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Background: Antipsychotic action of haloperidol is due to blockade of D
2
 receptors in the 

mesolimbic dopamine pathway, while the adverse drug reactions are associated with striatal 

D
2
 receptor blockade. Contradictory data concerning the effects of genetic polymorphisms 

of genes encoding these receptors and associated structures (catechol-O-methyltransferase 

[COMT], glycine transporter and gene encoding the density of D
2
 receptors on the neuronal 

membrane) are described.

Objective: The objectives of this study were to evaluate the correlation between DRD2, SLC6A3 

(DAT) and COMT genetic polymorphisms and to investigate their effect on the development of 

adverse drug reactions in patients with alcohol-use disorder who received haloperidol.

Patients and methods: The study included 64 male patients (average age 41.38 ± 

10.14 years, median age 40 years, lower quintile [LQ] 35 years, upper quintile [UQ] 49 years). 

Bio-Rad CFX Manager™ software and “SNP-Screen” sets of “Syntol” (Russia) were used 

to determine polymorphisms rs4680, rs1800497, rs1124493, rs2242592, rs2298826 and 

rs2863170. In every “SNP-Screen” set, two allele-specific hybridizations were used, which 

allowed to determine two alleles of studied polymorphism separately on two fluorescence 

channels.

Results: Results of this study detected a statistically significant difference in the adverse drug 

reaction intensity in patients receiving haloperidol with genotypes 9/10 and 10/10 of polymor-

phic marker SLC6A3 rs28363170. In patients receiving haloperidol in tablets, the increases in 

the UKU Side-Effect Rating Scale (UKU) score of 9.96 ± 2.24 (10/10) versus 13 ± 2.37 (9/10; 

p < 0.001) and in the Simpson-Angus Scale (SAS) score of 5.04 ± 1.59 (10/10) versus 6.41 ± 

1.33 (9/10; p = 0.006) were revealed.

Conclusion: Polymorphism of the SCL6A3 gene can affect the safety of haloperidol, and this 

should be taken into account during the choice of drug and its dosage regimen.

Keywords: haloperidol, pharmacogenetics, DRD2, COMT, DAT, alcohol addiction, alcohol-

use disorder

Background
Haloperidol is a butyrophenone-derivative antipsychotic medication. Guidelines recom-

mend haloperidol for treatment of alcohol-use disorders in patients with alcohol-related 

psychosis.1,2 According to the Russian protocols of medical care, the main indication 

for haloperidol treatment in patients with substance-use disorders is the exacerba-

tion of craving to psychoactive substances with psychomotor agitation.22 The use of 

haloperidol can cause a variety of adverse drug reactions (dystonia, tremor, rigidity, 

akinesia, akathisia, etc.).
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Antipsychotic action of haloperidol is due to blockade 

of D
2
 receptors in the mesolimbic dopamine pathway, while 

the adverse drug reactions are associated with striatal D
2
 

receptors blockade. Dopamine D
2
 receptors are encoded 

by the DRD2 gene. It is known that Taq1A polymorphism 

(rs1800497; g.32806C>T) of the DRD2 gene reduces density 

of striatal D
2
 receptors and probably changes their affinity.18 

The results of both in vitro23 and in vivo19 studies indicate 

a 40% reduction in the density of striatal D
2
 receptors in 

the carriers of mutant T allele (also called A1 allele) of the 

Taq1A polymorphism (rs1800497). Mutant T-allele carriers 

have a lower risk of dyskinesia development. The results of 

two meta-analyses showed an increased frequency of late 

dyskinesia development in patients with allele C (A2) in 

comparison with the mutant T-allele carriers.3,27 At the same 

time, individuals with one C allele had a 30% increased 

risk of dyskinesia development, while the carriers of two C 

alleles conferred a 30% more risk. Therefore, homozygous 

CC individuals have an increased risk of late dyskinesia 

development compared to homozygous TT patients.

The dopamine transporter (encoded by SCL6A3 or DAT1 

gene) is a transmembrane transporter that clears dopamine 

from the synaptic cleft. DAT-gene polymorphisms change 

the dopamine concentration in the synaptic cleft and affect 

the nerve impulse transmission. It was found that individu-

als with clinical signs of late dyskinesia have lower levels of 

transport protein.26 Currently, rs28363170 polymorphism of 

the SCL6A3 gene is mostly explored. It has been shown by 

Guzey et al8 that patients with different allelic variations of 

this polymorphism have different rates of ADR development. 

