∂ Open Access Full Text Article

ORIGINAL RESEARCH

Induction regimens for transplant-eligible patients with newly diagnosed multiple myeloma: a network meta-analysis of randomized controlled trials

Zi-Hang Zeng^{1,2} Jia-Feng Chen^{1,2} Yi-Xuan Li^{1,2} Ran Zhang^{1,2} Ling-Fei Xiao^{1,2} Xiang-Yu Meng^{1,2}

¹Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, ²Department of Evidence-Based Medicine and Clinical Epidemiology, Second Clinical College of Wuhan University, Wuhan, People's Republic of China

Correspondence: Xiang-Yu Meng Center for Evidence-based and Translational Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, People's Republic of China Email mengxy_whu@163.com

Cancer Management and Research downloaded from https://www.dovepress.com/

Objective: The aim of this study was to compare the early efficacy and survivals of induction regimens for transplant-eligible patients with untreated multiple myeloma.

Materials and methods: A comprehensive literature search in electronic databases was conducted for relevant randomized controlled trials (RCTs). Eligible studies were selected according to the predefined selection criteria, before they were evaluated for methodological quality. Basic characteristics and data for network meta-analysis (NMA) were extracted from included trials and pooled in our meta-analysis. The end points were the overall response rate (ORR), progression-free survival (PFS), and overall survival (OS).

Results: A total of 14 RCTs that included 4,763 patients were analyzed. The post-induction ORR was higher with bortezomib plus thalidomide plus dexamethasone (VTD) regimens, and VTD was better than the majority of other regimens. For OS, VTD plus cyclophosphamide (VTDC) regimens showed potential superiority over other regimens, but the difference was not statistically significant. The PFS was longer with thalidomide plus doxorubicin plus dexamethasone (TAD) regimens for transplant-eligible patients with newly diagnosed multiple myeloma (NDMM).

Conclusion: The NMA demonstrated that the VTD, VTDC, and TAD regimens are most beneficial in terms of ORR, OS, and PFS for transplant-eligible patients with NDMM, respectively. **Keywords:** multiple myeloma, newly diagnosed, transplant-eligible, induction therapies, network meta-analysis

Introduction

MM is a common type of malignant plasma cell disorders. In Western countries, MM accounts for about 0.9% of all cancer deaths, and for about 10% of burdens of hema-tological malignancies.^{1,2} Over the past decade, the novel agents such as thalidomide,³ bortezomib,^{4,5} and lenalidomide^{6,7} have significantly improved the response rate and survival in patients with MM.^{8–10} Induction therapy followed by HDT (traditionally, high-dose melphalan) and ASCT is considered standard of care for NDMM patients aged <65 years.¹¹

Until now, there are many Phase III RCTs reporting diverse induction regimens containing novel agents, such as the GIMEMA,¹² MRC Myeloma IX trial,¹³ and HOVON-50.¹⁴ However, certain issues should be noted. First, some induction regimens have not yet been compared in a direct manner in RCTs. Second, a comprehensive evaluation and ranking for all available regimens have not yet been established with respect to the early efficacy and survival measures.

Cancer Management and Research 2017:9 287-298

287

Comparison for commercial use of this work is properly attributed. For the permission for commercial use of this work is properly attributed. For the permission for commercial use of this work is properly attributed. For the permission for commercial use of this work is properly attributed. For the permission for commercial use of this work permission for commercial use of this work is properly attributed. For the permission for commercial use of this work is properly attributed. For the permission for commercial use of this work place permission for commercial provided the work place permission for commercial provided the work place permission for commercial provided the work place permission for commercial permissio

The NMA is a statistical analysis approach developed recently to address and resolve these problems ideally.^{15,16} NMA integrates information from direct and indirect comparison, by which a thorough assessment is realized. To compare the early efficacy (ie, ORR) and survivals (ie, PFS and OS) of different induction therapies for transplant candidates with newly diagnosed MM, the current NMA is performed.

Materials and methods

This NMA is reported according to the PRISMA-NMA.17

Search strategy

We searched databases including the PubMed, Embase, and Cochrane Library. The conference proceedings from the American Society of Hematology (2000–2016), European Hematology Association (2000–2016), and the American Society of Clinical Oncology (2000–2016), and the website of trial registries (eg, http://www.controlledtrials.com/ and https://www.Clinical-Trials.gov/ct), were also searched to find additional relevant studies. The search terms utilized were "multiple myeloma OR Myelomatosis OR plasmacytoma," "autologous stem cell transplantation OR stem cell transplantation OR hematopoietic stem cell transplantation OR autologous transplantation OR transplant-eligible," "initial therapy OR induction treatment OR induction therapy," and "newly diagnosed OR untreated." In addition, the references of RCTs were manually searched. The last search was performed on November 21, 2016.

Study selection

The following selection criteria were used to evaluate the eligibility of references identified by the literature search: 1) RCT design; 2) the participants were transplant-eligible patients with newly diagnosed MM; 3) the studies compared different pre-ASCT induction therapies; and 4) the data of investigative outcome measures (ORR, PFS, or OS) were provided or could be calculated.

Outcome measures

The study end point was post-induction ORR (an objective response equal to or better than PR [\geq PR]), OS (the time from randomization to the date of death), and PFS (the time from the start of the treatment to disease progression or death). The definition of PR and progression followed the International Myeloma Working Group Uniform Response Criteria.¹⁸

Data extraction

We utilized predesigned data extraction form to guide the data extraction process. We extracted patients' baseline

characteristics, outcomes, and number of events. For some trials in which the HR and its 95% CI for OS and PFS were not reported but the relevant data for imputation were provided, Tierney et al's method¹⁹ was used for calculation. Besides, we reconstructed IPD using Guyot et al's²⁰ method and performed survival analysis to make a comparison between TAD and VTD in terms of OS, based on extracted arm data from two independent trials.^{21,22} All the above-mentioned procedures were independently accomplished by two researchers (Z-HZ and J-FC). If any discrepancies were found, a third researcher (Y-XL) will be involved in discussing.

Statistical analysis

For ORR, we calculated the natural logarithmic OR and its SE as the effect size and precision measure input into the NMA model. For OS and PFS, the natural logarithmic of HR and its SE were utilized. The consistency of effect sizes among studies was assessed by I^2 statistic indicating heterogeneity among individual studies.²³ When the value of $I^2 \le 50\%$, we would apply fixed-effects model. Otherwise, the random-effects model would be used. Visualization of analysis results including the forest plot and rankogram was performed. All the statistical analyses were made using the R software version 3.2.5.

Results

Inclusion and basic characteristics of eligible studies

A total of 1,472 articles were obtained through our initial literature search, and 1,458 of these articles were excluded due to reasons indicated (Figure 1). Our NMA finally included 14 RCTs (full texts available for 13 studies^{12,14,21,22,24-32} and one conference abstract³³). Details of induction regimens of included RCTs are provided in Table 1. A total of 4,763 patients were included in the NMA. In total, there were 14 induction regimens, by which 17 pairwise comparisons were established (Figure 2). Only two trials included multiple arm,^{26,32} and others included two arms.^{12,14,21–25,27–31,33} All 14 trials reported ORR outcome, but eight out of 14 trials reported OS and PFS outcome, respectively. The baseline characteristics of patients from each trial, including gender, median age, International Staging System stage, median β 2-microglobulin, median albumin, and types of M protein, are provided in Table 2.

Risk of bias assessment

The Cochrane Collaboration's tool for assessing the risk of bias was used to evaluate the quality of the included trials,

Figure I Flow diagram showing literature search results. Abbreviation: RCTs, randomized controlled trials.

except for one conference abstract.³³ The results are shown in Figure 3. The included RCTs had low risks of selection bias about random sequence generation, attrition bias, reporting bias, and other biases, in which the rates of low risk were 100%, 92.3%, 92.3%, and 76.9%, respectively. Studies without clear information on allocation concealment, performance bias and detection bias accounted for 53.8%, 92.3%, and 92.3%, respectively.

ORR

A total of 13 included trials were able to be used to evaluate ORR with NMA.^{12,14,22,24-33} We selected the fixed-effects model due to nonsignificant heterogeneity ($I^2 = 24\%$). The forest plot with Cy-Dex as the reference is shown in Figure 4. For the pairwise comparison of regimens, VTD had significantly higher ORR than other regimes, except for VDCR and VDR to which the superiority was nonsignificant (Table S1). VDR, VDCR, VDC, VD, VBMCP-VBAD-B, TD, RD, and PAD had significantly higher ORR than VAD, Dex, and Cy-Dex. TAD showed significantly higher ORR than Cy-Dex and VAD, but had significantly poorer ORR than PAD, VBMCP-VBAD-B, VDC, VDCR, VDR, and VTD. Meanwhile, VDCR had significantly higher ORR than VDR. VBMCP-VBAD-B resulted in significantly better ORR than VD and TD. No statistically significant difference was found for other comparisons. VTD was ranked the best regimen in

terms of ORR according to rankogram which showed the rank probability (Figure 5).

