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Abstract: In the present study, we evaluated the changes in autophagy after hyperbaric oxygen 

(HBO) treatment for traumatic brain injury (TBI) and investigated whether autophagy takes 

part in the neuroprotection after HBO treatment. Male Sprague Dawley rats were assigned 

to four groups randomly: sham injury, sham injury and HBO, TBI, and TBI and HBO. The 

HBO rats received HBO treatment for 100 min immediately after injury. Rats were sacrificed 

at 24 h after the brain injury and the levels of cleaved caspase-3 and the number of terminal 

deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells in the injured 

cortex were measured to determine cell death. The expression levels of autophagy-associated 

proteins were measured by immunohistochemistry and Western blotting to assess changes in 

autophagy. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive 

cell density and cleaved caspase-3 expression were increased 24 h after TBI. These increases 

were suppressed by post-TBI HBO treatment. Immunohistochemistry and Western blotting of 

autophagy-associated proteins showed that TBI can induce autophagy and that HBO treatment 

can further upregulate the expression of autophagy makers, as shown by an increase in LC3, 

ATG-5, and Beclin-1 expression and reduction in P62 expression. In conclusion, HBO treatment 

can reduce apoptosis and further upregulate autophagy in the injured cortex after brain injury, and 

the autophagy pathway may take part in the neuroprotection provided by HBO treatment for TBI.

Keywords: autophagy, hyperbaric oxygen treatment, traumatic brain injury, apoptosis, neu-

roprotective effect

Introduction
Traumatic brain injury (TBI) is a leading cause of mortality and morbidity in children 

and young adults worldwide.1 Brain injury initiates progressive tissue injury through a 

series of events that lead to neuronal death, brain edema, and impaired cognitive func-

tions.2–4 As more and more data regarding the pathologic changes associated with TBI 

are obtained, it appears that TBI is a complicated secondary neurodegenerative disease. 

Primary injuries, such as traumatic axonal injury and cerebral contusions, can cause 

irreversible damage, and secondary injuries cause cerebral ischemia, oxidative stress, 

inflammation, and neural apoptosis.5 Recently, the autophagy pathway was shown to 

be involved in the pathologic processes of both injuries of TBI.6–9

Autophagy is a metabolic process that has complex relationship with apoptosis.10 

This process conduces to sustaining the balance of synthesis and degradation, which is 

necessary for cell homeostasis.11 Autophagy has been showed to take part in the patho-

genic mechanism of many diseases, including cerebral ischemia, cerebral  hemorrhage, 
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and TBI.7,9,12–15 There is increasing evidence that autophagy 

can promote neuron survival, and activation of autophagy 

may serve as a protective effect post-TBI.7,8,16 However, the 

concrete role of autophagy pathway in brain injury remains 

controversial and unclear.17

Several studies have indicated the protective effects 

of hyperbaric oxygen (HBO) treatment for TBI, including 

reduction of cerebral edema, inhibition of inflammatory 

response, protecting the blood brain barrier, and improved 

neurologic recovery.18–21 In this study, we examine the 

changes of autophagy markers in the cortex after HBO treat-

ment in TBI rats and investigate the effect of the autophagy 

in this process.

Materials and methods
Animals and HBO treatment
All animal procedures were approved by and conducted in 

strict accordance with the ethical guidelines of Zhejiang 

University Animal Experimentation Committee. Every 

attempt was made to minimize the discomfort and pain 

of the animals. Male Sprague Dawley rats (350–380 g; 

Shanghai Laboratory Animal Center) were assigned to four 

groups randomly: sham injury (n=20), HBO (n=20), TBI 

(n=20), and TBI and HBO (n=20). For HBO administra-

tion, rats were placed in the hyperbaric chamber (100% 

oxygen at 2.5 atm absolute) for 100 min immediately after 

brain injury. The rats were returned to their cages after 

HBO treatment.

Traumatic brain injury
We used the lateral fluid-percussion model to induce rat 

TBI, as described previously.22 Briefly, 24 h before brain 

injury, the rats were anesthetized with sodium pentobarbital 

(60 mg/kg, intraperitoneal injection). A craniotomy of 4.8 

mm diameter was performed using a trephine drill, 2.5 mm 

lateral to the median line, maintaining the exposed dura 

intact. A female Luer lock was secured on the craniotomy. 

Then, the rats were returned to their cages to recover over-

night. The next day, the skin incision was opened and the 

rat was connected to the fluid percussion brain injury device 

(Custom Design and Fabrication, Richmond, VA, USA). A 

moderate TBI (1.8–2.0 atm) was performed by releasing the 

pendulum onto the cylinder. Immediately after brain injury, 

the hub assembly was removed, the wound was cleaned, and 

the incision was sutured. The animals were then returned to 

their cages. Sham injury group rats received craniotomies 

without exposure to trauma. These animals were killed 24 

h after the operation.

