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Abstract: Epilepsy and migraine are common diseases of the nervous system and share genetic 

and pathophysiological mechanisms. Familial hemiplegic migraine is an autosomal dominant 

disease. It is often used as a model of migraine. Four genes often contain one or more muta-

tions in both epilepsy and hemiplegic migraine patients (ie, CACNA1A, ATP1A2, SCN1A, and 

PRRT2). A better understanding of the shared genetics of epilepsy and hemiplegic migraine 

may reveal new strategic directions for research and treatment of both the disorders.
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Introduction
Epilepsy and migraine are common diseases of the nervous system. The overall 

prevalence of epilepsy in populations of the USA is 0.025%–0.05%, and the prevalence 

of migraine in the adult population is approximately 5%. Of the patients with epilepsy, 

8%–24% also experience migraines.1 The risk of migraine in these patients is onefold 

greater compared with healthy controls.2 The risk of epileptic seizure in children who 

experience migraines is 3.2 times higher than that of children with tension headaches.1 

It is possible that a headache similar to a migraine is caused by the seizure. However, 

there is clearly a strong association between epilepsy and migraine.

The relationship between migraine and epilepsy is not a cause-and-effect 

relationship. Migraine and epilepsy share the same physiological pathway. It is 

possible that both are caused by cortical neuron over-excitation. Epilepsy results 

from the synchronized discharge of neurons. Migraine is associated with cortical 

spreading depression (CSD),3 which is the strong depolarization of a large group of 

nerve cells or neuroglia that spreads to adjacent areas and inhibits neural activity.4,5 

Epilepsy and migraine can spontaneously induce CSD.6 The results of animal studies 

have suggested that many changes that occur during CSD (eg, the increased release 

of glutamate, the increased concentrations of extracellular potassium ions, and the 

inhibition of the Na+/K+ ATPase) are also associated with the sense of foreboding 

experienced by some migraine patients.7 Taken together, these results indicate that 

CSD may be the basis for migraine aura.

Some shared mutations have been identified in the cases of epilepsy and migraine, 

which suggests that there is a common genetic basis for these conditions. The two 

categories of migraine are migraine without aura and migraine with aura; hemiplegic 

migraine is a rare form of migraine with aura. Hemiplegic migraine can be subdivided 

into familial hemiplegic migraine (FHM) and sporadic hemiplegic migraine (SHM). 

FHM is a monogenic (Mendel’s Laws determine the inheritance pattern) autosomal 

dominant disease. It is often used as a model during studies of mechanisms associated 
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with migraine. This article discusses the possible common 

genetic basis for epilepsy and migraine.

CACNA1A gene
The CACNA1A gene is located at the gene map locus 19p13, 

between microsatellite markers D19S216 and D19S215. The 

CACNA1A gene encodes for the Ca2.1α1 subunit. Voltage-

gated P/Q-type calcium channels are composed of α1 subunits. 

The subunits contain four homologous regions (I–IV); each 

region contains six transmembrane segments.8 The S4 seg-

ment connects to a positively charged amino acid to form the 

S4 transmembrane α-helix, which acts as a “voltage sensor”. 

The S5–S6 connecting section forms a channel hole, which 

selectively allows the passage of ions.9 The P/Q-type calcium 

channel mediates neurotransmitter release by promoting the 

flow of calcium to stimulate the presynaptic membrane. The 

specific mutations that occur in individuals with FHM type 

1 are missense mutations of the CACNA1A gene. The muta-

tions are often near the ion channel or in the voltage sensor. 

The most common mutation is T666M, which can change the 

current densities and gating properties. A genetic analysis of 

a 14-year-old girl who experienced epileptic activity during 

an FHM attack revealed an I170T mutation in the CACNA1A 

gene (district IV of the S5 segment).10 S218L knock-out mice 

develop severe FHM symptoms,11 and the S218L mutation (a 

type of CACNA1A mutation) has been identified in patients 

with epilepsy.12,13 Conversely, the C5733T mutation (a 

CACNA1A mutation) is associated with non-FHM childhood 

absence epilepsy.14 Genetic mutations can damage Cav2.1 

channel function, which may lead to generalized seizures.15,16 

Mutations in the CACNA1A gene occur in patients with 

epilepsy,17,18 in patients with FHM, and in patients with epi-

lepsy and FHM as comorbid conditions.19

R192Q mutant mice can undergo a shift in the balance of 

excitation and inhibition in cortical neurons,20 which reduces 

the threshold for CSD and accelerates its propagation rate. 

