sources	Population-based	24	0.36	0.92	0.78, 1.10	77
		Hospital-based	3	0.46	0.81	0.47, 1.41	71
	Ethnicity	Caucasians	15	0.33	1.11	0.90, 1.36	71
		Asians	11	0.004	0.76	0.63, 0.92	56
		Mixed	I	0.002	0.61	0.44, 0.83	-
rs 800497	Control sources	Population-based	20	0.02	0.84	0.72, 0.97	71
		Hospital-based	2	0.46	1.50	0.51, 4.47	86
	Ethnicity	Caucasians	16	0.24	0.88	0.72, 1.08	71
		Asians	5	0.29	0.85	0.63, 1.15	82
		Mixed	I	0.06	0.82	0.66, 1.01	-

Table 2 Subgroup analysis of case-control studies on DRD2 gene polymorphisms and schizophrenia risk

Abbreviations: CI, confidence intervals; DRD2, dopamine D2 receptor; OR, odds ratios; SNP, single-nucleotide polymorphisms.

Meta-analysis estimates, given named study is omitted

Figure 3 Sensitivity analysis via deletion of each individual study reflecting the relative influence of each individual dataset on the pooled ORs for the rs1801028. Abbreviations: Cl, confidence interval; OR, odds ratio.

Itokawa et al⁵ଃ (1993)		1.79 (0.47, 6.82
Shaikh et al²º (1994)		2.39 (0.77, 7.3)
Asherson et al ⁵⁹ (1994)		2.09 (0.75, 5.8
Sobell et al ³⁰ (1994)	_	1.23 (0.73, 2.09
Nanko et al ⁶⁰ (1994)	— •	1.18 (0.74, 1.90
Laurent et al ⁴⁸ (1994)	_ _	1.28 (0.82, 2.0)
Arinami et alº (1994)	│↓	1.67 (1.05, 2.6
Nothen et al ³⁴ (1993)	↓ → →	1.52 (0.96, 2.4)
Gejman et al ⁶¹ (1994)	+	1.45 (0.94, 2.2
Hattori et al ²⁷ (1994)	+	1.36 (0.92, 2.0
Sasaki et al² (1996)	+	1.31 (0.93, 1.8
Chen et al ³⁸ (1996)	++	1.25 (0.90, 1.7
Fan et al ⁵⁶ (1996)	+	1.27 (0.93, 1.7
Ohara et al³ (1996)	++	1.23 (0.89, 1.7
Arinami et alº (1994)	├	1.30 (0.96, 1.7
Crawford et al ³¹ (1996)	├ →	1.33 (1.00, 1.7
Tanaka et al⁵¹ (1996)	→	1.32 (1.01, 1.7
Harano42 (1997)	 →→	1.33 (1.03, 1.7
Fujiwara et al⁵⁴ (1997)	 →→	1.32 (1.03, 1.7
Kaneshima et al ⁴⁶ (1997)	⊢ ←	1.30 (1.01, 1.6
/erga et al ⁵² (1997)	→	1.33 (1.04, 1.7
Spurlock et al⁵ (1998)	 →→	1.28 (1.02, 1.6
Serretti et al ⁸¹ (2000)	 →−	1.34 (1.08, 1.6
Hori et al ⁴³ (2001)	 →	1.33 (1.08, 1.6
Morimoto et al⁵⁵ (2002)	→	1.32 (1.08, 1.6
Himei et al ³⁷ (2002)	→	1.33 (1.10, 1.6
Jonsson et al ⁴⁵ (2003)		1.39 (1.14, 1.6
lwata et al ⁴⁴ (2003)		1.37 (1.13, 1.6
Dubertret et al ¹⁵ (2004)		1.38 (1.14, 1.6
√ijayan et al¹ (2007)	 →-	1.32 (1.10, 1.5
_uo ²⁴ (2008)	 →-	1.27 (1.06, 1.5
Sanders et al ⁴⁹ (2008)	→	1.21 (1.00, 1.4
Gupta et al ⁴¹ (2009)	↓	1.19 (1.00, 1.4
ltokawa et al⁵³ (2010)	 →-	1.24 (1.03, 1.4
Srivastava et al⁴ (2010)		1.21 (1.02, 1.4
Dubertret et al ¹³ (2010)		1.20 (1.02, 1.4
Fan et al ³⁹ (2010)		1.20 (1.03, 1.4
tokawa et al⁵³ (2010)	-←-	1.25 (1.06, 1.4
Tsutsumi et al²² (2011)	 →-	1.22 (1.04, 1.4
Golimbet et al40 (2011)	-←-	1.25 (1.06, 1.4
Watanabe et al ³⁶ (2012)	-←-	1.23 (1.05, 1.4
Zheng ¹⁸ (2012)	 →	1.23 (1.05, 1.4
I 0.136		<u> </u>