Immunohistochemistry and terminal 
deoxynucleotidyl transferase-mediated 
dUTP nick end labeling (TUNEL) method
At 24 h after sham or TBI procedures, the rats were anesthe-

tized by 10% chloral hydrate and transcardially perfused with 

phosphate-buffered saline (PBS; 100 mL) and 4% parafor-

maldehyde solution. The brains were removed and the brain 

tissues immersed in 30% sucrose overnight at 4°C. Post-fixed 

brain tissues were sectioned on a sliding microtome.

The TUNEL method was performed in accordance with 

the directions of In Situ Cell Death Detection Kit (Hoffman-La 

Roche Ltd., Basel, Switzerland). Briefly, sections were immersed 

in 0.1% Triton-X and washed with PBS three times for a total of 

30 min. Subsequently, they were exposed to 0.3% H
2
O

2
 at room 

temperature for 30 min and then washed with PBS. The sections 

were immersed in 50 μL of reaction mixture at 37°C for 1 h in the 

dark. Next, the sections were rinsed thrice in PBS and blocked 

for 30 min, followed by diaminobenzidine coloration. Light 

microscopy was performed for observation using an Olympus 

BX51 optical microscope in bright field; ten fields per section 

were randomly chosen to perform the counting of TUNEL-

positive cells. There were six rats in each of the four groups.

Sections 4 μm thick were used for immunofluorescence 

assay of Beclin-1, ATG-5, and LC3. The sections were blocked 

with 5% bovine serum albumin at room temperature for 1 h and 

then incubated with primary antibodies (1:200) overnight. The 

following day, after incubation, the sections were washed for 

15 min with PBS and then incubated with secondary antibody: 

Alexa Fluor 488 goat anti-rabbit IgG (1:300; Thermo Fisher Sci-

entific, Waltham, MA, USA; Cat. No. A-24922). The sections 

were then incubated in 4′,6-diamidino-2-phenylindole (1 ng/μL; 

Sigma-Aldrich Co., St Louis, MO, USA; D9542) for nuclear 

counterstaining at room temperature for 5 min. Laser confocal 

scanning microscope (Olympus, FV1000) was used to detect 

the fluorescent signals. Ten fields per section were randomly 

selected to perform the counting of Beclin-1-, ATG-5-, and 

LC3-positive cells. There were six rats in each of the four groups.

Western blotting
Twenty four hours after TBI, the brains were rapidly removed 

and the injured cortex was quickly dissected. The injured 

cortical tissues were homogenized with lysis solution. After 

centrifugation at 12,000 ×g for 30 min, the protein concen-

trations were measured with bicinchoninic acid protein assay 

kit (Beyotime Biotechnology). An equal quality of protein 

(50 μg/lane) was separated by 10% sodium dodecylsulfate 

polyacrylamide gel electrophoresis and then transferred onto a 
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 polyvinylidene fluoride membrane (EMD Millipore, Billerica, 

MA, USA). The membranes were then blocked in 5% skimmed 

milk for 2 h and incubated with primary antibodies at 4°C 

overnight. The following primary antibodies were used: P62 

(1:1000; Abcam, Cambridge, UK), ATG-5 (1:1000; Abcam), 

Beclin-1 (1:1000; Cell Signaling Technology,  Danvers, MA, 

USA), LC3 (1:10,000; Cell Signaling Technology), caspase-3 

(1:10,000; Cell Signaling Technology), and GAPDH antibody 

(1:10,000; Cell Signaling Technology). After the membranes 

had been washed three times in tris-buffered saline with Tween, 

they were incubated in secondary antibodies for 2 h. Then the 

membranes were washed with tris-buffered saline with Tween. 

Blotted protein bands were exposed to X-ray film, and the 

results were quantified with Quantity One Software (Bio-Rad). 

There were eight rats in each of the four groups.

Statistical analyses
Statistical Package for the Social Sciences (SPSS) 20.0 (IBM 

Corporation, Armonk, NY, USA) was used for statistical 

analysis. All data are presented as mean ± standard error of 

mean. One-way analysis of variance and Tukey’s test were 

used for comparisons among groups. p Values <0.05 were 

considered statistically significant.

Results
HBO treatment decreased apoptosis in 
the injured cortex after TBI
HBO treatment decreased the number of 
TUNEL-positive cells in the cortex after TBI
To elucidate the protective mechanism of HBO in TBI, we 

examined the results of TUNEL staining to explore apoptosis 

in the injured cortex. There were few TUNEL-positive cells in 

the cortex of the sham injury group (Figure 1A, B). Twenty-

four hours after TBI in the injured cortex, the TUNEL-positive 

cells were markedly increased in the TBI group compared with 

the sham group (31.7%±3.1%; p<0.001; Figure 1C and 1E). 