However, the results of population studies in Jewish and 

Indian populations revealed no correlation between DAT1-

gene polymorphisms and late dyskinesia development.9,20 

Later, it was confirmed in other population studies.13,25

Another dopamine-related gene examined in several 

pharmacogenetic studies of late dyskinesia is the gene 

encoding catechol-O-methyltransferase (COMT). Basically, 

dopamine is removed from the synaptic cleft by the process of 

presynaptic reuptake, but it can also be degraded by COMT.15 

Additionally, this secondary mechanism of dopamine deg-

radation by COMT is dominating in the frontal cortex. One 

of the functional polymorphisms in the COMT gene that 

codes COMT is rs4680 (Val158Met) polymorphism coding 

an amino acid change from valine (val) to methionine (met) 

at codon 158. The frequency of the met allele of the COMT 

polymorphism in different ethnic groups is 36%–48%. It was 

shown that the presence of the met allele decreases the COMT 

activity by 25% compared to the val-containing enzyme 

activity.12 This results in lower synaptic dopamine concentra-

tions in val-allele carriers due to their rapid degradation. The 

blockade of dopamine receptors by antipsychotics is followed 

by compensatory increases in receptor density and resulting 

hypersensitivity, which leads to dyskinesia development. As 

val-allele carriers have lower synaptic dopamine concentra-

tions, the use of antipsychotics further reduces dopamine 

receptor binding. This results in compensatory response with 

subsequent dyskinesia.

The results of population studies in Japanese and Chinese 

populations revealed no correlation between Val108Met and 

extrapyramidal disorders.14,24 The results of meta-analysis4 

of five studies with 1,089 patients (382 suffering from late 

dyskinesia and 707 with no extrapyramidal disorders) showed 

that met-allele carriers have a lower risk of late dyskinesia 

development (odds ratio [OR] = 0.66). The authors concluded 

that patients with val/val genotype have a 51% increased risk 

of late dyskinesia development. This polymorphism was also 

explored in the context of acute extrapyramidal disorders.29 

The effect of genes encoding other enzymes involved in 

dopamine metabolism (such as monoamine oxidase A and B) 

on the development of extrapyramidal disorders was also 

studied, but it was not confirmed in the clinical studies in 

Japanese and European populations.14,16

The objective of this study was to evaluate the correlation 

between the DRD2, SLC6A3 (DAT) and COMT genetic poly-

morphisms and the development of adverse drug reactions in 

patients with alcohol-use disorder who received haloperidol.

Patients and methods
The study included 64 male patients (average age 41.38 

± 10.14 years; median age 40 years, lower quantile [LQ] 

35 years; upper quantile [UQ] 49 years) with alcohol-use 

disorder who were hospitalized in Moscow Research and 

Practical Centre on Addictions of the Moscow Department 

of Healthcare. During the exacerbation of compulsive alcohol 

use, patients received haloperidol in tablets (manufactured 

by LLC “OZON”, Ghigulevsk, Russia) at a dose of 5.0 

[Q1 and Q3: 3.0; 6.0] mg per day (44 patients, single use) 

and injections (manufactured by CAC “Bryntsalov-A”, 

 Moscow, Russia) at a dose of 5.0 [Q1 and Q3: 5.0; 5.0] mg 

per day (19 patients, single use). The inclusion criteria were 

5-day haloperidol therapy in tablets or injections and age of 

18–75 years. The exclusion criteria were presence of any other 

antipsychotics in the treatment regimen, creatinine clear-

ance values <50 mL/min, creatinine concentration in plasma 

≥1.5 mg/dL (133 Umol/L), body weight <60 kg or >100 kg 

and presence of any contraindications for haloperidol use.
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Venous blood samples collected in vacuum tubes VACU-

ETTE® (Greiner Bio-One, Kremsmuenster, Austria) on the 

sixth day of the haloperidol therapy were used for genotyp-

ing. The real-time polymerase chain reaction was performed 

using DNA amplifiers “Dtlite” of DNA Technology (Moscow, 

Russia). CFX96 Touch Real Time System with CFX Man-

ager software of Bio-Rad Laboratories Inc. (Hercules, CA, 

USA) and “SNP-screen” sets of “Syntol” (Moscow, Russia) 

were used to determine polymorphisms rs4680, rs1800497, 

rs1124493, rs2242592, rs2298826 and rs2863170. In every 

“SNP-screen” set, two allele-specific hybridizations were 

used, which allowed to determine two alleles of studied 

polymorphism separately on two fluorescence channels.