Figure 4 Cumulative meta-analyses according to publication year for the rs1801028.

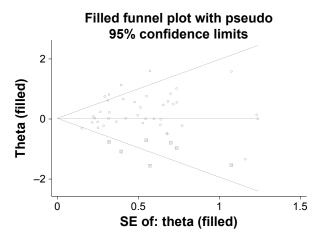


Figure 5 Trim-and-fill plot to correct publication bias for the rs1801028. Abbreviation: SE, standard error.

CI =0.47–1.10), or rs1800498 (T vs C, P=0.52, OR =1.03, 95% CI =0.93–1.15) SNP. Sensitivity analysis indicated that no single study of the rs1800498 SNP qualitatively changed the pooled ORs. Removing the low-quality study²⁸ did not change the result.

Discussion

A comprehensive analysis about schizophrenia-associated genetic loci had been performed in a genome-wide association study.³² Our meta-analysis results provide evidence that the rs1801028 and rs6277 SNPs are associated with the risk of schizophrenia. A subgroup analysis indicated that the rs1801028 SNP may increase the risk of schizophrenia in Asians and hospital-based controls, the rs6277 SNP may reduce the risk of schizophrenia in Caucasians, the rs1799732 SNP may reduce the risk of schizophrenia in Asians, and the rs1800497 SNP may reduce the risk of schizophrenia in population-based controls.

Yao et al performed a similar study of the associations between *DRD2* gene polymorphisms and schizophrenia risk.¹² That study used a genetic model, while our study used an allele contrast model since this made it possible to include the largest number of documents and the maximum sample sizes. Other advantages of the present study were 1) the inclusion of more published documents (including those written in Chinese), which increased the statistical power of our results, 2) more SNPs being investigated, and 3) the application of meta-regression and publication bias, nonparametric trim-and-fill, subgroup, sensitivity, cumulative, and fail-safe number analysis also being performed.

The results of the present study show that the rs1801028 SNP may increase the risk of schizophrenia in Asians and hospital-based controls. Yao et al reported the same result under the dominant model.¹² Different results may be

obtained for different races due to differences in genetic backgrounds and living conditions.³³ Moreover, the results for the subgroup analysis based on hospital-based controls are not reliable because such controls may not be representative and samples of hospital-based controls are often too small, and so these results should be treated cautiously. The results for publication bias were significant, and these changed after being adjusted using the trim-and-fill method, which indicated that those results may not be very stable. This means that if new articles are published in the future, the results of a complete meta-analysis including all available data are very likely to change. The presence of significant publication bias was probably due to our meta-analysis including many small-sample studies. Yao et al found only slight publication bias, but this was not corrected using the trim-and-fill method.¹²

Twelve of the included documents related to the rs6277 SNP and the meta-analysis showed that this SNP may reduce the risk of schizophrenia in Caucasians; however, Yao et al did not study this SNP.¹² However, our included samples for this SNP were small and the cumulative analysis by publication year did not show a reliable trend. This means that the statistical power of the results may not have been high.