OS

Eight studies involving 10 regimens were included in NMA for OS.^{12,14,21,22,24,26,29,31} The data of VTD vs TAD were based on reconstructed IPD obtained by Guyot et al's¹⁹ approach. According to the value of *I*² (1%), the fixed-effects model was used in NMA. Results showed that VTD was significantly better than TAD and VAD, and PAD was also significantly superior to VAD. Meanwhile, Cy-Dex had a shorter OS than the other nine regimens (Figure 4). On the other hand, there was no statistically significant difference among VTDC, Cy-Dex, Dex, VD, VBMCP-VBAD-B, PAD, VTD, and TD (Table S2). VTDC was ranked the best regimen for OS with relatively higher probability (Figure 5).

PFS

Eight out of 14 trials reported data on PFS.^{12,14,21,24–26,29,31} The fixed-effects model was used for NMA, because of the value of *I*² (18%). The forest plot of TAD vs other eight regimens is shown in Figure 4. PAD, VD, VTD, VBMCP-VBAD-B, TAD, and VTDC had significant superiority when compared with TD (Table S3). PAD, VD, VTD, VBMCP-VBAD-B, TAD, and VTDC had significantly better PFS than TD. Furthermore, TAD and PAD resulted in significantly better PFS than VAD.

289

Table I	Details of	induction	regimens	of included	RCTs
---------	------------	-----------	----------	-------------	------

Study	Group	Accrual period	Induction regimens; drugs (day administered) $ imes$ no. of cycles (duration, days)
Rajkumar	TD	June 2002–April	Tha: 200 mg (1–28) × 4 (28), Dex: 40 mg (1–4, 9–12, 17–20) × 4 (28)
et al ²²	Dex	2003	Dex: 40 mg (1–4, 9–12, 17–20) × 4 (28)
Sonneveld et al ²⁴	VAD PAD	May 2005–May 2008	Vin: 0.4 mg (1–4) \times 3 (28), dox: 9 mg/m ² (1–4) \times 3 (28), Dex: 40 mg (1–4, 9–12, 17–20) \times 3 (28) Bor: 1.3 mg/m ² (1, 4, 8, 11) \times 3 (28), dox: 9 mg/m ² (1–4) \times 3 (28), Dex: 40 mg (1, 4, 9–12, 17–20) \times 3 (28)
Moreau et al ²⁵	VD VTD	March 2008– January 2009	Bor: 1.3 mg/m ² (1, 4, 8, 11) × 4 (21), Dex: 40 mg (1–4 [all cycles], 9–12 [cycles 1 and 2]) × 4 (21) Bor: 1 mg/m ² (1, 4, 8, 11) × 4 (21), tha: 100 mg (1–21) × 4 (21), Dex: 40 mg (1–4 [all cycles], 9–12 [cycles 1 and 2]) × 4 (21)
Rosiñol et al ²⁶	VTD	April 6, 2006– August 5, 2009	Bor: 1.3 mg/m ² (1, 4, 8, 11) × 6 (28), tha: 50 mg (1–14) + 100 mg (15–28) × 1 (28) then 200 mg (1–28) × 5 (28), Dex: 40 mg (1–4, 9–12) × 6 (28)
	TD		Tha: 50 mg (1–14) + 100 mg (15–28) × 1 (28) then 200 mg (1–28) × 5 (28), Dex: 40 mg (1–4, 9–12) × 6 (28)
	VBMCP/ VBAD/B		VBMCP consisted of BCNU: 0.5 mg/kg (1), vin: 0.03 mg/kg (1; upper limit 2 mg), mel: 0.25 mg/kg (1–4), pre: 1 mg/kg (1–4) + 0.5 mg/kg (5–8) + 0.25 mg/kg (9–12). VBAD consisted of vin: 1 mg (1), BCNU: 30 mg/m ² (1), dox: 40 mg/m ² (1), Dex: 40 mg (1–4, 9–12, 17–20) (alternate VBMCP and VBAD; total four cycles \times 35 days), bor: 1.3 mg/m ² (1, 4, 8, 11) \times 2 (21)
Lokhorst et al ¹⁴	TAD	November 27, 2001–May 31,	Tha: 200–400 mg (1–28) \times 3 (28), dox: 9 mg/m² (1–4) \times 3 (28) then Dex: 40 mg (1–4, 9–12, 17–20) \times 3 (28)
	VAD	2005	Vin: 0.4 mg (1–4) \times 3 (28), dox: 9 mg/m ² (1–4) \times 3 (28), Dex: 40 mg (1–4, 9–12, 17–20) \times 3 (28)
Moreau et al ²⁷	VTD VDC	November 2013– March 2015	Bor: 1.3 mg/m ² (1, 4, 8, 11) × 4 (21), Dex: 40 mg (1–4, 9–12) × 4 (21), tha: 100 mg (1–21) × 4 (21) Bor: 1.3 mg/m ² (1, 4, 8, 11) × 4 (21), Dex: 40 mg (1–4, 9–12) × 4 (21), cyc: 500 mg/m ² (1, 8, 15) × 4 (21)
Cavo et al ²⁸	TD	January 2002– January 2004	Tha: 100 mg (1–14) then 200 mg \times 4 (30), Dex: 40 mg (1–4, 9–12, 17–20; odd cycles) + 40 mg (1–4; even cycles) \times 4 (30)
	VAD		Vin: 0.4 mg (1–4) × 4 (30), dox: 9 mg/m ² (1–4) × 4 (30), Dex: 40 mg (1–4, 9–12, 17–20; odd cycles) + 40 mg (1–4; even cycles) × 4 (30)
Ludwig et al ²¹	VTD	October 2007–	Bor: 1.3 mg/m ² (1, 4, 8, 11) × 4 (21), Dex: 40 mg (1–4, 9–12) × 4 (21), tha: 100 mg (1–21) × 4 (21)
	VTDC	September 2009	Bor: 1.3 mg/m ² (1, 4, 8, 11) × 4 (21), Dex: 40 mg (1–4, 9–12) × 4 (21), tha: 100 mg (1–21) × 4 (21), cyc: 400 mg/m ² (1, 8) × 4 (21)
Harousseau et al ²⁹	VD VAD	August 9, 2005– January 18, 2008	Bor: 1.3 mg/m ² (1, 4, 8, 11) × 4 (21), Dex: 40 mg (1–4 [all cycles], 9–12 [cycles 1 and 2]) × 4 (21) Vin: 0.4 mg (1–4) × 4 (28), dox: 9 mg/m ² (1–4) × 4 (28), Dex: 40 mg (1–4 [all cycles], 9–12, 17–20 [cycles 1 and 2]) × 4 (28)
Mai et al ³⁰	VDC	July 2010– October 2012	Bor: 1.3 mg/m ² (1, 4, 8, 11) × 3 (21), Dex: 40 mg (1–2, 4–5, 8–9, 11–12) × 3 (21), cyc: 900 mg/m ² (1) × 3 (21)
	PAD		Bor: 1.3 mg/m² (1, 4, 8, 11) \times 3 (28), dox: 9 mg/m² (1–4) \times 3 (28), Dex: 40 mg (1–4, 9–12, 17–20) \times 3 (28)
Cavo et al ¹²	VTD	May 2006–April 2008	Bor: 1.3 mg/m ² (1, 4, 8, 11) × 3 (21), tha: (100 mg [1–14) + 200 mg [15–21]) × 3 (21), Dex: 40 mg (1, 2, 4, 5, 8, 9, 11, 12) × 3 (21)
	TD		Tha: (100 mg [1–14] + 200 mg [15–21]) × 3 (21), Dex: 40 mg (1–4, 9–12) × 3 (21)
Mellqvist et al ³¹	VAD	November 2001– October 2003	Vin: 1.6 mg/m ² (1–4) × 3 (28), dox: 36 mg/m ² (1–4) × 3 (28), Dex: 40 mg (1–4, 9–12, 17–20) × 3 (28)
	Cy-Dex		Cyc: 1000 mg/m² (1) × 2 (21), Dex: 40 mg (1–4, 9–12) × 2 (21)
Kumar et al ³²	VDCR	June 2008– September 2009	Bor: 1.3 mg/m ² (1, 4, 8, 11) × 8 (21), Dex: 40 mg (1, 8, 15) × 8 (21), cyc: 500 mg/m ² (1, 8) × 8 (21) len: 15 mg (1–14) × 8 (21)
	VDR		Bor: 1.3 mg/m ² (1, 4, 8, 11) × 8 (21), Dex: 40 mg (1, 8, 15) × 8 (21), len: 25 mg (1–14) × 8 (21)
	VDC		Bor: 1.3 mg/m ² (1, 4, 8, 11) × 8 (21), Dex: 40 mg (1, 8, 15) × 8 (21), cyc: 500 mg/m ² (1, 8) × 8 (21)
	VCD- mod		Bor: 1.3 mg/m ² (1, 4, 8, 11) × 8 (21), Dex: 40 mg (1, 8, 15) × 8 (21), cyc: 500 mg/m ² (1, 8, 15) × 8 (21)
Kumar et al³³	TD	April 2009–	Tha: 200 mg (1–28) \times 4 (28), Dex: 40 mg (1–4, 9–12) \times 4 (28)
	RD	September 2014	Len: 25 mg $(1-21) \times 4$ (28), Dex: 40 mg $(1-4, 9-12) \times 4$ (28)

