
© 2017 Huang et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms. 
php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Journal of Neurorestoratology 2017:5 111–115

Journal of Neurorestoratology Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
111

R E V I E W

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/JN.S132589

2016 yearbook of neurorestoratology

Hongyun Huang1,2

Gengsheng Mao1

Shiqing Feng3

Lin Chen2,4

1Institute of Neurorestoratology, 
General Hospital of Armed Police 
Forces, 2Cell Therapy Center, Beijing 
Hongtianji Neuroscience Academy, 
Beijing, 3Department of Orthopedic, 
Tianjin Medical University General 
Hospital, Tianjin, 4Department of 
Neurosurgery, Tsinghua University 
Yuquan Hospital, Beijing, People’s 
Republic of China

Abstract: Neurorestoratology, a new interdisciplinary field, has gradually become a popular 

clinical discipline. Physicians and scientists in the neurorestoration field have discovered new 

pathogeneses of nervous system diseases and damage, explored new neurorestorative mecha-

nisms, and obtained improving neurorestorative effects in clinical trials (or therapies). This 

paper summarizes the major progress achieved over the past year.

Keywords: yearbook, neurorestoratology, pathogenesis, neural repair and regeneration, central 

nervous system disease, neurorestorative mechanisms, neurorestorative strategies

Introduction 
Patience is bitter, but its fruit is sweet. Neurorestoratology has gradually become a 

popular clinical discipline since it was first established as a formal field in 2008.1–4 The 

International Association of Neurorestoratology (IANR), the professional association 

for this emerging interdisciplinary field, was set up in 2007. Then, the definition of this 

discipline was clearly made in Beijing Declaration of IANR in 2009.5 The Journal of 

Neurorestoratology (IANR’s official journal) published its first paper in 2013.6 The 

Beijing Declaration of IANR was further clarified at the annual IANR conference in 

Tehran in 2015, which announced that “functional recovery is possible after CNS injury 

and neurodegeneration.”7 This was the first time in world history that a professional 

medical association repudiated Cajal’s thesis8 about nervous system regeneration. 

The goal of neurorestoratology is to restore, promote, and maintain the integrity of 

impaired or lost neuronal functions and structures – a previously elusive goal.7 But 

over the past decade, several research papers9–11 and review books12,13 have documented 

advances in neurorestoration, including therapeutic achievements and exploration of 

theories and mechanisms. Increasing numbers of researchers, physicians, and even 

some governments are recognizing the importance of neurorestoratology, with state-

funded research efforts such as the US Brain Project, European Human Brain Project, 

and Chinese and Japanese Brain Project[s] (currently being developed). These efforts 

are contributing greatly to the following goals: 1) to further identify pathogeneses of 

nervous system as well as psychological diseases or damage, including dysfunction of 

perception, movement, autonomic nerve, cognition, memory, intelligence, sleep, etc.; 

2) to explore new neurorestorative mechanisms and put forward new neurorestorative 

theories; and 3) to develop better neurorestorative effects in clinical settings. Signifi-

cant progress has been made toward all three goals, which we summarize below in the 

“2016 Yearbook of Neurorestoratology.”
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New pathogeneses of nervous 
system and psychological disease or 
damage
During the past year, further findings have been reported based 