In our meta-analysis the rs1799732 SNP was not associated with schizophrenia risk, and Yao et al obtained the same result under the dominant model.¹² After performing subgroup analysis, the current meta-analysis indicated that the rs1799732 SNP might reduce the risk of schizophrenia in Asians. In contrast, Yao et al did not find any correlation between the rs1799732 SNP and schizophrenia risk in different races and different populations. The possible reasons for different conclusions being drawn based on the current and previous meta-analyses of the rs1799732 SNP are 1) more documents being included in the present study, especially the Chinese literature, because this is likely to have greatly increased the sample size for Asians, and 2) the use of different genetic models.

The previous meta-analyses did not explore the correlations between the rs1800497 SNP and schizophrenia risk in all populations. After performing subgroup analysis, the present study found that the rs1800497 SNP was associated with schizophrenia risk in population-based controls. In contrast, Yao et al found that the rs1800497 SNP may increase the risk of schizophrenia in Caucasians.¹² The possible reasons for the current and previous meta-analyses drawing different conclusions from their subgroup analyses of the rs1800497 SNP are 1) Yao et al applying the wrong allele or genotype distribution data of cases and controls regarding the study of Nothen et al;³⁴ 2) the smallness of the study sample of Yao et al; 3) that study not including Chinese studies; and 4) our use of different genetic models. These factors mean that the statistical power would have been higher for the present study.

It is important to note the limitations of our metaanalysis. 1) Meaningless or negative results might not be published, which would lead to some degree of publication bias. 2) Schizophrenia is a multifactorial disease, whereas the present study only considered the impact of the *DRD2* gene on schizophrenia risk, and also ignored the possible impacts of environmental factors, age, gender, lifestyle, and diagnosis standards.

In conclusion, this meta-analysis has shown that the rs1801028 SNP may be a risk factor for susceptibility to schizophrenia in Asians, the rs6277 SNP may be a protective factor for susceptibility to schizophrenia in Caucasians, and the rs1799732 SNP may be a protective factor for susceptibility to schizophrenia in Asians. However, the occurrence of schizophrenia represents the cumulative effect of multiple genes, and so only studying a single gene or single polymorphism is unlikely to be adequate. Future studies should pay more attention to the interactions within and between genes as well as within and between their polymorphisms in order to better explain the genetic mechanisms underlying mental illness.

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No 81471374).

Author contributions

HRH and HHW performed literature research, data extraction, statistical analysis, and data interpretation. XCM contributed to the study concept and study design. LHY and FG contributed to make figures and tables. YJF and JGF were responsible for the quality control of data and algorithms. All authors contributed toward data analysis, drafting and revising the paper and agree to be accountable for all aspects of the work.

Disclosure

The authors report no conflicts of interest in this work.

References

- Betcheva ET, Mushiroda T, Takahashi A, et al. Case-control association study of 59 candidate genes reveals the DRD2 SNP rs6277 (C957T) as the only susceptibility factor for schizophrenia in the Bulgarian population. *J Hum Genet*. 2009;54(2):98–107.
- Kukreti R, Tripathi S, Bhatnagar P, et al. Association of DRD2 gene variant with schizophrenia. *Neurosci Lett.* 2006;392(1–2):68–71.
- Ohara K, Nakamura Y, Xie DW, et al. Polymorphisms of dopamine D2-like (D2, D3, and D4) receptors in schizophrenia. *Biol Psychiatry*. 1996;40(12):1209–1217.