However, the number of TUNEL-positive cells was significantly 

decreased in the post-TBI HBO group compared to the TBI 

group (15.6%±3.5%; p<0.001; Figure 1D and 1E). Quantitative 

analysis indicated that HBO treatment clearly had a protective 

effect on delayed neuronal cell death in the cortex of TBI rats.

HBO treatment downregulated the 
expression of cleaved caspase-3 in the 
cortex after TBI
Twenty-four hours after brain injury, the expression levels 

of cleaved caspase-3 (assayed by Western blotting) of the 

TBI and TBI + HBO groups were increased by 1.67±0.13 

and 1.16±0.08 compared with the sham group, respectively 

(Figure 2A, B). The expression level of cleaved caspase-3 was 

significantly increased in the injured cortex after TBI (p<0.05, 

TBI versus sham) and this increase was suppressed by post-

TBI HBO treatment (p<0.05, TBI versus TBI + HBO).

HBO treatment significantly increased 
autophagy in the injured cortex 24 h 
after TBI
Western blotting
The expression level of LC3-II was upregulated in the injured 

cortex 24 h after the brain injury, compared to the sham group 

(1.75±0.38, p<0.05). Post-TBI HBO treatment could further 

increase LC3-II level, compared to rats in the TBI group 

(2.02±0.11, p<0.05; Figure 2A, C).

The expression level of Beclin-1 significantly increased in 

the injured cortex 24 h after the injury, compared to the sham 

group (1.55±0.08, p<0.05). Post-TBI HBO treatment could 

efficiently increase Beclin-1 level 24 h after the injury, com-

pared to the TBI group (2.16±0.09, p<0.05; Figure 2A, D).

The expression level of ATG-5 significantly increased 24 

h after brain injury, compared to the sham group (1.52±0.35, 
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Figure 1 TUNEL immunohistochemistry staining of the injured cortex: (A) sham 
injury, (B) HBO, (C) TBI, (D) TBI + HBO, and (E) Quantitative analysis of TUNEL-
positive cells.
Notes: The number of TUNEL-positive cells in the total number of cells was 
evaluated in ten microscopic fields per section. HBO treatment could significantly 
decrease the number of TUNEL-positive cells after TBI. Arrows indicate TUNEL-
positive cells. ***p<0.001. Magnification, 10×; scale bar =100 μm
Abbreviations: HBO, hyperbaric oxygen; TBI, traumatic brain injury; TUNEL, 
terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling.
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Figure 2 Western blotting of cleaved caspase-3, P62, ATG-5, Beclin-1, and LC3 in rats’ injured cortex after TBI.
Notes: GAPDH was used as a load control. Values are the mean ± SEM. The expression levels of cleaved caspase-3, ATG-5, Beclin-1, and LC3 significantly increased and the 
expression level of P62 significantly decreased in the injured cortex 24 h after TBI. Post-TBI HBO treatment further upregulated the levels of ATG-5, Beclin-1, and LC3 and 
downregulated the levels of cleaved caspase-3 and P62, compared with rats in the TBI group. *p<0.05. Magnification, 20×.
Abbreviations: HBO, hyperbaric oxygen; SEM, standard error of the mean; TBI, traumatic brain injury.

p<0.05). Post-TBI HBO treatment could further increase 

ATG-5 level 24 h after the injury, compared to the TBI group 

(1.97±0.07, p<0.05; Figure 2A, E).

The expression level of P62 significantly decreased 

at 24 h after brain injury in the injured cortex, compared 

with the sham group (0.58±0.07, p<0.05). Post-TBI HBO 

treatment could further decrease P62 level 24 h after the 

injury, compared to the TBI group (0.31±0.04, p<0.05; 

Figure 2A, F).

Immunofluorescence
At 24 h after injury, the number of LC3-positive cells was 

increased in the injured cortex, compared to rats in the sham 

injury group (18.9%±4.6%, p<0.05). Post-TBI HBO  treatment 
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further increased the number of LC3-positive cells, compared 

to rats in the TBI group (26.1%±5.4%, p<0.05; Figure 3).

At 24 h after injury, the number of Beclin-1-positive cells 

was increased in the injured cortex, compared to rats in the 

sham injury group (21.5%±4.3%, p<0.05). Post-TBI HBO 

treatment further increased the number of Beclin-1-positive 

cells, compared to rats in the TBI group (32.7%±3.9%, 

p<0.05; Figure 4).

At 24 h after brain injury, the number of ATG-5-positive 

cells was significantly increased, compared to rats in the 

sham injury group (21.5%±4.1%, p<0.05). Post-TBI HBO 

treatment further increased the number of ATG-5-positive 

cells, compared to rats in the TBI group (40.1±5.9, p<0.05; 

Figure 5).