on the basic and classic pathogeneses of nervous diseases or 

damage. Glasser et al14 reported that a multimodal parcellation 

of the human cerebral cortex with machine-learning classi-

fier as a tool could correctly locate areas in individuals with 

atypical parcellations. This breakthrough achievement has the 

potential to develop neuroanatomical precision of the structural 

and functional organization in the human cerebral cortex, its 

variation across individuals, and during the processes of devel-

opment, aging, and disease.14 Setting a powerful and efficient 

map of human neuroanatomy and functional connectivity can 

indicate functional representations in the brain.15 Through a 

multimodal approach combining structural information and 

task-independent (resting state functional magnetic resonance 

imaging) and task-dependent functional connectivity, dis-

rupted cortico-cingulo circuits were found to promote autism 

spectrum disorder deficits in attention and social interaction.16

Kamat et al17 found that tau hyperphosphorylation and 

synapse dysfunction might result from oxidative stress, which 

was mediated through N-methyl-D-aspartate receptor and their 

interaction with other molecules. Higher expression of the com-

mon C4 allele or excessive complement activity could reduce 

numbers of synapses in the brains, which might be one cause for 

schizophrenia.18 Further inappropriately activated microglia in 

adult brains could engulf synaptic material in a CR3-dependent 

process when exposed to soluble Aβ oligomers, which might 

be one cause for the induction of synapse loss in Alzheimer’s 

disease (AD).19 Major drivers of neurodegeneration may result 

from complement activation and microglia-mediated synaptic 

pruning during progranulin deficiency.20

Kumar et al21 found that while β-amyloid might play a 

protective role in innate immunity against infection or inflam-

matory stimuli, it might also drive amyloidosis and play a 

damaging role in AD. Normally, UBQLN2 (proteasome 

shuttle factor) mediates autophagy-independent clearance 

of protein aggregates by the proteasome. When there are 

mutations in UBQLN2, it can lead to neurodegeneration with 

defects in chaperone binding and impairment of aggregate 

clearance.22

New neurorestorative mechanisms 
and theories
Kandul23 reported that selectively removing deleterious 

genome or mutant mtDNA could achieve the goal of  treating 

mitochondrial and aging diseases, such as AD. García 

 Santos24 reported that spinal cord injection of bone marrow 

mononuclear cells for patients with amyotrophic lateral 

sclerosis (ALS) showed a distant beneficial effect in the 

brain, in which cells have longer survival and less disability 

with metabolic improvement. Further exploration needs to 

be done to know its exact mechanism. Through inhibiting 

excessively expressed DNA methyltransferases, the function 

of bone marrow mesenchymal stromal cells (MSCs) derived 

from ALS patients can be restored.25

New clinical evidence for 
neurorestorative strategies
Cell therapy
Cell-based therapies have been shown to improve the func-

tional abilities of patients and their quality of life, particularly 

for those suffering from spinal cord injury (SCI), stroke, ALS, 

multiple sclerosis, cerebral palsy, AD, Parkinson’s disease, 

traumatic brain injury, and other types of CNS diseases and 

damage.26 Below, we summarize the new clinical evidence 

generated in 2016 for cell therapy to treat neurological dis-

ease and damage.

Chronic stroke was treated using human neural stem cells 

through stereotactic ipsilateral putamen injection,27 using 

bone marrow-derived mesenchymal stem cells through ste-

reotactic injection into the margin of the stroke,28 and using 

autologous M2 cells through intrathecal administration.29 

These methods restored partial neurological function.

More evidence of improving function for patients with 

complete chronic SCI has been reported using a variety 

of different cell-based therapies, including umbilical cord 

blood-derived mononuclear cell transplants for spinal cord 

and locomotor training,30 the mononuclear-enriched bone 

marrow cell transplantation through intrathecal infusion,31 

bone marrow MSC transplantation through lumbar puncture 

into subarachnoid space,32 a combination of neuronal cells 

differentiated from autologous adipose tissue-derived mes-

enchymal stem cells, and hematopoietic stem cells through 

intrathecal infusion,33 and olfactory mucosa lamina propria 

transplants into the spinal cord.34

Promising results for patients with ALS have been 

reported by intraspinal injection of bone marrow-derived 

neural stem cells, in which patients experienced a tempo-

rary stabilization for the first few months postinjection and 

then gradually deteriorated.35 Transplantation of inducing 

mesenchymal stem cells to secrete neurotrophic factors by 

intramuscular and intrathecal injections has shown at least 
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25% improvement at 6 months after treatment in the slope 

of progression for patients with ALS.36

Even patients diagnosed with an aggressive form of 

multiple sclerosis over a prolonged period have substantially 

recovered their neurological function following autologous 

hemopoietic stem cell transplantation.37 Canesi et al38 

reported that bone marrow MSC administration for patients 

with progressive supranuclear palsy could clinically stabilize 

the condition for at least 6 months, a significant outcome 

given the invariably rapid deterioration of motor function.