Susceptibility to CSD is also increased in S218L mutant 

mice.11,21,22 A CACNA1A gene knock-in mouse model (6J-Tg) 

is a typical absence seizure animal model;23 we found that 

patients with absence seizures have a CACNA1A mutation.16,24 

In 6J-Tg mice, the amino acid sequences of the S4–S5 con-

necting area, the S5, and part of the S5–S6 connecting region 

also have a high number of mutations.25 Mutations in FHM 

knock-in mice also occur in the S4–S5, S5, and S5–S6 con-

necting region,26 which suggests that CACNA1A gene muta-

tions may be shared between patients with absence seizures 

and patients with FHM. Studies of tg/tg mice, which have 

genetically linked epilepsy and may have CACNA1A gene 

mutations, revealed that loss of the CaV2.1 channel function 

can induce synaptic dysfunction of cortical interneurons and 

specifically reduce or impair the function of cortical GABA 

neurotransmitter.27

ATP1A2 gene
In 2003, ATP1A2 mutations were identified in families with 

FHM (FHM type 2, FHM2).28,29 The ATP1A2 gene is in 

chromosome 1q23; it codes for the α2 subunit of Na+/K+ 

ATPase, which consists of an α and a β subunit. ATP hydro-

lysis releases energy and reversibly transmits three Na+ into 

the extracellular, and two K+ into the intracellular, regions. 

The α subunit includes subtypes 1–4 and has a catalytic func-

tion. Neurons and astrocytes highly express α2 subunits, and 

in astrocytes, Na+/K+ ATPase can regulate the extracellular K+ 

concentration. This regulation increases neuron excitability 

and induces a threshold value that can lead to CSD.

A genetic study of an Italian family with members with 

both hemiplegic migraine and epilepsy found that they 

also had the ATP1A2 mutation.30 The epilepsy incidence 

is increased in families with FHM2; approximately 20% 

experience seizures29 such as partial seizures, benign familial 

infantile convulsions, and high fever convulsions. In a family 

with FHM2, one member had partial epilepsy as a child, and 

electroencephalography revealed a focal migratory epilepsy-

like discharge waveform. The M721T and R689Q mutations 

of the ATP1A2 gene were found in two families with FHM2 

in Holland. While patients with the R689Q mutation experi-

enced benign familial infantile convulsions, those with the 

M721T mutation did not have epilepsy.31 Other studies found 

that the D718N and P979L mutations increase the risk for 

epilepsy and mental retardation.32 Similarly, the R1007W 

mutation may be a factor that increases susceptibility for 

epileptic seizures.33

Maintaining the correct concentrations of Na+ and K+ via 

the Na+/K+ ATPase system is crucial for the ability of astro-

cytes to clear extracellular glutamic acid. EAAT1 also has 

an important role in glutamate clearance.34 The distribution 

of EAAT1 is consistent with that of Na+/K+ ATPase. EAAT1 

must be driven by the influx of three Na+ ions and the efflux 

of one K+ ion for glutamic acid uptake. Taken together, this 

evidence indicates that EAAT1 and Na+/K+ ATPase have a 

close relationship in structure and physiology.35 When Na+/K+ 

ATPase function is impaired, transport of K+ into the cell by 

astrocytes is reduced. This change results in an accumulation 

of K+ in the extracellular fluid, which increases cell discharge 

frequency and excitability, and induces CSD.19 In summary, 

abnormal Na+/K+ ATPase system function disrupts the K+ 
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gradient and impairs glutamate clearance, which likely 

contributes to CSD, FHM, and epilepsy.