The haloperidol efficacy was evaluated using the Scale 

of Pathological Addiction (SoPA), and the haloperidol 

safety was evaluated using the UKU Side-Effect Rating 

Scale (UKU) and Simpson-Angus Scale (SAS) for extrapy-

ramidal symptoms. Scaling was performed the day before 

the haloperidol therapy and after 5-day therapy. A higher 

difference in scale scores indicated a decreased safety of 

the therapy.

Statistical analysis of the results was performed with 

non-parametric methods using the “Statistica v.10.0” software 

(StatSoft; Dell Statistica, Tulsa, OK, USA). The normality of 

sample distribution was evaluated using the Shapiro–Wilk 

W-test and was taken into account when choosing a method. 

The differences were considered as statistically significant 

at p < 0.05 (statistical power in excess of 80%). To compare 

two independent groups of patients with different genotypes, 

Mann–Whitney U-test was used.

All quantitative data are shown as arithmetic mean ± 

standard deviation (M ± SD) or median (lower quintile; upper 

quintile) (Me [LQ; UQ]).

This research was approved by the ethics committee of 

Peoples’ Friendship University of Russia, and all patients 

provided informed consent.

Results
Genotyping results are shown in Table 1.

The results of psychometric tests and efficacy scaling are 

shown in Table 2.

Data concerning comparison of haloperidol efficacy and 

safety in patients with different genotypes of polymorphic 

markers are shown in Table 3 (for patients taking haloperidol in 

tablets) and Table 4 (for patients taking haloperidol in injections).

Discussion
Numerous pharmacogenetic studies of haloperidol have been 

conducted. Some of them confirm that genetic  polymorphisms 

Table 1 Genotypes and allele frequencies of COMT, DRD2, SLC6A5 and SLC6A3 polymorphisms in patients treated with haloperidol

Polymorphisms n % n % n % n % n % H–W equilibrium

COMT (rs4680) GG GA AA G A c2 p
14 22 31 49 18 29 59 47 67 53 0.009 0.925

DRD2 (rs1800497) CC CT TT C T c2 p
41 65 20 32 2 3 102 81 24 19 0.0254 0.815

DRD2 (rs1124493) TT TG GG T G c2 p
5 8 30 48 28 44 40 32 86 68 0.615 0.433

DRD2 (rs2242592) GG GA AA G A c2 p
5 8 30 48 28 44 40 32 86 68 0.615 0.433

SLC6A5 (rs2298826) AA AG GG A G c2 p
8 13 29 46 26 41 45 36 81 64 <0.001 0.984

SLC6A3* (DAT) (rs28363170) 10/10 9/10 9/9 10 9 c2 p
33 54 26 43 2 3 92 75 30 25 1.359 0.244

Note: *Two patients with genotypes 6/10 and 7/10 of polymorphic marker rs28363170 of gene SLC6A3 have been excluded from the analysis.
Abbreviation: H–W, Hardy–Weinberg.

Table 2 Results of psychometric investigation of patients (efficacy 
and safety of haloperidol)

Scale Before the  
therapy

After the  
therapy

Dynamics p-values*

All patients
SoPA 24.29 ± 3.08 13.54 ± 3.19 -10.78 ± 1.35 <0.001
UKU 8.52 ± 3.39 19.9 ± 2.28 11.38 ± 2.74 <0.001
SAS 2.6 ± 1.68 8.13 ± 1.11 5.57 ± 1.58 <0.001
Group who received haloperidol in tablet form
SoPA 24.11 ± 3.06 13.43 ± 3.25 –10.7 ± 1.44 <0.001
UKU 8.64 ± 3.43 19.8 ± 2.43 11.18 ± 2.74 <0.001
SAS 2.77 ± 1.74 8.18 ± 1.21 5.48 ± 1.69 <0.001
Group who received haloperidol in injection form
SoPA 24.68 ± 3.16 13.79 ± 3.12 –10.95 ± 1.13 <0.001
UKU 8.26 ± 3.36 20.16 ± 1.95 11.84 ± 2.75 <0.001
SAS 2.21 ± 1.51 8 ± 0.88 5.79 ± 1.32 <0.001