Abbreviations: bor, bortezomib; BCNU, bischloroethylnitrosourea; cyc, cyclophosphamide; Cy-Dex, cyclophosphamide plus dexamethasone; Dex, dexamethasone; dox, doxorubicin; len, lenalidomide; mel, melphalan; PAD, bortezomib plus doxorubicin plus dexamethasone; pre, prednisone; RCTs, randomized controlled trials; RD, lenalidomide plus dexamethasone; TAD, thalidomide plus doxorubicin plus dexamethasone; TD, thalidomide plus dexamethasone; VAD, vincristine plus doxorubicin plus dexamethasone; VDCR, bortezomib; VD, bortezomib plus vincristine plus melphalan plus prednisone plus dexamethasone plus bortezomib; VD, bortezomib plus dexamethasone; VDCR, bortezomib plus dexamethasone; VTDC, bortezomib plus dexamethas

Figure 2 Network plot of induction treatments included in the NMA. **Notes:** Circles represent the intervention as a node in the network, lines represent direct comparisons using RCTs, and the thickness of lines corresponds to the number of RCTs included in each comparison.

Abbreviations: Cy-Dex, cyclophosphamide plus dexamethasone; NMA, network meta-analysis; PAD, bortezomib plus doxorubicin plus dexamethasone; RCTs, randomized controlled trials RD, lenalidomide plus dexamethasone; TAD, thalidomide plus doxorubicin plus dexamethasone; VAD, vincristine plus doxorubicin plus dexamethasone; VBMCP-VBAD-B, BCNU plus vincristine plus melphalan plus prednisone plus dexamethasone plus bortezomib plus dexamethasone; VDC, bortezomib plus dexamethasone plus cyclophosphamide; VDCR, bortezomib plus dexamethasone plus cyclophosphamide; VDCR, bortezomib plus dexamethasone; VTDC, bortezomib plus thalidomide plus thalidomide plus dexamethasone; VTDC, bortezomib plus thalidomide; VDCR, bortezomib plus dexamethasone; VTDC, bortezomib plus thalidomide plus thalidomide plus thalidomide.

VBMCP-VBAD-B had significantly better PFS than VTD. No statistically significant difference was found for other comparisons. TAD was ranked the best regimen for PFS with relatively higher probability (Figure 5).

Discussion

Since the introduction of the proteasome inhibitor bortezomib and IMiDs such as thalidomide and lenalidomide, the novel agents have shown increased benefits compared with traditional regimens such as VAD regimen, the standard induction in the 1990s.^{28,29,34} Two meta-analyses found that bortezomib-based induction regimens result in improvements in both PFS and OS, compared with nonbortezomib-based induction regimens, despite higher risk of toxicity.^{35,36} The better complete response, ORR, and PFS of velcade plus thalidomide-based regimens vs velcade-based or thalidomide-based regimens were also demonstrated in another meta-analysis.³⁷ In addition, three-drug induction regimens combining bortezomib and Dex became the standard of care for transplant-eligible NDMM patients in 2014, because of the better efficacy.^{24,26,34,38} To date, no comprehensive overall comparison involving multiple induction options has been realized yet. NMA, first proposed by Lumley,¹⁵ can integrate direct and indirect evidence and make a global comparison of various regimens.

In our NMA, we found the superiority of VTD regimen for ORR. In GIMEMA and PETHEMA/GEM trial, Cavo et al12 and Rosiñol et al26 comparing VTD with TD showed significantly higher ORR for VTD. Meanwhile, reduced doses of VTD had higher ORR than VD, without statistical significance.²⁵ In IFM 2013-04 trial, VTD was significantly superior to VDC.27 Although VTD resulted in an improvement in ORR when compared with VTDC, VTDC shows better performance in both PFS and OS in the NMA. For OS, VTDC is superior to others in our NMA. In a Phase II trial by Ludwig et al,²¹ VTDC showed nonsignificant superiority compared to VTD (HR = 0.87, 95% CI: 0.44-1.72, P = 0.69). Interestingly, in our mixed comparisons, the same result was observed (HR = 0.87, 95% CI: 0.44-1.7). For the PFS outcome, TAD had a better PFS than the other eight regimens, including VTD (HR = 0.66, 95% CI: 0.39–1.1) and VTDC (HR = 0.91, 95% CI: 0.44-1.9). However, TAD showed the significant inferiority when compared with VTD in terms of ORR (OR = 0.21, 95% CI: 0.12–0.38) and OS (HR = 1.8, 95% CI: 1.0-3.1), and similar trend was found for the comparison of TAS vs VTDC in terms of OS (HR = 2.0, 95% CI: 0.85-4.9). According to our NMA, VTDC was considered as more beneficial regimen in survival, which was ranked as the best and second regimen for OS and PFS, respectively. VTD and TAD were also promising regimens for transplant-eligible NDMM patients, especially for VTD, which was ranked as the best and second regimen for ORR and OS. On the other hand, in addition to efficacy measures, toxicity profiles, which are not meta-analytically analyzed in this article, may also be of great importance for the choice of treatment. A meta-analysis found that bortezomib-based induction regimens increased the risk of adverse events with a grade \geq 3, compared with nonbortezomib-based induction regimens (63% vs 59%).36 Another meta-analysis showed that bortezomib-thalidomide-based regimens were linked to higher incidence of peripheral neuropathy than bortezomib-based regimens or thalidomide-based regimens (OR = 1.64, 95% CI: 0.77-3.46, P = 0.2).³⁷ Furthermore, apparent toxicity was observed for quadruple regimens in some trials.^{21,32} In further studies, a comprehensive analysis concerning toxicity will provide valuable information for decision-making.

There are some limitations of this NMA. First, many comparisons in the NMA were based on single study;

