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Objectives: Variable prevalence and treatment of breakthrough pain (BTP) in different clini-

cal contexts are partially due to the lack of reliable/validated diagnostic tools with prognostic 

capability. We report the statistical basis and performance analysis of a novel BTP scoring 

system based on the naïve Bayes classifier (NBC) approach and an 11-item IQ-BTP validated 

questionnaire. This system aims at classifying potential BTP presence in three likelihood classes: 

“High,” “Intermediate,” and “Low.”

Methods: Out of a training set of n=120 mixed chronic pain patients, predictors associated 

with the BTP likelihood variables (Pearson’s χ2 and/or Fisher’s exact test) were employed for the 

NBC planning. Adjusting the binary classification to a three–likelihood classes case enabled the 

building of a scoring algorithm and to retrieve the score of each predictor’s answer options and 

the Patient’s Global Score (PGS). The latter medians were used to establish the NBC thresholds, 

needed to evaluate the scoring system performance (leave-one-out cross-validation).

Results: Medians of PGS in the “High,” “Intermediate,” and “Low” likelihood classes were 

3.44, 1.53, and −2.84, respectively. Leading predictors for the model (based on score differences) 

were flair frequency (∆S=1.31), duration (∆S=5.25), and predictability (∆S=1.17). Percentages 

of correct classification were 63.6% for the “High” and of 100.0% for either the “Intermediate” 

and “Low” likelihood classes; overall accuracy of the scoring system was 90.9%.

Conclusion: The NBC-based BTP scoring system showed satisfactory performance in clas-

sifying potential BTP in three likelihood classes. The reliability, flexibility, and simplicity of 

this statistical approach may have significant relevance for BTP epidemiology and management. 

These results need further impact studies to generalize our findings.

Keywords: naïve Bayes classifier, breakthrough pain, multiclass scoring-system 

Introduction
Breakthrough pain (BTP) refers to a transitory exacerbation of pain experienced 

by a chronic pain (CP) patient who has relatively stable and adequately controlled 

baseline pain.1 Its prevalence, among CP cancer and noncancer patients, may reach 

93% and 74%, respectively.2–8 BTP was reported as an independent predictor for poor 

pain outcomes, and to have negative impact on patients’ quality of life with physical, 

psychological, and economic burdens for patients and caregivers.4,7,9–11

BTP recognition is essential for adequate pain management. Common pain assess-

ment tools are insufficient for BTP identification,1,12–14 and the adequacy of those used to 

assess cancer BTP (BTcP) were challenged as there are no widely accepted definition, 

classification system or well-validated, consistently used and standardized diagnostic 
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tool for BTcP.13 Including BTP in prognosis research may rep-

resent a novel approach for BTP recognition and treatment.

The need for quantitative support for caregivers to make 

therapeutic decisions is growing. The benefit of scoring and 

classification systems resides in that a unique number or clini-

cal condition class can combine information and predictors 

arising from different inputs.

In a modern approach for scoring system development, 

the numeric scores are estimated using frequency counts from 

a training set. This approach is based on the Bayes’ rule that 

allows formalizing a priori suppositions and combining them 

with the available observations; using a simplifying (naïve) 

assumption makes the problem linear and reduces the clas-

sifier complexity. The naïve Bayesian approach, with respect 

to the nonlinear alternatives, is simpler to implement even 

for nonstatisticians; it is also flexible and often outperforms 

more sophisticated classification methods showing good 

performance in terms of classification accuracy.15 For these 

reasons it is increasingly used for designing scoring systems 

to support clinical decision making in many fields.16–22

We report the theoretical background and the steps fol-

lowed for the development of a scoring system for a BTP 

diagnostic/prognostic tool based on the naïve Bayes classifier 

(NBC) approach and the 11-item IQ-BTP validated question-

naire. The tool aims at classifying the potential presence of 

BTP in three prognostic/likelihood classes: High, Intermedi-

ate, and Low. A concise description of the NBC, the adopted 

classification technique, and the adjustments needed for a 

multiclass situation will be followed by the analysis of the 

scoring system performance using data from a training set.

