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Abstract: Leishmaniasis is a vector-borne zoonotic disease caused by protozoan parasites of the 

genus Leishmania, which are responsible for numerous clinical manifestations, such as cutaneous, 

visceral, and mucocutaneous leishmaniasis, depending on the site of infection for particular 

species. These complexities threaten 350 million people in 98 countries worldwide. Amastigotes 

living within macrophage phagolysosomes are the principal target of antileishmanial treatment, 

but these are not an easy target as drugs must overcome major structural barriers. Furthermore, 

limitations on current therapy are related to efficacy, toxicity, and cost, as well as the length of 

treatment, which can increase parasitic resistance. Nanotechnology has emerged as an attractive  

alternative as conventional drugs delivered by nanosized carriers have improved bioavailability 

and reduced toxicity, together with other characteristics that help to relieve the burden of this 

disease. The significance of using colloidal carriers loaded with active agents derives from the 

physiological uptake route of intravenous administered nanosystems (the phagocyte system). 

Nanosystems are thus able to promote a high drug concentration in intracellular mononuclear 

phagocyte system (MPS)-infected cells. Moreover, the versatility of nanometric drug delivery 

systems for the deliberate transport of a range of molecules plays a pivotal role in the design 

of therapeutic strategies against leishmaniasis. This review discusses studies on nanocarriers 

that have greatly contributed to improving the efficacy of antileishmaniasis drugs, presenting 

a critical review and some suggestions for improving drug delivery.

Keywords: amphotericin B, drug delivery systems, drug targeting, human leishmaniasis, 

polymeric nanoparticle

Introduction
Leishmaniasis is a parasitic disease caused by Leishmania spp., transmitted to humans 

and animals by species of Phlebotomine and Lutzomyia sandflies. The Leishmania 

parasite has two distinct morphological forms in its life cycle: promastigote and 

amastigote. The sandfly-transmitted flagellated metacyclic promastigotes rapidly enter 

into cells of the mononuclear phagocyte system (MPS) as part of the normal phagocytic 

response. The phagosome formed around the parasites undergoes a process of matura-

tion and remodeling of the membrane and forms a new organelle, the parasitophorous 

vacuole (PV). Within the PV, the promastigotes differentiate into amastigotes, which 

multiply until eruption of the MPS cell (over a period of 4–6 days); the infection 

then spreads further. Having different tropism characteristics, parasites may infect 

either superficial cells or visceral cells. The parasite’s life cycle is completed when 

an uninfected sandfly takes a blood meal from the infected host. Because the infec-

tion involves several overlapping species and sandfly vectors, the taxonomy, ecology, 

epidemiology, and pathogenicity of the disease are complex.1,2
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Leishmaniasis has numerous clinical manifestations, 

depending on which it is classified into three types: 1) cuta-

neous leishmaniasis (CL), the most common; 2) mucocu-

taneous leishmaniasis (ML), which may disseminate to the 

mucosa; and 3) visceral leishmaniasis (VL), also known as 

kala-azar, the most serious form of the disease, which can 

be fatal if not properly treated and could be disseminated to 

several organs.3

Leishmania infantum is responsible for VL infections in 

Latin America and North Africa, while Leishmania donovani 

is responsible for VL infections in areas of the Indian sub-

continent and of East Africa. Although .90% of VL infec-

tions are concentrated in India, Brazil, Bangladesh, Nepal, 

and Sudan,4 a study shows a rapid increase in VL infections 

worldwide and climate change is expected to cause VL to 

severely impact Europe in the near future.5

Treatment failure and relapse rates are particularly high 

in cases of impaired cellular immunity, especially in human 

immunodeficiency virus (HIV) coinfection.6 HIV and 

Leishmania infection mutually reinforce one another, and 

HIV patients are more likely to develop VL (due to reacti-

vation of a dormant infection or clinical manifestation after 

primary infection).

Current chemotherapeutic treatments are successful, to 

some extent, and the major targets pursued by associations 

such as the Drugs for Neglected Diseases initiative (DNDi) 

and the World Health Organization (WHO) in conjunction 

with foundations and pharmaceutical companies, may chiefly 

be summarized as to develop an oral, safe, effective, low-

cost, and short-course treatment for VL and to develop novel 

treatment regimens for patients coinfected with HIV and VL. 

Furthermore, as for all neglected tropical diseases, additional 

control mechanisms and tools are necessary, such as drugs, 

vaccines, reliable diagnostics, vector control agents, and 

control strategies, to eradicate infection.7

Considering the small number of chemotherapeutic 

agents or innovative antileishmanial medicines that are avail-

able, in parallel with the search for more efficient and less 

toxic antileishmanial drugs, including the development of a 

successful vaccine, the push to design stable nanotechnology-

based drug delivery systems (DDSs) is likely to be the main 

strategy in fighting the disease. The use of colloidal carriers 

loaded with active agents is a clear-cut approach, thanks to 

the physiological uptake route of intravenous (iv) adminis-

tered nanosystems (the MPS cells).8 Nanosystems can thus 

lead to high drug concentrations in the intracellular MPS-

infected cells and in the PV; colloidal carriers also protect 

the drug against in vivo degradation.