CP-VBAD-B 127 99 100 100 127 127 129 129 129 129 1268 268 268 268 169 169 169 169 169 169 169 169		(range) 65 (38–83) 65 (38–83) 65 (38–82) 57 (25–65) 57 (31–65) 58 (54–62) 58 (54–62) 56 (NA) 56 (NA) 57 (NA) 57 (30–65) 56 (32–65) 59 (34–65) 53.94 (NA) 53.94 (NA)	P 54 (55) 54 (55) 144 (35) 144 (35) 33 (34) 33 (34) 33 (31) NA NA NA NA NA 82 (56) 98 (49) 98 (49) 98 (49) 98 (49) 109 (56) 98 (25) 98 (25)	II 124 (30) 150 (36) 43 (44) 44 (46) NA NA NA NA NA S51 (25) 94 (56)	III 11 (11) 12 (12) 107 (26) 81 (20) 81 (20) 21 (22) 23 (23) NA NA NA NA NA NA NA NA NA NA NA	microglobin, mg/L (range) NA NA NA 3.40 (NA) NA NA NA NA NA NA NA NA NA S.4 (0.1-35.4) 3.4 (0.1-35.4) 3.6 (2.1-8.9) 3.8 (2.0-9.3)	g'L (range) NA NA NA NA NA NA NA NA NA SA (42–574)	IgG 62 (63) 58 (58) 234 (57)	IgA 21 (21) 22 (22)	lgD	Σg	Light
²² TD 99 Dex 100 PAD 1414 PAD 414 VTD 100 VTD 130 VTD 130 VTD 100 VTD 169 VTD 268 VTD 268 VTD 268 VTD 100 VDC 169 VTD 169 VTD 169 VTD 169 VTD 169 VTD 100 VTD 169 VTD 100 VTD 100 VT	50 (51) 49 (49) 247 (60) 253 (61) 55 (100) 55 (100) 55 (100) 72 (55) 67 (52) 67 (52) 177 (66) 177 (66) 177 (66) 103 (61) 103 (61) 108 (64) NA NA	65 (38–83) 65 (38–82) 57 (25–65) 57 (31–65) 57 (31–65) 56 (NA) 56 (NA) 56 (NA) 57 (30–65) 56 (32–65) 59 (34–65) 60 (26–65) 53 (1NA) 53 (1NA) 53 (31–61) 54 (NA)		124 (30) 150 (36) 43 (44) 46 (46) NA NA NA 51 (25) 51 (25) 94 (56)	11 (11) 12 (12) 107 (26) 81 (20) 81 (20) 21 (22) 23 (23) NA NA NA NA S2 (26) 35 (26) 35 (26) 35 (21) NA	NA NA 3.40 (NA) 3.40 (NA) NA NA NA NA NA 3.4 (0.1–35.4) 3.4 (0.1–35.4) 3.6 (2.1–8.9) 3.6 (2.1–8.9) 3.8 (2.0–9.3)	NA NA NA NA NA NA NA NA NA SA (42–574)	62 (63) 58 (58) 234 (57)	21 (21) 22 (22)	NIA		chain
Dex 100 PAD 414 PAD 413 VD 99 VTD 100 VTD 130 VTD 130 VTD 130 VTD 130 VTD 130 VTD 130 VD 268 VTD 268 VTD 268 VTD 169 VD 268 VD 100 VD 49 VD 240 VD 240 VD 240	49 (49) 247 (60) 55 (10) 55 (100) 57 (55) 67 (55) 67 (55) 177 (66) 177 (66) 160 (60) 103 (61) 108 (64) NA NA 26 (53)	65 (38–82) 57 (25–65) 57 (31–65) 58 (54–61) 58 (54–62) 56 (NA) 57 (NA) 57 (NA) 57 (30–65) 58 (32–65) 59 (34–65) 60 (26–65) 53.94 (NA)		124 (30) 150 (36) 43 (44) 46 (46) NA NA NA 51 (25) 94 (56)	12 (12) 107 (26) 81 (20) 21 (22) 23 (23) 23 (23) NA NA NA 55 (26) 45 (23) 33 (22) 33 (21) NA	NA 3.40 (NA) 3.40 (NA) NA NA NA 3.4 (0.1–35.4) 3.4 (0.0–34.8) 3.6 (2.1–8.9) 3.8 (2.0–9.3)	NA NA NA NA NA NA NA SA (42–574)	58 (58) 234 (57)	22 (22)	Ş	0	16 (16)
If ⁴ VAD 414 PAD 413 99 VTD 99 413 VTD 100 130 VTD 130 130 VTD 130 130 VTD 268 127 VAD 268 268 VTD 268 268 VTD 169 169 VD 100 169 VD 268 100 VD 169 100 VD 100 100 VD 240 100 VD 240 240	247 (60) 253 (61) 66 (61) 55 (100) 55 (100) 72 (55) 67 (55) 67 (52) 177 (66) 177 (66) 177 (66) 160 (60) 103 (61) 108 (64) NA NA 26 (53) 26 (53)	57 (25–65) 57 (31–65) 58 (52–61) 58 (54–62) 56 (NA) 56 (NA) 57 (NA) 57 (NA) 57 (30–65) 58 (32–65) 58 (32–65) 58 (34–65) 54 (NA) 53.94 (NA)		1 124 (30) 1 50 (36) 4 4 (46) 4 4 (46) NA NA NA 5 1 (25) 9 4 (56)	107 (26) 81 (20) 21 (22) 23 (23) 23 (23) NA NA 55 (26) 45 (23) 33 (21) NA	3.40 (NA) 3.40 (NA) NA NA NA NA 3.4 (0.1–35.4) 3.4 (0.0–34.8) 3.6 (2.1–8.9) 3.8 (2.0–9.3)	NA NA NA NA NA NA NA SA (4 2–57 4)	234 (57)		AN		17 (17)
VD 99 VTD 100 VTD 100 VTD 100 VTD 127 VBMCP-VBAD-B 129 VAD 268 VTD 268 VTD 169 VDC 169 VDC 169 VDC 169 VTD 100 VTD 100 VTD 240	223 (61) 555 (100) 67 (55) 67 (52) 67 (52) 177 (66) 160 (60) 103 (61) 108 (64) NA NA 26 (53)	57 (52–65) 58 (54–62) 56 (NA) 57 (NA) 57 (30–65) 56 (32–65) 59 (34–65) 60 (26–65) 53 -04 (NA) 53 -04 (NA)		43 (46) 44 (46) NA NA 51 (25) 51 (25) 94 (56)	21 (22) 21 (22) 23 (23) 23 (23) 23 (24) 23 (26) 33 (21) 23 (21) 24 (21)	2.10 (197) NA NA NA NA 3.4 (0.1–35.4) 3.1 (0.0–34.8) 3.6 (2.1–8.9) 3.8 (2.0–9.3)	AN AN AN AN AN AN AN A72-5740	751 (61)	97 (23) 97 (23)	3 (I)	AN AN	78 (19)
VTD 100 VTD 100 VTD 130 TD 127 VBMCP-VBAD-B 127 VBMCP-VBAD-B 127 VAD 268 VTD 268 VTD 169 VDC 169 VDC 169 VDC 169 VTD 100 VTD 100 VTD 240	55 (100) 55 (100) 67 (55) 67 (52) 67 (52) 177 (66) 160 (60) 103 (61) 103 (61) 108 (64) NA NA 26 (53)	55 (32–65) 56 (NA) 56 (NA) 57 (NA) 57 (30–65) 56 (32–65) 59 (34–65) 60 (26–65) 53-04 (NA)	<u> </u>	46 (46) NA NA S1 (25) 94 (56)	23 (23) NA NA 52 (26) 33 (21) 33 (21) NA	NA NA NA NA 34 (0.1–35.4) 3.1 (0.0–34.8) 3.6 (2.1–8.9) 3.8 (2.0–9.3)	NA AN AN NA NA AN A72-5740		(22) 27 NA	NA N		(ci) co
VTD 130 TD 27 VBMCP-VBAD-B 127 VBMCP-VBAD-B 127 VAD 268 VTD 268 VTD 169 VDC 169 VD 100 VAD 100 VAD 100 VTD 49 VTDC 49 VTDC 49 VTDC 240	72 (55) 69 (54) 67 (52) 177 (66) 160 (60) 103 (61) 108 (64) NA NA 26 (53)	56 (NA) 56 (NA) 57 (NA) 57 (30–65) 56 (32–65) 59 (34–65) 60 (26–65) 54.01 (NA) 53.94 (NA)	~	NA NA NA 51 (25) 94 (56)	NA NA S52 (26) 45 (23) 37 (22) 36 (21) NA	NA NA NA 3.4 (0.1–35.4) 3.4 (0.0–34.8) 3.6 (2.1–8.9) 3.8 (2.0–9.3)	NA NA NA 340 (4 7–574)	AN	NA	AZ		₹ Z
TD 127 VBMCP-VBAD-B 129 VBMCP-VBAD-B 129 VAD 268 VTD 169 VDC 169 VD 169 VD 100 VAD 100 VAD 100 VAD 100 VAD 240 VTD 49 VTD 240	69 (54) 67 (52) 177 (66) 160 (60) 160 (60) 103 (61) 108 (64) NA NA 26 (53)	56 (NA) 57 (NA) 57 (30–65) 56 (32–65) 59 (34–65) 60 (26–65) 54.01 (NA) 53.94 (NA)	~	NA NA 51 (25) 40 (21) 94 (56)	NA NA 52 (26) 45 (23) 37 (22) 36 (21) NA	NA NA 3.4 (0.1–35.4) 3.1 (0.0–34.8) 3.6 (2.1–8.9) 3.8 (2.0–9.3)	NA NA 360 (4 2–57 4)	85 (65)	25 (19)	4 (3)	()	16 (12)
 VBMCP-VBAD-B 129 TAD 268 VAD 268 VDC 169 VDC 169 VDC 169 VDC 169 100 VDC 100 100 100	67 (52) 177 (66) 160 (60) 103 (61) 108 (64) NA NA 26 (53)	57 (NA) 57 (30–65) 56 (32–65) 59 (34–65) 60 (26–65) 54.01 (NA) 53.94 (NA)	~	NA 51 (25) 40 (21) 94 (56)	NA 52 (26) 45 (23) 37 (22) 36 (21) NA	NA 3.4 (0.1–35.4) 3.1 (0.0–34.8) 3.6 (2.1–8.9) 3.8 (2.0–9.3)	NA 36.0 (4.2–57.4)	70 (55)	32 (25)	4 (3)	_	22 (17)
⁴ TAD 268 VAD 268 VTD 169 VDC 169 VDC 169 VAD 100 VAD 100 VAD 49 VTDC 49 240	177 (66) 160 (60) 103 (61) 108 (64) NA NA 26 (53)	57 (30–65) 56 (32–65) 59 (34–65) 60 (26–65) 54.01 (NA) 53.94 (NA)	~	51 (25) 40 (21) 94 (56)	52 (26) 45 (23) 37 (22) 36 (21) NA	3.4 (0.1–35.4) 3.1 (0.0–34.8) 3.6 (2.1–8.9) 3.8 (2.0–9.3)	34.0 (4.2-57.4)	(19) 6/	27 (21)	3 (2)		19 (15)
VAD 268 VTD 169 VDC 169 VDC 169 VAD 100 VAD 100 VTDC 49 320 240	160 (60) 103 (61) 108 (64) NA NA 26 (53)	56 (32–65) 59 (34–65) 60 (26–65) 54.01 (NA) 53.94 (NA)		40 (21) 94 (56)	45 (23) 37 (22) 36 (21) NA	3.1 (0.0–34.8) 3.6 (2.1–8.9) 3.8 (2.0–9.3)	(1	161 (61)	56 (21)	3 (I)	, (0) 0	43 (16)
VTD VDC TD VDC 169 VAD VTD C VTD C 49 49 2240 2240 2240 2240 2240 2240 224	103 (61) 108 (64) NA NA 26 (53)	59 (34–65) 60 (26–65) 54.01 (NA) 53.94 (NA)		94 (56)	37 (22) 36 (21) NA	3.6 (2.1–8.9) 3.8 (2.0–9.3)	36.0 (17.1–59.1)	156 (59)	53 (20)	3 (I)		50 (19)
VDC TD VAD VTD C VTD C 24 9 49 100 100 24 9 49 100 100 24 9 49 100 100 24 9 49 100 100	108 (64) NA NA 26 (53)	60 (26–65) 54.01 (NA) 53.94 (NA)			36 (21) NA	3.8 (2.0–9.3)	36.9 (28.2–41.7)	AA	AN	AN		٨A
TD VAD VTDC VTDC 24 49 49 100 25 49 49 40 25 49 49 40 25 49 40 20 40 20 20 20 40 20 20 20 20 20 20 20 20 20 20 20 20 20	NA NA 26 (53)	54.01 (NA) 53.94 (NA)		90 (53)	AN		35.7 (27.9–41.3)	NA	NA	AN	NA N	٩N
VAD VTDC VTDC VDC VDC VDC VDC VDC VDC VDC VDC VDC V	NA 26 (53)	53.94 (NA)		ΝA		3.66 (NA)	NA	61 (61)	26 (26)	AA	NA NA	٨A
VTD VTDC VD 2240 2300 2300 2300 2300 2300 2300 2300	26 (53)			ΝA	AA	3.49 (NA)	NA	(09) 09	31 (31)	NA	NA NA	٩Z
VTDC 49 VD 240		57 (35–65)	_	22 (45)	15 (31)	3.5 (1.6–23.2)	34.0 (15–49)	29 (59)	II (22)	0) 0	v. ▼Z	9 (18)
VD 240		58 (33–68)	9 (18)	23 (47)	17 (35)	4.4 (1.5–12.0)	32.0 (14–50)	30 (61)	II (22)	I (2)	A Z	7 (14)
		57.2 (NA)		8I (34)	52 (22)	AA	AN	AA	٩N	٩N		٩N
VAD 242		57.I (NA)	97 (40)	82 (34)	54 (22)	AA	AA	AA	AN	ΑN	L ∀Z	٩Z
251	153 (61)	58.7 (33–70)		82 (33)	75 (30)	NA	NA	148 (59)	51 (20)	AN	` ₹Z	47 (19)
PAD 251 I	147 (59)	59.4 (36–70)		80 (32)	72 (29)	NA	NA	150 (60)	54 (22)	NA	NA NA	43 (17)
	137 (58)	58 (NA)	107 (45)	91 (39)	38 (16)	3.0 (2.3-4.4)	38.3 (NA)	154 (65)	41 (17)	AA	, AN	40 (17)
TD 238 I	136 (57)	57 (NA)		92 (39)	39 (16)	3.2 (2.3–4.9)	39.3 (NA)	147 (62)	54 (23)	AN	₹Z	4(14)
	AN	56 (NA)		76 (49)	42 (27)	AA	AN	AA	AN	٩N		٩N
Cy-Dex I58	AN	57 (NA)		82 (52)	38 (24)	NA	NA	NA	AN	AN	NA NA	٩N
48	29 (60)	61.5 (41–81)		22 (46)	10 (21)	AA	AA	33 (69)	8 (17)	٩N		7 (15)
VDR 42 2	24 (57)	60 (42–75)	16 (38)	18 (43)	8 (19)	NA	NA	27 (64)	9 (21)	AN	¥ ₹	6 (14)
VDC 33 I	19 (58)	62 (40–75)	II (33)	II (33)	II (33)	NA	NA	22 (67)	7 (21)	AN	₹	3 (9)
VDC-mod 17 7	7 (41)	63 (40–72)		6 (35)	3 (18)	NA	NA	8 (47)	2 (12)	NA	¥ ₹	6 (35)
~	136 (68)	54.5 (32–70)	(09) 611		8I (40)	NA	NA	NA	NA	ΝA	A A Z	٨A
RD 98						AA	NA	NA	AN	AN	NA NA	٩N
Abbreviations: Cy-Dex, cyclophosphamide plus dexamethasone; Dex, dexamethasone; ISS, International Staging System; NA, not available; PAD, bortezomib plus doxorubicin plus dexamethasone; RCTs, randomized controlled trials;	one; Dex, de	examethasone; ISS, I	nternational S	taging Syster	n; NA, not a	vailable; PAD, bortez	ethasone; ISS, International Staging System; NA, not available; PAD, bortezomib plus doxorubicin plus dexamethasone; RCTs, randomized controlled trials;	us dexamethas	one; RCTs,	randomize	d control	led trial