Methods
Naïve Bayes classifier and  
scoring systems
The NBC is based on the Bayes’ theorem. The latter states 

that, given the events C
1
, C

2
,…C

k
, which are compatible 

with an event E (with P(E) ≠ 0, where P is the probability of 

event E to occur), the probability of event C
t
 in the case that 

event E occurred (i.e., the conditional probability P(C
t
|E) is 

described in Equation (1):

 P C E
P C P E C

P E
i ki

i i|( ) =
⋅
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( ) ( | )
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(1)

The value P(C
i
) is called “prior probability”; P(E|C

i
) is the 

likelihood that allows updating the initial probability assign-

ment into the new term P(C
i
|E), called “posterior probability.” 

In the NBC framework, it is assumed that the predictors for 

a given class w
i
 are independent, that is, the value observed 

on a predictor does not influence the value observed on the 

others. This “naive” assumption drastically simplifies the 

computation of the conditional probabilities for each class, 

which are thus computed individually for each variable. 

Moreover, the development of the classifier becomes even 

simpler when the computation of the conditional probabilities 

is based on binary or discrete predictors. Indeed, a predictor 

E
j
 with K levels is characterized by a K-dimensional vector 

for each class ω
i
 with all the likelihood terms for each level, 

that is, ˆ ˆ ˆP e P e P ej j i Kj i1 i 2| , | ,…, |ω ω ω( ) ( ) ( )





.21,22 Each vec-

tor’s component is estimated using the predictor frequencies 

obtained from the training set, applying the “Laplace correc-

tion” adjustment. The latter is introduced in order to avoid 

0 or 1 values or prior probabilities for different classes. The 

resulting formula (2) computes the conditional probabilities:
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where n
c
 represents the count of statistical units belonging 

to the ith class for which the predictor E
j
 takes value equal to 

e
x
, N

i
 is the amplitude of the ith class, and K is the number of 

levels of E
j
. Given the q-dimensional vector e = (E

1
, E

2
, …, 

E
q
, the new Bayes’ theorem formulation for the classifier in 

(1) is described in Equation (3):
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where P̂ indicates the estimated probabilities; q is the 

number of variables chosen and e
xj
 is the xth level for the 

variable E
j
.

The classification rule is extracted directly from the pos-

terior probabilities obtained using Equation (3). Given the 

observed variables, if the likelihood of class w
1
 is greater or 

equal to the likelihood of class w
2
 then their ratio is not <1 

and it is more plausible that the statistical unit under study 

belongs to w
1
; therefore, this unit is assigned to w

1
. This deci-

sion rule for NBC is described in Equation (4) as a simplified 

version adopted from the literature.21
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The classification rule can be rewritten in logarithmic 

form; instead of getting products, a sum of q addends is 

obtained. This sum returns substantially a score from empiri-

cal observation. Once a threshold (in logarithmic form) is 

fixed, the score is compared to it and the unit is assigned to 

the best class, as in Equation (5):
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Equation 5 returns the sum S of the logarithms of the 

likelihood ratios for each predictor in each class, to be 

compared with the logarithm of the ratio for the prior prob-

abilities estimated for each class. If S is greater or equal to 

the right-hand side of the inequality, the unit is assigned to 

the class w
1
, otherwise to class w

2
.

For a multiclass (>2) situation the scoring system must 

be adjusted: while in the binary situation the classification 

is based on a ratio and discriminates two classes, in a three-

classes situation the discrimination problem may be split into 

three binary subproblems. An easier and reliable strategy is to 

consider High and Low, as w
1
 and w

2
, aiming at discriminat-

ing mostly the two extreme classes.

IQ-BTP questionnaire and data 
description
We developed, following the literature1,14,23–25 and based 

on our experience, an operational case definition of BTP, 

which enabled a set of hypotheses for formal validation of 

an 11-item BTP questionnaire (for details see Samolsky 

Dekel et al26). Accordingly, a patient with BTP should report, 

1) congruent clinical “prerequisite elements” that denote the 

potential presence of BTP; 2) appropriate “discriminate char-

acteristics” of flares’ frequency and duration; and 3) any of the 

flares’ “clinical descriptive elements.” Table 1 reports these 

elements’ definitions, scoring, and interpretation, which are 

the basis of the validated IQ-BTP questionnaire. As we were 

interested in the prognostic features of our questionnaire, we 

have assumed that patients who potentially experience BTP 

are those who possess all the “prerequisite elements.” In these 

patients, the likelihood for the presence of BTP is “High,” 

when both the defined clinical discriminates (frequency 

and duration) are present; “Intermediate,” if only one of the 

“clinical discriminates” is present; and “Low,” if none of the 

“clinical discriminates” are present. In this study these likeli-

hood classes will be referred to as BTP outcome variables.