Cox et al39 reported that intravenously delivered autolo-

gous bone marrow mononuclear cell infusion for severe adult 

traumatic brain injury appears to play a role in CNS structural 

preservation. Vaquero et al40 found that intrathecal adminis-

tration of autologous MSCs in patients with diffuse axonal 

injury could improve neurological functions and show a dif-

fuse and progressive increase in brain glucose metabolism.

Some case reports also showed benefits of cell therapy 

for patients with postpoliomyelitis syndrome41 and primary 

torsion dystonia.42

Neuromodulation and the brain–
computer interface
Neuromodulation and the brain–computer interface provides 

one of most promising strategies in  neurorestoratology.13 

Bouton et al43 reported that intracortically recorded signals 

could be decoded to extract information related to motion 

(imagined movements), allow paralyzed humans to restore 

cortical control of functional movement, and control 

computer and robotic arms through a custom-built high-

resolution neuromuscular electrical stimulation system. 

Vansteensel et al44 reported that the locked-in patient with 

ALS could accurately and independently control a com-

puter typing program for autonomous communication with 

implanted brain–computer interface. Flesher et al45 reported 

that intracortical microstimulation of the human somato-

sensory cortex could evoke tactile sensations perceived as 

originating from locations on the hand for patients with 

long-term SCI who had lost feeling. Donati et al46 reported 

that eight paraplegic patients recovered partial neurologi-

cal functions by 12-month training with a brain–machine 

interface-based gait protocol.

Neurorestorative surgery
Several kinds of neurorestorative surgeries have been able 

to help patients with central nervous damage restore their 

neurological functioning13 since Carlsson and Sundin47 

reported their results of reconstruction of efferent pathways 

to the  urinary bladder in 1967. Tuite et al48 reported from 

their clinical trial that the Xiao procedure for restoring blad-

der and bowel function did not result in voluntary voiding 

or continence in any patient, but patients undergoing spinal 

cord detethering plus the Xiao procedure were more likely to 

have greater improvements in total bladder capacity, bladder 

overactivity control, and overall quality of life than those who 

underwent detethering only. The explanation for this improve-

ment may be related to sacral nerve root sectioning, instead of 

reinnervation. Yang49 reported that revascularization in sickle 

cell disease patients with Moyamoya syndrome could prevent 

stroke recurrence. Comparing various reanimation techniques 

such as facial nerve interpositional graft, hypoglossal–facial 

nerve transfer, and direct end-to-side facial–hypoglossal 

anastomosis, Mohamed et al50 concluded that the latter tech-

nique through epineural suture is the most effective method 

with excellent outcomes for facial reanimation. Kochhar et 

al51 reported that facial nerve direct end-to-end coadaptation 

to the hypoglossal nerve was effective in restoring facial tone 

and symmetry after facial paralysis.

Pharmaceutical
So far, there are many pharmaceutical interventions for neu-

rorestoration, but most of them have failed their aims when 

tested in clinical trials.13 Although delivering granulocyte-

colony stimulating factor is a feasible treatment for chronic 

stroke, a research study found that this did not demonstrate 

functional recovery.52 More promising lines of research have 

demonstrated that erythropoietin and granulocyte-colony 

stimulating factor combination therapy may improve the 

functional abilities of stroke patients;53 dl-3-n-butylphthalide 

significantly increased the level of circulation and improved 

clinical outcome in patients with acute ischemic stroke.54

Summary
Much exploration has been done and many valuable results 

have been achieved over the course of 2016 for understanding 

the pathogeneses of nervous system diseases and damage, 

exploring neurorestorative mechanisms, and seeking more 

effective therapeutic strategies in the field of neurorestoratol-

ogy. We firmly believe that there will be a step-by-step prog-

ress in neurorestoratology in the future, especially therapeutic 

strategies for improving neurorestorative effects. While the 

existing literature on cell therapies for CNS diseases and 

damage have demonstrated that these procedures are rela-

tively safe and produce effective results, we still need more 

multicenter, randomized, controlled, double-blind  studies 

and trials with larger sample sizes in order to establish the 
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long-term risks and benefits for patients now and in the near 

future – learning from yesterday and working harder today 

in order to make a better tomorrow.
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