- Srivastava V, Deshpande SN, Thelma BK. Dopaminergic pathway gene polymorphisms and genetic susceptibility to schizophrenia among north Indians. *Neuropsychobiology*. 2010;61(2):64–70.
- Lee SH, DeCandia TR, Ripke S, et al. Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. *Nat Genet*. 2012;44(3):247–250.
- Lee SH, Ripke S, Neale BM, et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. *Nat Genet*. 2013;45(9):984–994.
- Mehta D, Tropf FC, Gratten J, et al. Evidence for genetic overlap between schizophrenia and age at first birth in women. *JAMA Psychiatry*. 2016;73(5):497–505.
- Purcell SM, Wray NR, Stone JL, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. *Nature*. 2009; 460(7256):748–752.
- Arinami T, Itokawa M, Enguchi H, et al. Association of dopamine D2 receptor molecular variant with schizophrenia. *Lancet*. 1994; 343(8899):703–704.
- Lawford BR, Young RM, Swagell CD, et al. The C/C genotype of the C957T polymorphism of the dopamine D2 receptor is associated with schizophrenia. *Schizophr Res.* 2005;73(1):31–37.
- Behravan J, Hemayatkar M, Toufani H, Abdollahian E. Linkage and association of DRD2 gene TaqI polymorphism with schizophrenia in an Iranian population. *Arch Iran Med.* 2008;11(3):252–256.
- 12. Yao J, Pan YQ, Ding M, Pang H, Wang BJ. Association between DRD2 (rs1799732 and rs1801028) and ANKK1 (rs1800497) polymorphisms and schizophrenia: a meta-analysis. *Am J Med Genet B Neuropsychiatr Genet*. 2015;168B(1):1–13.
- Dubertret C, Bardel C, Ramoz N, et al. A genetic schizophreniasusceptibility region located between the ANKK1 and DRD2 genes. *Prog Neuropsychopharmacol Biol Psychiatry*. 2010;34(3):492–499.
- Cordeiro Q, Siqueira-Roberto J, Zung S, Vallada H. Association between the DRD2-141C Insertion/Deletion polymorphism and schizophrenia. *Arq Neuropsiquiatr*. 2009;67(2A):191–194.
- Dubertret C, Gouya L, Hanoun N, et al. The 3' region of the DRD2 gene is involved in genetic susceptibility to schizophrenia. *Schizophr Res.* 2004;67(1):75–85.
- Cordeiro Q, Vallada H. Association study between the Taq1A (rs1800497) polymorphism and schizophrenia in a Brazilian sample. *Arq Neuropsiquiatr.* 2014;72(8):582–586.
- Duan J, Wainwright MS, Comeron JM, et al. Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. *Hum Mol Genet*. 2003;12(3):205–216.
- Zheng CM. The association study and preliminary functional exploration of CCKAR, DRD2, DAT and SNAPIN genes in schizophrenia [dissertation]. Beijing, China: Peking Union Medical College; 2012.
- Vijayan NN, Bhaskaran S, Koshy LV, et al. Association of dopamine receptor polymorphisms with schizophrenia and antipsychotic response in a South Indian population. *Behav Brain Funct*. 2007;3:34.
- Niu YM, Du XY, Cai HX, et al. Increased risks between Interleukin-10 gene polymorphisms and haplotype and head and neck cancer: a metaanalysis. *Sci Rep.* 2015;5:17149.
- Lopez-Lopez E, Martin-Guerrero I, Ballesteros J, Garcia-Orad A. A systematic review and meta-analysis of MTHFR polymorphisms in methotrexate toxicity prediction in pediatric acute lymphoblastic leukemia. *Pharmacogenomics J.* 2013;13(6):498–506.
- Tsutsumi A, Glatt SJ, Kanazawa T, et al. The genetic validation of heterogeneity in schizophrenia. *Behav Brain Funct*. 2011;7:43.
- Aslan S, Karaoguz MY, Eser HY, Karaer DK, Taner E. Comparison of DRD2 rs1800497 (TaqIA) polymorphism between schizophrenic patients and healthy controls: lack of association in a Turkish sample. *Int J Psychiat Clin.* 2010;14(4):257–261.
- Luo PF. Association of dopamine D2 receptor polymorphisms with paranoid schizophrenia in the North Chinese population [dissertation]. Beijing, China: Peking Union Medical College; 2008.
- Parsons MJ, Mata I, Beperet M, et al. A dopamine D2 receptor generelated polymorphism is associated with schizophrenia in a Spanish population isolate. *Psychiatr Genet*. 2007;17(3):159–163.