For the purposes of this report we used a training set of 

n=120 mixed cancer/noncancer patients, >18 years of age, 

with moderate/severe CP and treated around the clock (ATC) 

with strong opioids. This sample was also used for the valida-

tion of the IQ-BTP questionnaire. As described elsewhere,26 

the validation study was approved by the Ethics Committee of 

the Bologna’s Teaching Hospital (Italy), conducted according 

to the Helsinki declaration and the International Association 

for the Study of Pain’s guidelines for pain research in humans. 

All participants were personally informed by the investiga-

tors on the study’s aims and structure and that participation 

Table 1 Essentials of the IQ-BTP item definitions, scoring, and interpretation

“Prerequisite clinical elements” “Clinical discriminate elements” “Clinical descriptive elements”

1. Persistent chronic pain 6.  Flares are of limited frequency 
(≤5/24 h)

8.  Flares are of variable localization

2.  Around-the-clock strong opioids 
treatment

7.  Flares are of short duration 
(≤30–60 min)

9.  Flares are a) predictable or  
b) unpredictable

3.  Average intensity of CP in the past 
3–7 days is of NRS≤4

10.  Flares are with a) known or  
b) unknown causes

4.  Presence in the past 24 h of pain 
exacerbations (flares) with an 
intensity of NRS≥6

11.  Flares are of a) nociceptive,  
b) neuropathic, or c) both qualities

5.  Flares are uncorrelated with the 
opioid administration schedule

Answer options for 
each item

“Yes“ or “No” “Yes“ or “No” Retrieve only the applicable

Score and 
interpretation

a)  5 “yes” answers = “potential BTP” 
and continue questionnaire

b)  1 or more “No” answers = 
No “potential BTP” and stop 
questionnaire

a) “Yes” = 1 point
b) “No” = 2 points
c)  Sum of points (indicating BTP 

likelihood class):
“2” = “High” likelihood;
“3” = “Intermediate” likelihood;
“4” = “Low” likelihood

Add to the likelihood class

Notes: Definitions’ numbering in the table matches the item numbers in the IQ-BTP questionnaire. The questionnaire scoring system is such that patients potentially suffering 
from BTP should answer “Yes” to each of the first five items (prerequisite elements) of the IQ-BTP; for each of the two clinical discriminate items (items 6 and 7 of the 
IQ-BTP), a “Yes” answer scores “1” point and a “No” answer scores “2” points. Thus, the sum of the scores of the two discriminate items can be “2”, “3” or “4” indicating, 
respectively, High, Intermediate, or Low likelihood for BTP.
Abbreviations: BTP, breakthrough pain; CP, chronic pain; NRS, Numerical Rating Scale.
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was voluntary, anonymous, and would not affect their care; 

hence, an informed consent was obtained.

Scoring system analysis procedure
•	 Extract, from the training set, the sub-dataset for the 

scoring system analysis:

	 Select the independent variable predictors (Table 2, 

excluding items 1–5) that show statistically signifi-

cant relationship with the BTP outcome variables by 

using contingency tables and the Pearson’s χ2 (or, in 

the case of expected counts <5, the Fisher’s exact test 

for discrete variables). Items 1–5 are excluded as, by 

definition, all the patients potentially experiencing 

BTP must have answered “Yes” to these items and thus 

they have no further discrimination value and represent 

no contribution for the classification purposes.

	 Cell frequencies: assign cases with potential BTP 

(i.e., those with “Yes” answers to items 1–5) to each 

selected predictor as function of the BTP outcome 

variable (see Table 2, items 6–10).