Discussion
In the present study, we found that the TUNEL-positive cells 

and the expression of cleaved caspase-3 in the injured cortex 

were significantly increased 24 h after brain injury, and HBO 

treatment could attenuate cortical cell death and brain injury. 

We also observed that TBI activated autophagy in the injured 

cortex at 24 h after TBI, and HBO treatment could further 

upregulate the level of autophagy after TBI. These results 

suggest that activation of autophagy may be involved in the 

neuroprotection provided by HBO treatment after TBI.
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Figure 3 Immunofluorescence analysis of LC3 expression in the cortex.
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Figure 4 Immunofluorescence analysis of Beclin-1 expression in the cortex.
Notes: The average number of Beclin-1-positive cells in the total number of cells 
was evaluated in ten microscopic fields. Arrows indicate Beclin-1-positive cells. 
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Figure 5 Immunofluorescence analysis of ATG-5 expression in the cortex.
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Apoptosis plays a crucial role in the pathogenesis of 

brain injury. Apoptosis of neurons and glia is a key  signaling 

pathway that leads to brain injury and contributes to the 

overall pathology of TBI.23,24 In several experimental models 

of TBI, activation of proapoptotic molecules was observed 

in the early period and in tissues away from the injured 

site, weeks after brain trauma.23,25,26 Several studies have 

demonstrated that the balance between proapoptotic and 

antiapoptotic factors is a key mechanism of apoptosis.27–29 

Activation of death-inducing factors, such as Bax, p53, and 

tumor-suppressor gene, induces apoptosis. In accordance 

with previous studies, we verified that TBI could induce 

significant apoptosis of injured cortex, which was evaluated 

by activation of caspase-3 and TUNEL assay.

In addition to apoptosis, autophagy can also be activated 

by TBI.7,8,16,17,30,31 Increased autophagy after TBI was first 

reported by Diskin; it was found that the expression level 

of Beclin-1 was significantly increased in the closed-head 

injury models of mice.30 Also, Lai et al first found ultra-

structural authentication of autophagosomes in controlled 

cortical impact brain injury in mice. It was demonstrated 

that the number of autophagosomes and autolysosomes was 

increased 2 h after TBI and lasted for an extended period in 

the injured cortex.32 Autophagy is essential for the mainte-

nance of cell survival and cellular homeostasis. In the pres-

ent study, autophagic activity was assessed by the levels of 

proteins Beclin-1, LC3, and ATG-5, which are biomarkers 

for detecting changes in autophagy. Beclin-1, a novel Bcl-

2-homology (BH)-3 domain protein, plays an important role 

in autophagy. The proautophagic activity of Beclin-1 can be 

attenuated by Bcl-2, and therefore, Beclin-1–Bcl-2 complex 

is thought to regulate the switch between autophagy and 

apoptosis.33 LC3, a mammalian ortholog of yeast Atg8, is 

one of the most reliable markers in the study of autophagy 

induction.33 When autophagy is activated, LC3-I is conjugated 

with phosphatidylethanolamine to form LC3-II, and LC3-II 

accumulation reflects autophagic flux.34,35

The role of autophagy after TBI has been studied with 

rapamycin, which activates autophagy by inhibition of mam-

malian target of rapamycin. It was found that autophagy 

might play a beneficial role and maintained cellular homeo-

stasis after brain injury.36 However, the concrete role of 

autophagy is not yet clear. Several studies demonstrated that 

autophagy pathway participates in the neuropathology of 

brain injury.15,37,38 In this study, we found that HBO treatment 

could increase autophagy and attenuate injured cortex cell 

death. Together with previous studies, we suggest autophagy 

pathway may be involved in the neuroprotection provided by 

HBO treatment for TBI.

Previous researches have confirmed that HBO treat-

ment reduces neuronal apoptosis by reducing p53 and 

increasing bcl-2 expression.39–43 Bcl-2 proteins were 

previously shown to exert a neuroprotective effect by 

reducing the release of cytochrome c and blocking caspase 

activation.44 Bcl-2 is not only involved in the pathway of 

apoptosis, but also participates in the regulation of the 

autophagy signaling pathways.45,46 Our results further 

suggest that HBO could protect against brain injury by 

increasing autophagy. This upregulation of autophagy may 

be partially caused by the increased Bcl-2 after HBO. In 

addition, the two signaling pathways interact with each 

other and jointly play an important role in the neuropro-

tection provided by HBO treatment.

In conclusion, TBI induced autophagy in the injured 

cortex 24 h after the injury. HBO treatment could attenuate 

apoptosis and further upregulate autophagy. Therefore, we 

propose that autophagy pathway participates in the neuropro-

tection provided by HBO treatment in TBI. Further studies 

are required to provide concrete evidence of the mechanisms 

of the activation of autophagy by HBO.
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