•	٠	•	•	•	٠	•	٠	٠	•	٠	٠	•	Random sequence generation (selection bias)
••	•	٠	•	•	••	?	6	?	••	•	•	•	Allocation concealment (selection bias)
••	<mark>。</mark>	••	?	?	•	•	<mark>。</mark>	?	•	•	•	•	Blinding of participants and personnel (performance bias)
••	••	••	?	•	••	•	•	••	••	••	•	•	Blinding of outcome assessment (selection bias)
•	٠	٠	٠	•	•	٠	٠	•	•	•	٠	٠	Incomplete outcome data (attrition bias)
٠	٠	٠	•		٠	٠	٠	•	•	•	٠	٠	Selective reporting (reporting bias)
•	•	•	٠	•	٠	•	٠	•	•	•	•	•	Other bias
Sonneveld et al $(2012)^{24}$	Rosiñol et al (2012) ²⁶	Rajkumar et al (2006) 22	Moreau et al (2016) ²⁷	Moreau et al (2011) ²⁵	Mellqvist et al (2008) 31	Mai et al (2015) ³⁰	Ludwig et al (2015) ²¹	-okhorst et al (2010) ¹⁴	Kumar et al (2014) 32	Harousseau et al (2010) ²⁹	Cavo et al (2010) ¹²	Cavo et al (2005) ²⁸	

Figure 3 Graph of assessments of risk of bias.

Notes: Green, yellow, and red represent low, unclear, and high risk of bias, respectively.

Figure 4 Forest plots comparing different induction treatments in terms of (A) the ORR, with Cy-Dex as the reference, (B) the OS, with Cy-Dex as the reference, and (C) the PFS, with TAD as the reference.

Abbreviations: Cy-Dex, cyclophosphamide plus dexamethasone; Dex, dexamethasone; HR, hazard ratio; OR, odds ratio; ORR, overall response rate; OS, overall survival; PAD, bortezomib plus doxorubicin plus dexamethasone; PFS, progression-free survival; RD, lenalidomide plus dexamethasone; TAD, thalidomide plus doxorubicin plus dexamethasone; TD, thalidomide plus dexamethasone; VAD, vincristine plus doxorubicin plus dexamethasone; VBMCP-VBAD-B, BCNU plus vincristine plus melphalan plus prednisone plus dexamethasone plus bortezomib; VD, bortezomib plus dexamethasone; VDC, bortezomib plus dexamethasone plus cyclophosphamide; VDCR, bortezomib plus dexamethasone; VTD, bortezomib plus thalidomide plus thalidomide plus thalidomide plus dexamethasone.

thus, the results might be altered if a single trial result has modifications. Second, some Phase II trials were included, but these trials had limited large sample size. Third, the survival of NDMM could be influenced by transplantation schemes, consolidation therapy, and maintenance therapy. Therefore, the results of this NMA should be interpreted with cautions, and more high-quality studies with adequate sample size are needed to confirm our findings.

Figure 5 Rankograms of different induction treatments.

Notes: (A) Rankogram for ORR, (B) rankogram for OS, (C) rankogram for PFS.

Abbreviations: Cy-Dex, cyclophosphamide plus dexamethasone; Dex, dexamethasone; ORR, overall response rate; OS, overall survival; PAD, bortezomib plus doxorubicin plus dexamethasone; FFS, progression-free survival; RD, lenalidomide plus dexamethasone; TAD, thalidomide plus doxorubicin plus dexamethasone; TD, thalidomide plus dexamethasone; VAD, vincristine plus doxorubicin plus dexamethasone; VBMCP-VBAD-B, BCNU plus vincristine plus melphalan plus prednisone plus dexamethasone plus bortezomib; VD, bortezomib plus dexamethasone; VDC, bortezomib plus dexamethasone plus cyclophosphamide; VDCR, bortezomib plus dexamethasone plus lenalidomide; VTD, bortezomib plus dexamethasone; VTDC, bortezomib plus thalidomide plus dexamethasone; VTDC, bortezomib plus thalidomide.