•	 Build the scores set by computing the “individual-score” 

for each selected predictor’s answer level:

	 Compute the conditional probabilities by applying 

Equation 2 (see Methods naïve Bayes classifier and 

scoring systems section), considering the BTP out-

come variable “High” as w
1
 and “Low” as w

2
; hence, 

retrieve the “individual-score” as the natural logarithm 

of the ratio of these conditional probabilities (an 

explicatory example is given in Box 1).

	 Repeat the previous step, within each predictor, for 

either “Yes” or “No” answers to obtain, respectively, 

their “individual score.” Establish each predictor’s 

Table 2 Distribution of patients within each independent variable as function of the BTP outcome variable

Variable Answer BTP outcome classes Subtotal

Higha Intermediatea Lowa No BTP

Age (years) 18–40 2 0 0 4 6
41–60 3 2 6 12 23
61–80 5 10 8 42 65
>80 1 6 1 18 26

Gender Female 7 10 7 56 80
Male 4 8 8 20 40

Pathology Noncancer 6 14 13 53 86
Cancer 5 4 2 23 34

Item 1 “Yes” 11 18 15 76 120
“No” 0 0 0 0 0

Item 2 “Yes” 11 18 15 76 120
“No” 0 0 0 0 0

Item 3 “Yes” 11 18 15 11 55
“No” 0 0 0 65 65

Item 4 “Yes” 11 18 15 53 97
“No” 0 0 0 23 23

Item 5 “Yes” 11 18 15 66 110
“No” 0 0 0 10 10

Item 6b “Yes” 11 0 12c 52 75
“No” 0 18 3 24 45

Item 7b “Yes” 11 18 0 36 65
“No” 0 0 15 40 55

Item 8b “Yes” 10 15 13 47 85
“No” 1 3 2 29 35

Item 9b “Yes” 8 9 6 24 47
“No” 3 9 9 52 73

Item 10b “Yes” 7 13 10 31 61
“No” 4 5 5 45 59

Item 11 “Yes” 6 11 9 30 56
“No” 5 7 6 46 64

Subtotals 11 18 15 76 120

Notes: Given the inclusion criteria, items 1 and 2 do not include the “No” answer. Data for Item 9 were used in the example in Box 1. aCases with potential BTP (n=44) 
included in the scoring system analysis. bIndependent variables that showed statistically significant relationship with the BTP outcome variables and thus included in the scoring 
system analysis. cCases with clinically ambiguous answer yet fitting “Low” BTP outcome class criteria.
Abbreviation: BTP, breakthrough pain
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score  difference and compare this difference between 

different predictors: the larger the difference the 

more relevant is the weight of the single predictor for 

assigning a patient to a single BTP outcome class.

•	 Compute the Patient’s Global Score (PGS). According 

to the patient’s actual answer (“Yes”/“No”) for a selected 

predictor, retrieve the congruent “individual-score” from 

the scores set (see the previous step). The PGS is, for each 

patient, the sum of all the congruent “individual-scores” of 

the considered predictors. It is also possible to consider the 

distribution of PGS within each BTP outcome class and to 

evaluate, using Kruskal–Wallis test, whether the differences 

between the medians are significant (in the latter case, a 

post hoc test for multiple comparison like the Nemenyi– 

Damico–Wolfe–Dunn (NDWD) test is applicable).27

•	 Set the thresholds and evaluate the classification perfor-

mances. The thresholds among contiguous classes can be 

derived either by using the decision rule in Equation (5) 

or by using a post hoc analysis on each outcome score. 

The evaluation of the system’s performance can be done 

with the cross-validation approach. The model is fitted on 

a set of observations (training set) and used to predict a 

response on another independent dataset (test set). Then a 

confusion matrix is built: its rows represent the predicted 

classes and its columns the observed classes in the sample 

as defined by the BTP outcome variable; patients correctly 

classified appear within the main diagonal cells. For each 

class, percentage of correct classification is the product of 

100 times the ratio between the number of patients cor-

rectly classified (main diagonal cell) and the actual size 

of the class (marginal row cell). The weighted average 

of the correct classification percentages is the classifier’s 

overall accuracy. The latter is computed either by the ratio 

between the sum of the elements of the main diagonal 

and the marginal row’s total; or, by first computing the 

sum of the products of each class correct-classification-

percentage and its marginal row frequency, and hence 

dividing this sum by the total of the marginal row. Accu-

racy of 100% yields the best performance while ≤33.3% 

the worst (i.e., random distribution of cases).22

All the calculations and plots in this study were elaborated 

with the open source environment R-Core-Team.28

Results
The analysis of the scoring system was based on n=44 

subjects with potential BTP extracted from a training set of 

n=120 mixed CP patients. Table 2 reports the distribution 

and proportions of essential demographics and independent 

variables in the training set; it also reports the distribution of 

patients in each independent variable as function of the BTP 

outcome classes. Overall potential BTP cases distribution 

in the “High,” “Intermediate,” and “Low” likelihood classes 

were 11, 18, and 15, respectively.