- Sasaki T, Macciardi FM, Badri F, et al. No evidence for association of dopamine D2 receptor variant (Ser311/Cys311) with major psychosis. *Am J Med Genet*. 1996;67(4):415–417.
- Hattori M, Nanko S, Dai XY, Fukuda R, Kazamatsuri H. Mismatch PCR RFLP detection of DRD2 Ser311Cys polymorphism and schizophrenia. *Biochem Biophys Res Commun.* 1994;202(2):757–763.
- Caprini S, Saetre P, Melle I, et al. Lack of association between two dopamine D2 receptor gene polymorphisms and schizophrenia. *Psychiatr Genet*. 2011;21(4):214–215.
- Shaikh S, Collier D, Arranz M, Ball D, Gill M, Kerwin R. DRD2 Ser311/ Cys311 polymorphism in schizophrenia. *Lancet*. 1994;343(8904): 1045–1046.
- Sobell J, Sigurdson DC, Heston L, Sommer S. S311C D2DR variant: no association with schizophrenia. *Lancet*. 1994;344(8922):621–622.
- Crawford F, Hoyne J, Cai X, et al. Dopamine DRD2/Cys311 is not associated with chronic schizophrenia. *Am J Med Genet*. 1996;67(5): 483–484.
- Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. *Nature*. 2014;511(7510):421–427.
- 33. Liu ZW, Liu JL, An Y, Zhang L, Wang YM. Association between Ser311Cys polymorphism in the dopamine D2 receptor gene and schizophrenia risk: a meta-analysis in Asian populations. *Genet Mol Res.* 2012;11(1):261–270.
- Nothen MM, Korner J, Lannfelt L, et al. Lack of association between schizophrenia and alleles of the dopamine D1, D2, D3 and D4 receptor loci. *Psychiat Genet*. 1993;3(2):89–94.
- Dollfus S, Campion D, Vasse T, et al. Association study between dopamine D1, D2, D3, and D4 receptor genes and schizophrenia defined by several diagnostic systems. *Biol Psychiatry*. 1996;40(5):419–421.
- 36. Watanabe Y, Nunokawa A, Kaneko N, et al. Case-control study and meta-analysis of Ser311Cys polymorphism in the DRD2 gene demonstrate lack of association with risk for schizophrenia in the Japanese population. *Genet Mol Res.* 2012;11(2):1142–1145.
- Himei A, Koh J, Sakai J, et al. The influence on the schizophrenic symptoms by the DRD2Ser/Cys311 and -141C Ins/Del polymorphisms. *Psychiatry Clin Neurosci*. 2002;56(1):97–102.
- Chen CH, Chien SH, Hwu HG. No association of dopamine D2 receptor molecular variant Cys311 and schizophrenia in Chinese patients. *Am J Med Genet*. 1996;67(4):418–420.
- Fan H, Zhang F, Xu Y, et al. An association study of DRD2 gene polymorphisms with schizophrenia in a Chinese Han population. *Neurosci Lett.* 2010;477(2):53–56.
- 40. Golimbet VE, Lebedeva IS, Monakhov MV, et al. The cys allele (the Ser311Cys polymorphism) of the dopamine d2 receptor is associated with schizophrenia and impairments to selective attention in patients. *Neuroscience and Behavioral Physiology*. 2011;41(1):22–24.
- Gupta M, Chauhan C, Bhatnagar P, et al. Genetic susceptibility to schizophrenia: role of dopaminergic pathway gene polymorphisms. *Pharmacogenomics*. 2009;10(2):277–291.
- Harano M. Ser-311-Cys polymorphism of the dopamine D2 receptor gene and schizophrenia--an analysis of schizophrenic patients in Fukuoka. *Kurume Med J.* 1997;44(3):201–208.
- Hori H, Ohmori O, Shinkai T, Kojima H, Nakamura J. Association analysis between two functional dopamine D2 receptor gene polymorphisms and schizophrenia. *Am J Med Genet.* 2001;105(2): 176–178.
- Iwata Y, Matsumoto H, Minabe Y, et al. Early-onset schizophrenia and dopamine-related gene polymorphism. Am J Med Genet B Neuropsychiatr Genet. 2003;116B(1):23–26.
- 45. Jonsson EG, Sillen A, Vares M, et al. Dopamine D2 receptor gene Ser311Cys variant and schizophrenia: association study and metaanalysis. *Am J Med Genet B Neuropsychiatr Genet*. 2003;119B(1): 28–34.
- 46. Kaneshima M, Higa T, Nakamoto H, Nagamine M. An association study between the Cys311 variant of dopamine D2 receptor gene and schizophrenia in the Okinawan population. *Psychiatry Clin Neurosci*. 1997;51(6):379–381.