Notes: *t-test for dependent variables. Data presented as mean ± SD.
Abbreviations: SoPA, Scale of Pathological Addiction; UKU, UKU Side-Effect 
Rating Scale; SAS, Simpson-Angus Scale.
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affect pharmacodynamics and pharmacokinetics of medica-

tion influencing the personal response to haloperidol, whereas 

some refute that.

The results of this study detected a statistically significant 

difference in the safety of haloperidol therapy in patients 

with genotypes 9/10 and 10/10 of polymorphic marker 

SLC6A3 rs28363170 receiving haloperidol for 5 days. 

This finding coincides with the results of two previously 

conducted studies in patients with schizophrenia.8,29 On the 

other hand, our results contrast with those obtained in some 

other studies.9,13,20,25

What are the reasons of these differences? Many relevant 

factors can affect gene expression, e.g., gender, race, con-

comitant therapy, diet, etc. For instance, the study conducted 

by Segman et al20 included the patients of Jewish population, 

whereas that conducted by Hori et al9 enrolled the Indian 

patients. This could affect not only the phenotype itself. It 

is important to note that the results of our study revealed 

no statistically significant difference in the efficacy of halo-

peridol therapy in patients with genotypes 9/10 and 10/10 

(p = 0.094 and p = 0.856 for tablets and injections, respec-

tively). This could be attributed to the changes in the density 

of D
2
 receptors in the extrapyramidal system only (but not in 

the mesolimbic system11,19,23) or to the low sensitivity of the 

scale used for efficacy assessment.

For other genes, the results of our study revealed no 

statistically significant differences among patients. In par-

ticular, there was no statistical significance of the rs4680 

polymorphism of the COMT gene encoding the COMT 

synthesis. The results coincide with those obtained in other 

studies,14,24 although they differ from the conclusion of the 

meta-analysis.4 One of the probable reasons of this can be 

different population characteristics of the patients, especially 

different diagnoses: patients included in our study suffered 

from alcohol-use disorder, whereas meta-analysis included 

data obtained from the patients with schizophrenia. Why is 

it so important? According to meta-analysis data,10 a poorer 

performance on the continuous performance test and more 

small frontal and temporal brain areas have been associated 

with a COMT Val158Met polymorphism in patients with 

schizophrenia. The authors suggest that val allele contributes 

to the development of the brain structural changes, which can 

be the substrate of underlying performance of continuous 

performance test.

The results of our study obtained for the DRD2 gene 

demonstrate no statistically significant difference between 

rs1800497, rs1124493 and rs2242592 polymorphisms. They 

coincide with the results of the majority of studies  exploring 

correlation between the polymorphism of this gene and 

haloperidol efficacy and safety.5,7,17,29

We also explored the rs2298826 polymorphism of the 

SLC6A5 gene encoding a glycine transporter synthesis in 

the brain. One study6 revealed a strong statistical significance 

of acute ADR development in patients with schizophrenia 

receiving haloperidol (p = 0.0002). We found no other studies 

exploring the correlation between the SLC6A5 polymor-

phism and haloperidol efficacy and safety. In our study, we 

revealed no statistically significant difference. This could 

imply that changes in the synaptic glycine transporter activity 

in patients with alcohol-use disorder receiving haloperidol 

have no effect on haloperidol efficacy and safety.

It is important to note that pharmacokinetics can also 

affect the personal response to haloperidol. In our previous 

works, we showed the effect of CYP2D6 polymorphism (and 

its activity)21 and the activity of CYP3A428 on haloperidol 

efficacy and safety.

Thus, the adjustment of optimal haloperidol dose is 

a complex task, demanding the consideration of not only 

clinicodemographic factors but the pharmacogenetics also 

(polymorphism of the SCL6A3 gene and genes encoding the 

isoenzymes of haloperidol biotransformation).

Conclusion
Polymorphism of the SCL6A3 gene can affect the safety of 

haloperidol, and this should be taken into account during the 

choice of drug and its dosage regimen.
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