Conclusion

The NMA demonstrated that the VTD, VTDC, and TAD regimens are most beneficial in terms of ORR, OS, and PFS for transplant-eligible patients with NDMM, respectively.

Abbreviations

ASCT, autologous stem cell transplantation; BCNU, bischloroethylnitrosourea; Cy-Dex, cyclophosphamide plus dexamethasone; Dex, dexamethasone; HDT, high-dose therapy; HR, hazard ratio; IMiDs, immunomodulatory drugs; IPD, individual patient data; MM, multiple myeloma; NDMM, newly diagnosed multiple myeloma; NMA, network metaanalysis; OR, odds ratio; ORR, overall response rate; OS, overall survival; PAD, bortezomib plus doxorubicin plus dexamethasone; PFS, progression-free survival; PR, partial response; PRISMA-NMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Network Meta-analysis; RCTs, randomized controlled trials; RD, lenalidomide plus dexamethasone; SE, standard error; TAD, thalidomide plus doxorubicin plus dexamethasone; TD, thalidomide plus dexamethasone; VAD, vincristine plus doxorubicin plus dexamethasone; VBMCP-VBAD-B, BCNU plus vincristine plus melphalan plus prednisone plus dexamethasone plus bortezomib; VD, bortezomib plus dexamethasone; VDC, bortezomib plus dexamethasone plus cyclophosphamide; VDCR, bortezomib plus dexamethasone plus cyclophosphamide plus lenalidomide; VDR, bortezomib plus dexamethasone plus lenalidomide; VTD, bortezomib plus thalidomide plus dexamethasone; VTDC, bortezomib plus thalidomide plus dexamethasone plus cyclophosphamide.

Disclosure

The authors report no conflicts of interest in this work.

References

- Bladé J, Samson D, Reece D, et al. Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation. *Br J Haematol*. 1998;102(5):1115–1123.
- Becker N. Epidemiology of multiple myeloma. *Recent Results Cancer Res.* 2011;183(1):25–35.
- Singhal S, Mehta J, Desikan R, et al. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med. 1999;341(21):1565–1571.
- Richardson PG, Barlogie B, Berenson J, et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. *N Engl J Med.* 2003;348(26): 2609–2617.
- Richardson PG, Sonneveld P, Schuster MW, et al; Assessment of Proteasome Inhibition for Extending Remissions (APEX) Investigators. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. *N Engl J Med.* 2005;352(24):2487–2498.
- Rajkumar SV, Hayman SR, Lacy MQ, et al. Combination therapy with lenalidomide plus dexamethasone (Rev/Dex) for newly diagnosed myeloma. *Blood*. 2005;106(13):4050–4053.

- Richardson PG, Blood E, Mitsiades CS, et al. A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma. *Blood.* 2006;108(10):3458–3464.
- Brenner H, Gondos A, Pulte D. Recent major improvement in longterm survival of younger patients with multiple myeloma. *Blood*. 2008;111(5):2521–2526.
- 9. Kumar SK, Rajkumar SV, Dispenzieri A, et al. Improved survival in multiple myeloma and the impact of novel therapies. *Blood*. 2008;111(5):2516–2520.
- Engelhardt M, Terpos E, Kleber M, et al; European Myeloma Network. European Myeloma Network recommendations on the evaluation and treatment of newly diagnosed patients with multiple myeloma. *Haematologica*. 2014;99(2):232–242.
- Cavo M, Rajkumar SV, Palumbo A, et al; International Myeloma Working Group. International Myeloma Working Group consensus approach to the treatment of multiple myeloma patients who are candidates for autologous stem cell transplantation. *Blood*. 2011;117(23):6063–6073.
- 12. Cavo M, Tacchetti P, Patriarca F, et al. Bortezomib with thalidomide plus dexamethasone compared with thalidomide plus dexamethasone as induction therapy before, and consolidation therapy after, double autologous stem-cell transplantation in newly diagnosed multiple myeloma: a randomised phase 3 study. *Lancet*. 2010;376(9758):2075–2085.
- Morgan GJ, Davies FE, Gregory WM, et al; National Cancer Research Institute Haematological Oncology Clinical Studies Group. Cyclophosphamide, thalidomide, and dexamethasone as induction therapy for newly diagnosed multiple myeloma patients destined for autologous stem-cell transplantation: MRC Myeloma IX randomized trial results. *Haematologica*. 2011;97(3):442–450.
- 14. Lokhorst HM, van der Holt B, Zweegman S, et al; Dutch-Belgian Hemato-Oncology Group (HOVON). A randomized phase 3 study on the effect of thalidomide combined with adriamycin, dexamethasone, and high-dose melphalan, followed by thalidomide maintenance in patients with multiple myeloma. *Blood*. 2010;115(6):1113–1120.
- Lumley T. Network meta-analysis for indirect treatment comparisons. Stat Med. 2002;21(16):2313–2324.
- van Valkenhoef G, Lu G, de Brock B, Hillege H, Ades AE, Welton NJ. Automating network meta-analysis. *Res Synth Methods*. 2012;3(4):285–299.
- Hutton B, Salanti G, Caldwell DM, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. *Ann Intern Med.* 2015;162(11):777–784.
- Durie BG, Harousseau JL, Miguel JS, et al; International Myeloma Working Group. International uniform response criteria for multiple myeloma. *Leukemia*. 2006;20(9):1467–1473.
- Tierney JF, Stewart LA, Ghersi D. Practical methods for incorporating summary time-to-event data into meta-analysis. *Trials*. 2007;8(1):16.
- Guyot P, Ades AE, Ouwens MJ, Welton NJ. Enhanced secondary analysis of survival data: reconstructing the data from published Kaplan-Meier survival curves. *BMC Med Res Methodol*. 2012;12:9.
- Ludwig H, Greil R, Masszi T, et al. Bortezomib, thalidomide and dexamethasone, with or without cyclophosphamide, for patients with newly diagnosed multiple myeloma: 5-year follow-up. *Br J Haematol*. 2015;171(3):344–354.
- 22. Rajkumar SV, Blood E, Vesole D, Fonseca R, Greipp PR, Eastern Cooperative Oncology Group. Phase III clinical trial of thalidomide plus dexamethasone compared with dexamethasone alone in newly diagnosed multiple myeloma: a clinical trial coordinated by the Eastern Cooperative Oncology Group. J Clin Oncol. 2006;24(3):431–436.
- Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. *Br Med J*. 2003;327(7414):557–560.
- 24. Sonneveld P, Schmidt-Wolf IG, van der Holt B, et al. Bortezomib induction and maintenance treatment in patients with newly diagnosed multiple myeloma: results of the randomized phase III HOVON-65/ GMMG-HD4 trial. J Clin Oncol. 2012;30(24):2946–2955.
- 25. Moreau P, Avet-Loiseau H, Facon T, et al. Bortezomib plus dexamethasone versus reduced-dose bortezomib, thalidomide plus dexamethasone as induction treatment before autologous stem cell transplantation in newly diagnosed multiple myeloma. *Blood*. 2011;118(22):5752–5758.

- 26. Rosiñol L, Oriol A, Teruel AI, et al; Programa para el Estudio y la Terapéutica de las Hemopatías Malignas/Grupo Español de Mieloma (PETHEMA/GEM) group. Superiority of bortezomib, thalidomide, and dexamethasone (VTD) as induction pretransplantation therapy in multiple myeloma: a randomized phase 3 PETHEMA/GEM study. *Blood*. 2012;120(8):1589–1596.
- Moreau P, Hulin C, Macro M, et al. VTD is superior to VCD prior to intensive therapy in multiple myeloma: results of the prospective IFM2013-04 trial. *Blood*. 2016;127(21):2569–2574.
- Cavo M, Zamagni E, Tosi P, et al; Bologna 2002 Study. Superiority of thalidomide and dexamethasone over vincristine-doxorubicindexamethasone (VAD) as primary therapy in preparation for autologous transplantation for multiple myeloma. *Blood*. 2005;106(1):35–39.
- 29. Harousseau JL, Attal M, Avetloiseau H, et al. Bortezomib plus dexamethasone is superior to vincristine plus doxorubicin plus dexamethasone as induction treatment prior to autologous stem-cell transplantation in newly diagnosed multiple myeloma: results of the IFM 2005-01 phase III trial. *J Clin Oncol.* 2010;28(30):4621–4629.
- Mai EK, Bertsch U, Dürig J, et al. Phase III trial of bortezomib, cyclophosphamide, dexamethasone (VCD) versus bortezomib, doxorubicin, dexamethasone (PAd) in newly-diagnosed myeloma. *Leukemia*. 2015;29(8):1721–1729.
- 31. Mellqvist UH, Lenhoff S, Johnsen HE, et al. Cyclophosphamide plus dexamethasone is an efficient initial treatment before high-dose melphalan and autologous stem cell transplantation in patients with newly diagnosed multiple myeloma: results of a randomized comparison with vincristine, doxorubicin, and dexamethasone. *Cancer*. 2008;112(1):129–135.