- Arinami T, Itokawa M, Aoki J, et al. Further association study on dopamine D2 receptor variant S311C in schizophrenia and affective disorders. *Am J Med Genet*. 1996;67(2):133–138.
- Laurent C, Bodeau-Pean S, Campion D, et al. No major role for the dopamine D2 receptor Ser → Cys311 mutation in schizophrenia. *Psychiat Genet*. 1994;4(4):229–230.
- Sanders AR, Duan J, Levinson DF, et al. No significant association of 14 candidate genes with schizophrenia in a large European ancestry sample: implications for psychiatric genetics. *Am J Psychiatry*. 2008;165(4): 497–506.
- Spurlock G, Williams J, McGuffin P, et al. European Multicentre Association Study of Schizophrenia: a study of the DRD2 Ser311Cys and DRD3 Ser9Gly polymorphisms. *Am J Med Genet*. 1998;81(1):24–28.
- Tanaka T, Igarashi S, Onodera O, et al. Lack of association between dopamine D2 receptor gene Cys311 variant and schizophrenia. *Am J Med Genet*. 1996;67(2):208–211.
- 52. Verga M, Macciardi F, Pedrini S, Cohen S, Smeraldi E. No association of the Ser/Cys311 DRD2 molecular variant with schizophrenia using a classical case control study and the haplotype relative risk. *Schizophr Res.* 1997;25(2):117–121.
- 53. Itokawa M, Arinami T, Toru M. Advanced research on dopamine signaling to develop drugs for the treatment of mental disorders: Ser311Cys polymorphisms of the dopamine D2-receptor gene and schizophrenia. *J Pharmacol Sci.* 2010;114(1):1–5.
- Fujiwara Y, Yamaguchi K, Tanaka Y, et al. Polymorphism of dopamine receptors and transporter genes in neuropsychiatric diseases. *Eur Neurol.* 1997;38(Suppl 1):6–10.
- Morimoto K, Miyatake R, Nakamura M, et al. Delusional disorder: molecular genetic evidence for dopamine psychosis. *Neuropsychopharmacol*. 2002;26(6):794–801.
- Fan J, Zhou R, Zhou C, Wang Y, Shen Y. Association of dopamine D2 receptor gene polymorphism with schizophrenia. *Journal of Beijing Medical University*. 1996;28(1).
- 57. Arinami T, Gao M, Hamaguchi H, Toru M. A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia. *Hum Mol Genet*. 1997;6(4):577–582.
- Itokawa M, Arinami T, Futamura N, Hamaguchi H, Toru M. A structural polymorphism of human dopamine D2 receptor, D2(Ser311–>Cys). *Biochem Biophys Res Commun.* 1993;196(3):1369–1375.
- Asherson P, Williams N, Roberts E, McGuffin M, Owen M. DRD2 Ser311/Cys311 polymorphism in schizophrenia. *Lancet*. 1994;343(8904):1045.
- Nanko S, Hattori M, Dai XY, Fukuda R, Kazamatsuri H. DRD2 Ser311/Cys311 polymorphism in schizophrenia. *Lancet*. 1994; 343(8904):1044.
- Gejman PV, Ram A, Gelernter J, et al. No structural mutation in the dopamine D2 receptor gene in alcoholism or schizophrenia. Analysis using denaturing gradient gel electrophoresis. *JAMA*. 1994; 271(3):204–208.
- Kunii Y, Miura I, Matsumoto J, et al. Elevated postmortem striatal t-DARPP expression in schizophrenia and associations with DRD2/ ANKK1 polymorphism. *Prog Neuropsychopharmacol Biol Psychiatry*. 2014;53:123–128.
- Breen G, Brown J, Maude S, et al. -141 C del/ins polymorphism of the dopamine receptor 2 gene is associated with schizophrenia in a British population. *Am J Med Genet*. 1999;88(4):407–410.
- Hanninen K, Katila H, Kampman O, et al. Association between the C957T polymorphism of the dopamine D2 receptor gene and schizophrenia. *Neurosci Lett.* 2006;407(3):195–198.
- Hoenicka J, Aragues M, Rodriguez-Jimenez R, et al. C957T DRD2 polymorphism is associated with schizophrenia in Spanish patients. *Acta Psychiatr Scand*. 2006;114(6):435–438.
- Jonsson EG, Nothen MM, Neidt H, et al. Association between a promoter polymorphism in the dopamine D2 receptor gene and schizophrenia. *Schizophr Res.* 1999;40(1):31–36.
- Kurt H, Dikmen M, Basaran A, et al. Dopamine D2 receptor gene -141C Insertion/Deletion polymorphism in Turkish schizophrenic patients. *Mol Biol Rep.* 2011;38(2):1407–1411.