Table 3 reports the results of the association analysis 

between the predictors and the BTP outcome variable. Only 

IQ-BTP items 6–10 showed significant association with the 

BTP outcome variables and thus were used to compute the 

scores set. Table 4 reports the scores obtained by applying the 

scoring algorithm for each answer level of the selected predic-

tors. Based on these scores, the leading score differences were 

shown by the predictors’ flair frequency (∆S=1.31), duration 

(∆S=5.25), and predictability (∆S=1.17).

After retrieving each patient’s PGS, the medians of 

the PGS within each BTP outcome class were calculated. 

 Medians of PGS were 3.44 (range 2.41–3.58) in the “High,” 

Box 1 Example of the “individual score” computation

For each answer level of the selected predictors compute the conditional probabilities by applying Equation 2 (see naïve Bayes classifier and 
scoring systems section), considering the BTP outcome variable “High” as w1 and “Low” as w2; hence, retrieve the natural logarithm of the ratio 
of these conditional probabilities:

Consider the binary variable Ej = Item9 (flair predictability) and its answer exj = “Yes”:

1. Build a contingency table with Item9 answers and the BTP outcome variable;
2. Compute ˆ " "P Item Yes High9 | i= =( )ω , where:

•  nc is the element of the table corresponding to the row “Yes” and column “High,” which is the number of patients with flair presence 
belonging to class “High” (nc = 8);

• Ni represents the size of the class “High” (NHigh = 11);
• K is the number of levels of the variable Item9 (KItem9 = 2, which are “Yes” and “No”);

3. Repeat step 2. in order to obtain ˆ " "P Item Yes Low9 | i= =( )ω ;

4. Compute the score s
P Item Yes High

P Item Yes Low
Item Yes9

9

9,
" "

" "
=

= =( )

= =

ln
|

|
i

i

ω

ω(( )
=

+ +

+ +

=ln
( ) / ( )

( ) / ( )
.

8 1 11 2

6 1 15 2
0 52 .
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1.53 (range 0.79–2.13) in the “Intermediate,” and −2.84 

(range −4.29 to −1.81) in the “Low” likelihood classes. 

Figure 1 is a Box and Whiskers plot of the PGS distribu-

tion in the BTP outcome classes showing the PGS medians 

and interquartile range. The three medians significantly 

differed (Kruskal–Wallis χ2=38.07, df=2, p<0.00001; and 

post hoc multiple comparison analysis using NDWD test: 

High-Intermediate p=0.0089, Intermediate-Low p=0.0007, 

and High-Low p<0.00001). On the basis of the conditional 

distribution of PGSs, a patient is assigned to the “Low” likeli-

hood class if his/her PGS<0; to “Intermediate” if 0<PGS<2.2 

and to “High” if PGS>2.2.

The decision rule defined by the aforementioned thresh-

olds allowed the building of a Confusion matrix. In the 

latter, frequencies for each class were obtained both from 

the scoring system prediction and from the observed data 

as reported in Table 2. Table 5 is the Confusion matrix of 

these frequencies which resulted from leave-one-out cross-

validation. Proportions of correct classification were 63.6% 

for the “High” and of 100.0% for either the “Intermediate” 

or “Low” likelihood classes. The overall accuracy of the 

classifier (i.e., the weighted average) was 90.9%.

Discussion
The NBC was implemented to build a prognostic scoring 

system for estimating the likelihood (High, Intermediate, or 

Low) of BTP in CP patients. The developed scoring system 

was defined by descriptive tables obtained by frequency 

counts from a training set of n=120 CP patients to whom the 

11-item IQ-BTP validated questionnaire was administered. 