SCN1A gene
Dozens of mutations are associated with epilepsy.36 However, 

only some mutation sites are associated with FHM type 3 

(FHM3). Mutation of the SCN1A gene can result in seizures 

and FHM3.37–39 The SCN1A gene encodes for Nav1.1 – a 

voltage-gated sodium channel that is abundant in the central 

nervous system. Nav1.1 protein is mainly located in the 

cerebral cortex and spinal cord and is highly expressed in 

cell bodies and dendrites in these locations. SCN1A gene 

mutations are found in Dravet syndrome (DS) and infant 

idiopathic comprehensive epilepsy patients.40–42

Approximately 650 heterozygous SCN1A mutations are 

found in DS patients, and the mean mutation rate is approxi-

mately 85%.43 Of these mutations, approximately 50% are 

nonsense mutations that result in truncated proteins and an 

Nav1.1 protein with only one-half of its functions (ie, one 

chromosome is nonfunctional). Conversely, most of the other 

approximately 50% of SCN1A mutations are missense muta-

tions, which can either enhance or weaken Nav1.1 function.38 

Mutations of the SCN1A gene have been found in patients 

with generalized epilepsy with febrile seizures plus44,45 and 

in patients with partial epilepsy with febrile seizures plus.46,47 

Different types of SCN1A mutations result in different effects 

on channel function. The Q1489K and L1649Q mutations 

cause FHM3, but are not associated with seizures. Con-

versely, a gene analysis of a Portuguese family with FHM 

revealed the presence of an L263V mutation; some affected 

family members had generalized epilepsy, and some had 

complex partial seizures.48,49 The L263V mutation results in 

a functional enhancement that accelerates recovery, thereby 

prolonging current duration and increasing neuron excit-

ability. As a result, L263V mutations can result in seizures 

and FHM3 in the same individual.50 In contrast, mutations in 

Q1489K and L1649Q can inhibit neuronal functioning.49,51,52 

These functional mutations can cause seizures or FHM, but 

not both, which suggests that an additional factor is required 

to promote development of the excitatory loop.19

PRRT2 gene
The CACNA1A, ATP1A2, or SCN1A genes, or some combi-

nation, can be found in approximately 75% of FHM patients 

and in a smaller number of SHM patients.53 The PRRT2 gene 

has recently been implicated in the shared pathophysiology 

of epilepsy and migraine.54 The PRRT2 gene is located on 

the 16p11.2 chromosome, contains four exons, and encodes 

a 340-amino acid transmembrane protein. Most study results 

indicate that mutations occur in the second and third exons of 

the PRRT2 gene. A survey of 101 patients with hemiplegic 

migraine (ie, 48 with FHM, 52 with SHM, and one with 

uncategorized hemiplegic migraine) revealed that there 

were no mutations of the CACNA1A, ATP1A2, or SCN1A 

genes. However, PRRT2 mutations were identified in four 

of the patients. One of these patients also had paroxysmal 

movement disorder and generalized seizures.55 Dale et al 

found that some members of an affected family experienced 

paroxysmal movement disorder and hemiplegic migraine. 

This result suggested that PRRT2 mutation was present. 

No other hemiplegic migraine-related genes were detected. 

Studies have also found that PRRT2 mutations are rare in 

patients with hemiplegic migraine or hemiplegic migraine 

with paroxysmal kinesigenic dyskinesia (PKD),56 and in 

patients with benign familial infantile seizure (BFIS).

PRRT2 mutations are common in individuals with BFIS 

(ie, benign familial infantile epilepsy). BFIS is an autosomal 

dominant epilepsy and often occurs in infants 3–12 months 

of age. PRRT2 mutations are found in 80% of BFIS families, 

which suggests that the gene is a major cause of BFIS.57–59 

PRRT2 mutation is also found in individuals with benign 

infantile convulsions.60 However, it is not found in infants 

with atypical epilepsy. This result suggests that epilepsy-

associated PRRT2 mutations are specific, self-limited, and 

age-dependent. These characteristics may contribute to the 

time-dependent differences in protein expression.61

c.649dupC is a hotspot for PRRT2 mutation. c.649dupC 

is located at the end of a structure with eight continuous cyto-

sine bases. This mutation causes an error in the DNA replica-

tion process that results in a truncated PRRT2 protein with 

only 217 amino acids. Results of a yeast two-hybrid assay 

indicated that PRRT2 and SNAP25 interact.62,63 SNAP25 

affects neurotransmitter release from the synapse and can 

regulate calcium channel dynamics, including for the Cav2.1 

calcium channel.64 Some investigators have hypothesized 

that PRRT2 mutation impairs SNAP25 function, which then 

changes CaV2.1 activity, causes neuronal hyperexcitability, 

and results in epilepsy, hemiplegic migraine, or PKD.

Conclusion
There is a great deal of evidence suggesting that epilepsy 

and hemiplegic migraine have a close genetic relationship. 

This relationship provides a foundation for a new strategic 

direction for research and treatment. Epilepsy and hemiplegic 

migraine are disorders associated with abnormal neuronal 

excitability; they have overlapping regions of genetic 
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inheritance. However, epilepsy occurs from the synchronous 

discharge of excited neurons, and abnormal neuronal excit-

ability is transformed into CSD in migraine patients. Future 

studies should investigate this relationship and the different 

phenotypes of the two disorders.
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