- Lafuente A, Bernardo M, Mas S, et al. -141C Ins/Del polymorphism of the dopamine D2 receptor gene is associated with schizophrenia in a Spanish population. *Psychiatr Genet.* 2008;18(3):122–127.
- Monakhov M, Golimbet V, Abramova L, Kaleda V, Karpov V. Association study of three polymorphisms in the dopamine D2 receptor gene and schizophrenia in the Russian population. *Schizophr Res.* 2008;100(1–3):302–307.
- Li T, Arranz M, Aitchison KJ, et al. Case-control, haplotype relative risk and transmission disequilibrium analysis of a dopamine D2 receptor functional promoter polymorphism in schizophrenia. *Schizophr Res.* 1998;32(2):87–92.
- Ohara K, Nagai M, Tani K, et al. Functional polymorphism of -141C Ins/Del in the dopamine D2 receptor gene promoter and schizophrenia. *Psychiatry Res.* 1998;81(2):117–123.
- 72. Saiz PA, Garcia-Portilla MP, Arango C, et al. Genetic polymorphisms in the dopamine-2 receptor (DRD2), dopamine-3 receptor (DRD3), and dopamine transporter (SLC6A3) genes in schizophrenia: Data from an association study. *Prog Neuropsychopharmacol Biol Psychiatry*. 2010;34(1):26–31.
- 73. Stöber G, Jatzke S, Heils A, et al. Insertion/deletion variant (-141C Ins/Del) in the 5' regulatory region of the dopamine D2 receptor gene: Lack of association with schizophrenia and bipolar affective disorder. *J Neural Transm.* 1998;105(1):101–109.
- Tallerico T, Ulpian C, Liu IS. Dopamine D2 receptor promoter polymorphism: no association with schizophrenia. *Psychiatry Res.* 1999; 85(2):215–219.
- Kampman O, Anttila S, Illi A, et al. Dopamine receptor D2 -141C Insertion/Deletion polymorphism in a Finnish population with schizophrenia. *Psychiat Res.* 2003;121(1):89–92.
- Xiao L, Shen T, Peng DH, et al. Functional -141C Ins/Del polymorphism in the dopamine D2 receptor gene promoter and schizophrenia in a Chinese Han population. *J Int Med Res.* 2013;41(4):1171–1178.
- Comings DE, Comings BG, Muhleman D, et al. The dopamine D2 receptor locus as a modifying gene in neuropsychiatric disorders. *JAMA*. 1991;266(13):1793–1800.