Adjusting a binary scoring problem to a three-likelihood 

classes case enabled the building of a scoring algorithm and 

to retrieve the scores of each predictor’s answer options and 

the PGS. The latter medians were used to establish the NBC 

thresholds and to evaluate the scoring system performance. 

Overall correct classification percentage was 90.9% (i.e., 

roughly nine of every ten patients were correctly assigned 

to their class).

Clinical prognosis refers to the risk of future outcomes 

in people with a given disease or health condition; caregiv-

ers, patients, funders, and policy makers require reliable 

evidence about health condition outcomes for decisions 

making.29 Prognosis research seeks to recognize and ame-

liorate outcomes in patients with a given health condition 

and to provide crucial evidence for translating findings from 

clinical research to clinical practice. Prognostic models use 

prognostic factors to predict the risk of clinical outcomes 

in individual patients and provide accurate predictions that 

Table 4 Scores set of the selected predictors’ answer options

Predictors Scores

Yes No Absolute  
difference

Item 6 – Flair frequency (<5/24 h) 0.19 −1.12 1.31

Item 7 – Flair duration (≤30–60 min) 2.75 −2.50 5.25

Item 8 – Background/flair pain site 0.03 −0.14 0.17

Item 9 – Flair predictability 0.52 −0.65 1.17

Item 10 – Flair cause −0.05 0.09 0.14

Table 3 Association analysis between the BTP outcome variable 
and the whole set of predictors

Variable Test p-value

Gender F 0.128
Age (in years) C 0.451
Primary diagnosis (cancer/noncancer) F 0.309
Item 6 – Flair frequency (<5/24 h) F <0.001
Item 7 – Flair duration (≤30–60 min) C <0.001
Item 8 – Background/flair pain site F 0.044
Item 9 – Flair predictability F 0.047
Item 10 – Flair cause C 0.029
Item 11 – Neuropathic signs C 0.220

Notes: Only the variables with statistically significant association (p<0.05) were 
used for the naïve Bayes classifier. C, approximated c2 test; F, Fisher’s exact test.
Abbreviation: BTP, breakthrough pain.

Figure 1 Box and Whiskers plot of the estimated patient’s global score distribution
Abbreviation: BTP, breakthrough pain.

High LowIntermediate
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Table 5 Confusion matrix and percentage of correct classification 
(leave-one-out cross-validation)

Predicted class Observed class

High Intermediate Low

High 7 0 0
Intermediate 4 18 0
Low 0 0 15
Total (marginal row) 11 18 15
Correct classification, % 63.64 100.00 100.00
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inform stakeholders, support clinical research, and allow 

taking congruent clinical decisions.30

Predictive models to foresee outcomes in patients with 

a given health condition are increasingly used as they allow 

retrieving and quantifying diagnostic/prognostic information. 

In clinical practice, scoring system models are particularly 

appealing; their practicability allows coagulating information 

and predictors from different inputs and prompt congruent 

clinical decision making.

Different quantitative approaches apply for patient- 

outcomes’ estimation.31–34 One study35 critically reviewed 

such approaches for developing predictive models of 

patients’ morbidity after heart surgery: Bayesian scoring 

models were shown to achieve performances equivalent 

to those of pure logistic regression but significantly better 

than logistic regression–derived scoring systems.36 How-

ever, scoring systems’ reliability, despite their practicality, 

may be undermined as they are difficult to update with new 

data and to fit onto different clinical contexts.21 The NBC 

overcomes this issue as the scoring system is completely 

defined by descriptive tables that are easily calculated and 

updated using data acquired in different contexts.21 It was 

reported that NBCs may outperform more complex clas-

sification methods and show good average performance in 

terms of classification accuracy, especially over data sets 

with loosely correlated features.15 Moreover, the strength 

of the NBC approach is that it requires no gold standards 

(often unavailable) and is based on the predictors’ indepen-

dence assumption, which makes the likelihood computation 

easier. These aspects made the NBC popular especially for 

text classification and antispam filtering, and recently for 

decision making in clinical practice.37,38

In the present study, we derived the scoring system directly 

from an NBC using discrete predictors and frequency counts 

from a training set. As in the literature21 this approach was 

straightforward and efficacious as the NBC identified the 

parameters required for accurate classification using limited 

training data.