- 32. Kumar S, Flinn I, Richardson PG, et al. Randomized, multicenter, phase 2 study (EVOLUTION) of combinations of bortezomib, dexamethasone, cyclophosphamide, and lenalidomide in newly diagnosed multiple myeloma. *Blood*. 2012;119(19):4375–4382.
- 33. Kumar L, Mookerjee A, Sharma A, et al. Low dose dexamethasone plus lenalidomide (Len-dexa) versus thalidomide (Thal-dexa) as induction therapy for newly diagnosed multiple myeloma: a phase III, randomized study. *Clin Lymphoma Myeloma Leuk*. 2015;15:e146–e146.
- 34. Moreau P, Attal M, Facon T. Frontline therapy of multiple myeloma. *Blood*. 2015;125(20):3076–3084.
- Nooka AK, Kaufman JL, Behera M, et al. Bortezomib-containing induction regimens in transplant-eligible myeloma patients: a meta-analysis of phase 3 randomized clinical trials. *Cancer*. 2013;119(23):4119–4128.
- 36. Sonneveld P, Goldschmidt H, Rosiñol L, et al. Bortezomib-based versus nonbortezomib-based induction treatment before autologous stem-cell transplantation in patients with newly diagnosed multiple myeloma: a meta-analysis of phase III randomized, controlled trials. *J Clin Oncol.* 2013;31(26):3279–3287.
- 37. Huang H, Zhou L, Peng L, Fu W, Zhang C, Hou J. Bortezomibthalidomide-based regimens improved clinical outcomes without increasing toxicity as induction treatment for untreated multiple myeloma: a meta-analysis of phase III randomized controlled trials. *Leuk Res.* 2014;38(9):1048–1054.
- Rosiñol L, Kumar S, Moreau P, Cavo M. Initial treatment of transplant-eligible patients in multiple myeloma. *Expert Rev Hematol.* 2014;7(1):43–53.

Table SI Eff	sct of induction	regimens for	transplant-elig	Table S1 Effect of induction regimens for transplant-eligible patients with NDMM on ORR	th NDMM on	ORR						
Cy-Dex	4.	3.8	3.1	2.3	3.3	I.3	6.1	3.3	4.8	9.6	6.7	=
	(0.56–3.4)	(2.1–6.8)	(1.3–7.9)	(1.3–4.4)	(1.7-6.7)	(0.78–2.2)	(3.0-12.0)	(1.8–6.2)	(2.4–9.5)	(3.0–31.0)	(2.3–19.0)	(5.5–22.0)
0.72	Dex	2.7	2.3	1.7	2.4	0.94	4.4	2.4	3.4	6.9	4.8	8.0
(0.29–1.8)		(1.2–6.1)	(1.0–5.2)	(0.74–3.9)	(1.4-4.3)	(0.45–2.0)	(2–9.7)	(1.1–5.2)	(1.4–8.3)	(1.9–25.0)	(1.5–16.0)	(3.8–17.0)
0.26	0.36	PAD	0.83	0.62	0.88	0.34	l.6	0.87	I.3	2.5	I.8	2.9
(0.15–0.47)	(0.16–0.81)		(0.37–1.9)	(0.38–0.98)	(0.50–1.5)	(0.26–0.46)	(0.92–2.8)	(0.54–1.4)	(0.84–1.9)	(0.93–1.0)	(0.72–4.4)	(1.7–4.9)
0.32	0.44	1.2	RD	0.74		0.41	1.9		I.5	3.I	2.1	3.5
(0.13–0.80)	(0.19–1.0)	(0.53–2.7)		(0.32–1.7)	(0.58–1.9)	(0.19–0.89)	(0.86–4.3)	(0.48–2.3)	(0.62–3.7)	(0.85–11.0)	(0.64–7.1)	(1.6–7.5)
0.43	0.59	I.6	I.3	TAD	<u></u>	0.56	2.6	I.4	2.0	4.I	2.8	4.7
(0.23–0.79)	(0.26–1.4)	(1.0–2.6)	(0.58–3.2)		(0.78–2.6)	(0.39–0.80)	(1.4-4.7)	(0.84–2.4)	(1.1–3.7)	(1.4–13.0)	(1.0–7.9)	(2.6–8.4)
0.30	0.41		0.94	0.70	Ð	0.39	I.8	0.99	1 .4	2.9	2.0	3.3
(0.15–0.60)	(0.24–0.73)	(0.65–2.0)	(0.52–1.7)	(0.39–1.3)		(0.24–0.63)	(1.1–3.1)	(0.59–1.7)	(0.73–2.8)	(0.91–9.2)	(0.70–5.7)	(2.0–5.3)
0.77		2.9	2.4	I.8	2.6	VAD	4.7	2.5	3.6	7.4	5.1	8.4
(0.46–1.3)	(0.50–2.2)	(2.2–3.9)	(1.1–5.2)	(1.3–2.6)	(1.6–4.2)		(2.9–7.5)	(1.7–3.7)	(2.2–5.9)	(2.6–21.0)	(2.0–13.0)	(5.3–13.0)
0.16	0.23	0.62	0.52	0.39	0.55	0.21	VBMCP-	0.54	0.78	l.6		I.8
(0.081–0.33)	(0.10-0.50)	(0.36–1.1)	(0.23–1.2)	(0.21–0.70)	(0.32–0.95)	(0.13–0.35)	VBAD-B	(0.38–0.78)	(0.40–1.5)	(0.51–5.0)	(0.39–3.1)	(1.3–2.5)
0.30	0.42		0.95	0.71	0.1	0.39	I.8	٨D	4 . I	2.9	2.0	3.3
(0.16–0.57)	(0.19–0.90)	(0.71–1.8)	(0.43–2.1)	(0.42–1.2)	(0.60–1.7)	(0.27–0.58)	(1.3–2.6)		(0.79–2.6)	(0.96–8.8)	(0.74–5.5)	(2.3-4.8)
0.21	0.29	0.80	0.66	0.49	0.70	0.27	I.3	0.70	VDC	2.0	I.4	2.3
(0.10–0.42)	(0.12–0.70)	(0.54–1.2)	(0.27–1.6)	(0.27–0.90)	(0.36–1.4)	(0.17–0.45)	(0.66–2.5)	(0.38–1.3)		(0.80–5.2)	(0.63–3.2)	(1.2-4.4)
0.10	0.14	0.40	0.33	0.24	0.35	0.14	0.63	0.34	0.50	VDCR	0.69	
(0.032–0.33)	(0.039–0.52)	(0.14–1.1)	(0.089–1.2)	(0.080–0.74)	(0.11–1.1)	(0.047–0.38)	(0.20–2.0)	(0.1–11.0)	(0.19–1.3)		(0.48–0.99)	(0.37–3.5)
0.15	0.21	0.57	0.47	0.35	0.50	0.20	0.91	0.50	0.71	1 .4	VDR	1.7
(0.051–0.43)	(0.062–0.68)	(0.23–1.4)	(0.14–1.6)	(0.13–0.96)	(0.17–1.4)	(0.076–0.50)	(0.32–2.6)	(0.18–1.4)	(0.32–1.6)	(1.0–2.1)		(0.59–4.6)
0.091	0.13	0.34	0.29	0.21	0.30	0.12	0.55	0.30	0.43	0.87	0.61	VTD
(0.046–0.18)	(0.060–0.27)	(0.20–0.59)	(0.13–0.61)	(0.12–0.38)	(0.19–0.49)	(0.075–0.19)	(0.39–0.77)	(0.21–0.43)	(0.23–0.82)	(0.28–2.7)	(0.22–1.7)	
Note: Data pres Abbreviations:	Note: Data presented as OR (95% CI). Abbreviations: Cy-Dex, cyclophosphamide plus dexamethasone; Dex, dexamet Autor dovernothering and a construction plus dovernations of the dovernation	CI). Shamide plus dexal do plus docombis	methasone; Dex, d	Note: Data presented as OR (95% CI). Abbreviations: Cy-Dex, cyclophosphamide plus dexamethasone; NDMM, newly diagnosed multiple myeloma; ORR, overall response rate; PAD, bortezomib plus doxorubicin plus dexamethasone; RD, lenalidomide hue down the down th	MM, newly diagno	thasone; NDMM, newly diagnosed multiple myeloma; ORR, overall response rate; PAD, bortezomib plus doxorubicin plus dexamethasone; RD, lenalidomide ED shelidomide clue docometheration vAD, vincriteria clue doversition plue doversone, VAMCP VBAD, B, BCNUT clue vincriteria clue mechabilia clue	ma; ORR, overall r	esponse rate; PAC), bortezomib plus	doxorubicin plus	dexamethasone; R	D, lenalidomide
prednisone plus o VDR, bortezomit	ous devanted as they many only a pus occurrent pus devanted as the second and the second as the second of the second plus devanted as the second plus devanted of the second plus devanted of the second plus devanted plus devant	bortezomib; VD, ie plus lenalidomic	bortezomib plus d bortezomib plus d je; VTD, bortezom	The second encoding and only one second and the production of the second and the second as the second and second and the second as the second and the second as the second	by unangoring e pus dexamentas, hasone; VDC, bortezomib plus de thalidomide plus dexamethasone	s dexamethasone p	lus cyclophosphan	nide; VDCR, borte	erasonis, volus dexan	nethasone plus cy	clophosphamide pl	us lenalidomide;