- Sanders AR, Rincon-Limas DE, Chakraborty R, et al. Association between genetic variation at the porphobilinogen deaminase gene and schizophrenia. *Schizophr Res.* 1993;8(3):211–221.
- Campion D, D'Amato T, Bastard C, et al. Genetic study of dopamine D1, D2, and D4 receptors in schizophrenia. *Psychiatry Res.* 1994; 51(3):215–230.
- Inada T, Arinami T, Yagi G. Association between a polymorphism in the promoter region of the dopamine D2 receptor gene and schizophrenia in Japanese subjects: replication and evaluation for antipsychotic-related features. *Int J Neuropsychopharmacol.* 1999;2(3):181–186.
- Serretti A, Lilli R, Lorenzi C, Smeraldi E. Further evidence supporting the association between the dopamine receptor D2 Ser/Cys311 variant and disorganized symptomatology of schizophrenia. *Schizophr Res.* 2000;43(2–3):161–162.
- Li H. Association research among candidate genes, clinical symptoms and cognitive function in schizopjrenia [D]. Jilin: *Jilin University*. 2014.
- Liu X, Zhang L, Zhang Y, Wang Y. Association analysis between the prodynorphin gene and the dopamine D2 receptor gene and schizophrenia. *Journal of Psychiatry*. 2009;22(2):89–93.
- Shen T, Peng D, Xiao L, et al. Association of a promoter polymorphism in the dopamine receptor d2 gene in han population with schizophrenia. *Medical Journal of Wuhan University*. 2011;32(3):354–357.
- Zhang M, Yuan G, Yao J, et al. Associations between six functional genes and schizophrenia. *Chin J Med Genet*. 2003;20(1):73–75.
- Liang K. The association of DA2, DA3, DA4 receptor gene polymorphology with schizophrenia also in medical jurisprudence and human genetics studies [D]. Shenyang: *China Medical University*. 2005.
- Jonsson E, Brene S, Geijer T, et al. A search for association between schizophrenia and dopamine-related alleles. *Eur Arch Psychiatry Clin Neurosci.* 1996;246(6):297–304.

Neuropsychiatric Disease and Treatment

Dovepress

Publish your work in this journal

Neuropsychiatric Disease and Treatment is an international, peerreviewed journal of clinical therapeutics and pharmacology focusing on concise rapid reporting of clinical or pre-clinical studies on a range of neuropsychiatric and neurological disorders. This journal is indexed on PubMed Central, the 'PsycINFO' database and CAS, and is the official journal of The International Neuropsychiatric Association (INA). The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read read quotes from published authors.

Submit your manuscript here: http://www.dovepress.com/neuropsychiatric-disease-and-treatment-journal

Supplementary material

 Table SI
 Scale for quality assessment

Criteria	Score
Representativeness of cases	
Consecutive/randomly selected form case population with clearly defined sampling frame	2
Consecutive/randomly selected form case population without clearly defined sampling frame or with extensive	I
Not described	0
Definition of the DR	
Population- or health-based	2
Hospital-bases	I
Not described	0
Hardy–Weinberg equilibrium in controls	
Hardy–Weinberg equilibrium	2
Hardy–Weinberg disequilibrium	I.
Genotyping examination	
Genotyping done under "blinded" condition	I.
Unblinded done or not mentioned	0
Association assessment	
Assess association between genotypes and head and neck cancer with appropriate statistics and adjustment for confounders	2
Assess association between genotypes and head and neck cancer with appropriate statistics and without adjustment for confounders	I.
Inappropriate statistics used	0

Neuropsychiatric Disease and Treatment

Publish your work in this journal

Neuropsychiatric Disease and Treatment is an international, peerreviewed journal of clinical therapeutics and pharmacology focusing on concise rapid reporting of clinical or pre-clinical studies on a range of neuropsychiatric and neurological disorders. This journal is indexed on PubMed Central, the 'PsycINFO' database and CAS, Dovepress

and is the official journal of The International Neuropsychiatric Association (INA). The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read read quotes from published authors.

Submit your manuscript here: http://www.dovepress.com/neuropsychiatric-disease-and-treatment-journal and the second second