Scoring systems with binary classification are frequent, 

and in the present study we developed a three-level classi-

fication. This approach was dictated by our operational case 

definition of BTP: among patients who potentially experi-

ence BTP, the likelihood for the BTP presence is “High,” 

when both the defined clinical discriminates (frequency and 

duration) are present; “Intermediate,” if only one is present; 

and “Low,” if none of them are present. In agreement with 

our operational case definition, scores computation of each 

predictor’s answer level in the scoring algorithm showed 

that the leading predictors for patients’ assignment in the 

three-level classification were flair frequency, duration, 

and predictability. Statistically, in a binary situation, the 

classification using scoring system is based on a ratio; in 

a three-level situation the discrimination issue (scores and 

threshold computation) may be split into three binary sub-

problems (High vs Intermediate, Intermediate vs Low, High 

vs Low). This solution, however, may be time-consuming and 

the results may not be easily interpretable. For these reasons 

we have considered in this study only the classes, High and 

Low, as w
1
 and w

2
, with the aim of focusing primarily on the 

discrimination between the two extreme classes. While the 

applied strategy gave satisfactory results, other strategies, 

such as a two-stage approach or an ordinal classification, 

may be investigated.

Percentages of correct classification (i.e., performances 

of the scoring system) were relatively high, showing satisfac-

tory discrimination power of the suggested scoring system. 

In particular, all patients belonging to the “Intermediate” and 

“Low” classes were correctly classified; few patients in the 

“High” class were misclassified in the “Intermediate” class, 

showing that the two classes have close scores. No patients 

in the “High” class were misclassified as “Low” or vice 

versa. Overall, the scoring system showed to be successful 

in avoiding “heavy mistakes.”

The scoring system performance was evaluated with 

the leave-one-out cross-validation. The latter is particularly 

useful in biomedical trials with relatively small samples 

as it allows all cases to be used efficiently for the training 

process of the model as well as for testing its predictive 

performance. Essentially it gives a reliable estimate of the 

prediction error with less bias than other cross-validation 

methods and it allows good control of model generalization 

capacity using all available data for training. Some authors 

recommend also to evaluate the model generalizability on 

a test set of data not used in the training process;35 this is 

currently being done in an ongoing impact study.

BTP requires correct identification and appropriate 

management. Considering BTP prognostic likelihood may 

be more useful for formulating clinical issues than for pursu-

ing diagnosis. Based on risk/likelihood features, prognostic 

information can influence clinical decisions, patient outcome, 

and cost-effectiveness of care. The prognostic concepts of 

potential BTP and of the “High”, “Intermediate,” and “Low” 

likelihood for the BTP presence may be estimated by the IQ-

BTP questionnaire and its scoring system. It is reasonable 

to speculate that for potential BTP of “High” likelihood, 

the correct treatment would be Rapid-Onset-Opioids (e.g., 
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transmucosal fentanyl citrate); “Intermediate” or “Low” 

likelihood imposes careful evaluation of the opportunity to 

use Short-Acting-Opioids (e.g., oral morphine sulfate) or to 

ameliorate the ATC opioid regimen, respectively.

Study limitations
In this study an ad hoc solution was adopted to solve the 

issue of extending the binary scoring system methodology 

to the three-classes situation. While our solution enabled the 

definition of the discrimination thresholds, other strategies 

based on different statistical procedures may be investigated.

The generalizability of the reported scoring system may 

be questioned as the study’s training set belonged only to one 

CP center. Nevertheless, results demonstrate that the NBC 

approach produces a simple and trustworthy scoring system 

that is easily updated and customized for other contexts. 

Easy, precise customization and updating ensure the model’s 

performance, reliability, and acceptance by caregivers. Fur-

ther, the scoring system is now undergoing a multicenter, 

national-wide impact study as a testing phase.

Conclusion
The NBC-based BTP scoring system showed satisfactory 

performance in classifying potential BTP in three likelihood 

classes. The reliability, flexibility, and simplicity of this 

statistical approach may have significant relevance for BTP 

epidemiology and management. These results need further 

impact studies to generalize our findings.
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