Supplementary materials

Dovepress

VTDC	2.2	1.6	1.7	2.0	1.4	2.1	1.3	2.0	1.2
	(0.69–6.9)	(0.61-4.2)	(0.64–4.3)	(0.85-4.9)	(0.64–3.0)	(0.85–5.3)	(0.59–2.7)	(0.72–5.6)	(0.58–2.3)
0.46	Cy-Dex	0.73	0.75	0.93	0.63	0.97	0.58	0.91	0.52
(0.15–1.4)		(0.23–2.3)	(0.36–1.6)	(0.45–1.9)	(0.24–1.6)	(0.49–1.9)	(0.22–1.5)	(0.40–2.1)	(0.21–1.3)
0.63	1.4	Dex	1.0	1.3	0.86	1.3	0.79	1.3	0.72
(0.24–1.6)	(0.44-4.3)		(0.40–2.6)	(0.54–3.0)	(0.48–1.5)	(0.54–3.3)	(0.39–1.6)	(0.46–3.4)	(0.37–1.4)
0.60	1.3	0.97	PAD	1.2	0.84	1.3	0.77	1.2	0.70
(0.24–1.6)	(0.64–2.8)	(0.38–2.5)		(0.86–1.8)	(0.40–1.7)	(1.0–1.7)	(0.37–1.6)	(0.72–2.0)	(0.36–1.3)
0.49	1.1	0.78	0.81	TAD	0.67	1.0	0.62	0.98	0.56
(0.20–1.2)	(0.51–2.2)	(0.33-1.8)	(0.56–1.2)		(0.36–1.3)	(0.81–1.3)	(0.33–1.2)	(0.58–1.6)	(0.33–0.96)
0.72	1.6	1.2	1.2	1.5	TD	1.5	0.91	1.5	0.83
(0.34–1.6)	(0.61–4.2)	(0.65–2.1)	(0.58–2.5)	(0.79–2.8)		(0.78–3.1)	(0.63–1.3)	(0.64–3.3)	(0.60-1.2)
0.47	1.0	0.75	0.77	0.96	0.65	VAD	0.59	0.94	0.54
(0.19–1.2)	(0.52–2.0)	(0.30-1.8)	(0.60–1.0)	(0.74–1.2)	(0.33–1.3)		(0.30–1.2)	(0.60–1.5)	(0.30-0.98)
0.79	1.7	1.3	1.3	1.6	1.1	1.7	VBMCP-	1.6	0.91
(0.37–1.7)	(0.66–4.6)	(0.63–2.5)	(0.63–2.7)	(0.86–3.1)	(0.75–1.6)	(0.85–3.4)	VBAD-B	(0.70–3.6)	(0.65–1.3)
0.50	1.1	0.80	0.82	1.0	0.69	1.1	0.63	VD	0.57
(0.18–1.4)	(0.48–2.5)	(0.29–2.2)	(0.49–1.4)	(0.61–1.7)	(0.30–1.6)	(0.68–1.7)	(0.28–1.4)		(0.27–1.2)
0.87	1.9	1.4	1.4	1.8	1.2	1.9	1.1	1.7	VTD
(0.44–1.7)	(0.77-4.7)	(0.71–2.7)	(0.75–2.8)	(1.0-3.1)	(0.86–1.7)	(1.0-3.4)	(0.79–1.5)	(0.82–3.7)	

Note: Data presented as HR (95% CI).

Abbreviations: Cy-Dex, cyclophosphamide plus dexamethasone; Dex, dexamethasone; NDMM, newly diagnosed multiple myeloma; OS, overall survival; PAD, bortezomib plus doxorubicin plus dexamethasone; TAD, thalidomide plus doxorubicin plus dexamethasone; TD, thalidomide plus dexamethasone; VAD, vincristine plus doxorubicin plus dexamethasone; VBMCP-VBAD-B, BCNU plus vincristine plus melphalan plus prednisone plus dexamethasone; VTD, bortezomib plus thalidomide plus dexamethasone; VDD, bortezomib plus thalidomide plus dexamethasone; VTD, bortezomib plus thalidomide plus dexamethasone; VTDC, bortezomib plus thalidomide plus dexamethasone plus cyclophosphamide.

Table S3 Effect of induction	regimens for tra	nsplant-eligible	patients with NDMM on PFS

PAD	1.3 (1.1–1.6)	. (0.83– .5)	l.4 (0.81–2.3)	l.l (0.65–1.9)	1.8 (1.0–3.2)	0.90 (0.69–1.2)	I.2 (0.84–1.8)	I.0 (0.48–2.1)
0.74	VAD	0.84	1.0	0.82	1.4	0.67	0.91	0.74
(0.62–0.89)		(0.65–1.1)	(0.62–1.6)	(0.49–1.4)	(0.80-2.3)	(0.55–0.82)	(0.65–1.3)	(0.36–1.5)
0.89	1.2	VD	1.2	0.98	1.6	0.80	I.I	0.88
(0.65–1.2)	(0.92–1.5)		(0.80–1.8)	(0.63–1.5)	(1.0-2.6)	(0.58–1.1)	(0.71–1.7)	(0.45-1.7)
0.73	0.99 (0.83	VTD	0.81	Ì.3	0.66	0.90	0.73
(0.44–1.2)	(0.61–1.6)	(0.55–1.3)		(0.70-0.94)	(1.1–1.7)	(0.39–1.1)	(0.50-1.6)	(0.43-1.2)
0.90	1.2	1.0	1.2	VBMCP-VBAD-B	1.7	0.82	1.1	0.90
(0.53–1.5)	(0.73-2.0)	(0.66–1.6)	(1.1–1.4)		(1.4–2.0)	(0.47–1.4)	(0.60-2.1)	(0.52–1.5)
0.54	0.73	0.61	0.74	0.60	TD	0.49	0.67	0.54
(0.31–0.96)	(0.43-1.3)	(0.38–0.99)	(0.59–0.93)	(0.49–0.74)		(0.28–0.87)	(0.35–1.3)	(0.31–0.97)
Ì.I	1.5	I.3	1.5	1.2	2.0	TAD	1.4	i.i
(0.85–1.4)	(1.2–1.8)	(0.91–1.7)	(0.90-2.5)	(0.71–2.1)	(1.1–3.6)		(0.92-2.0)	(0.53-2.3)
0.81	Ì.I	0.92	Ì.I	0.9	1.5	0.73	Cy-Dex	0.81
(0.55–1.2)	(0.78–1.5)	(0.60–1.4)	(0.61–2.0)	(0.49–1.7)	(0.79–2.8)	(0.50–1.1)		(0.37–1.8)
1.0	1.4	I.I	1.4	I.I	1.8	0.91	1.2	VTDC
(0.48–2.1)	(0.67–2.8)	(0.58–2.2)	(0.81–2.3)	(0.65–1.9)	(1.0–3.3)	(0.44–1.9)	(0.56–2.7)	

Note: Data presented as HR (95% CI).

Abbreviations: Cy-Dex, cyclophosphamide plus dexamethasone; NDMM, newly diagnosed multiple myeloma; PAD, bortezomib plus doxorubicin plus dexamethasone; PFS, progression-free survival; TAD, thalidomide plus doxorubicin plus dexamethasone; TD, thalidomide plus dexamethasone; VAD, vincristine plus doxorubicin plus dexamethasone; VBMCP-VBAD-B, BCNU plus vincristine plus melphalan plus prednisone plus dexamethasone plus bortezomib; VD, bortezomib plus dexamethasone; VTD, bortezomib plus dexameth

Cancer Management and Research

Dovepress

Publish your work in this journal

a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.

open access journal focusing on cancer research and the optimal use of preventative and integrated treatment interventions to achieve improved outcomes, enhanced survival and quality of life for the cancer patient. The manuscript management system is completely online and includes

Cancer Management and Research is an international, peer-reviewed

Submit your manuscript here: https://www.dovepress.com/cancer-management-and-research-journal