This review seeks to give an overview of the current 

therapeutic protocols and new approaches involved in the 

search for safer and more active drugs, as well as the strate-

gies employed for choosing appropriate delivery systems to 

produce the next-generation agents for treating VL. Although 

the role of nanotechnology in DDSs for leishmaniasis has 

been reviewed elsewhere,9,10 this review also highlights the 

limits and issues involved in applying modern techniques and 

illustrates the most promising results. In particular, the dif-

ferent strategies, such as their potential, cost, feasibility, and 

limits, were critically evaluated and commented. As in vivo 

studies are imperative for estimating the clinical feasibility 

of a DDS, particular emphasis was given to approaches 

reporting preclinical/clinical data and/or to those showing 

research progress during recent years.

Although alternative immunotherapeutic strategies are 

potentially advantageous, these strategies and nanodevices 

that can be used as promising vaccine carriers were not 

discussed here.9,11

Current chemotherapy
The first therapeutic options were introduced in the early 

1900s for mucocutaneous form, and other treatments have 

been added over the last decade; however, they are not devoid 

of limitations relating to efficacy, toxicity, cost, length of 

treatment, increasing parasitic resistance, and difficulty 

of administration, making treatment a complex issue. The 

principal drugs currently available are antimonials, amphot-

ericin B (AmpB), paromomycin (PM), and miltefosine (MF). 

Table 1, taken from the 2010 WHO report, is presented to 

give a clear view of treatment regimens and their costs (report 

of a meeting of the WHO Expert Committee on the Control of 

Table 1 Price per visceral leishmaniasis treatment

Compound Treatment 
regimen (days)

Drug costa

L-AmpB 10 mg/kg 1 126
L-AmpB 20 mg/kg 2–4 252
AmpB deoxycholate 1 mg/kg 30 20
MF 100 mg/day 28 66–150
PM 15 mg/kg/day 21 15
SSG 20 mg/kg/day 30 56
MA 20 mg/kg/day 30 59
L-AmpB 5 mg/kg + MF 100 mg/day 8 88–110
L-AmpB 5 mg/kg + PM 15 mg/kg/day 11 79
MF 100 mg/kg + PM 15 mg/kg/day 10 30–61
(SSG 20 mg + PM 15 mg)/kg/day 17 44

Note: aFor a patient weighing 35 kg, cost in US dollars (January 2010).
Abbreviations: AmpB, amphotericin B; L-AmpB, liposomal AmpB; MA, meglumine 
antimonate; MF, miltefosine; PM, paromomycin; SSG, sodium stibogluconate.
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Leishmaniases, Geneva, March 22–26, 2010). Several recent 

studies clearly describe the various combination approaches 

that have been used, in the search for the optimal and most 

cost-effective strategy, not only to treat patients but also to 

control infections in countries including Morocco, India, 

Sudan, and Nepal.12–16

Pentavalent antimonials have been used for the past 

several decades to treat VL. At present, two types of organo-

antimony (V) complexes are commercially available: 

Glucantime® (meglumine antimoniate [MA]) and Pentostam® 

(sodium stibogluconate [SSG]). These are the standard first-

line medicines in most parts of the world (.90% overall 

cure rate). Initial treatment of VL should be based on a daily 

injection of 20 mg/kg body weight of Sb(V), and injections 

are usually given for 28–30 days. The cost for the course of 

treatment is ,60 US dollars (Table 1).

The mechanism of action of these compounds, in one 

model, is based on the reductive bioconversion of Sb(V) to 

Sb(III), by the parasite or by the infected host cells, to create 

an active agent Sb(III)–trypanothione conjugate.17 In a 

second model, Sb(V) is the active species, which directly 

exerts activity against Leishmania. Sb(V) is able to act 

selectively against the topoisomerase of the promastigote 

rather than against that of the monocyte.18 Sb(V) is also 

reported to bind ribonucleosides in an environment similar 

to that of lysosomes.19

Unfortunately for first-line antimonials, the development 

of resistance is a primary barrier to successful treatment. The 

resistance mechanism has been found to be multifactorial and 

is principally due to reduced Sb(III) uptake or/and increased 

cell efflux/sequestration through an abnormally high level of 

trypanothione and increased expression of the metalloid-thiol 

pump.20 Resistance to therapeutics has also been imputed to 

different efflux pumps or ATP-binding cassette transporters, 

such as P-glycoprotein and multidrug resistance protein.21

AmpB is a natural antibiotic with a macrolide polyene 

structure and significant antifungal and antiparasitic activi-

ties. Currently, AmpB is widely used to treat systemic 

Candida albicans and Aspergillus fumigatus infections.22 

The mechanism of action of AmpB is based on its binding 

to the ergosterol in the fungus or parasite rather than to 

human cholesterol. In general, AmpB binds to ergosterol 

through a hydrophobic interaction, in a series of events that 

eventually lead to pore formation in the parasite membrane.23 

In clinical trials in India, AmpB formulated with deoxy-

cholate (Fungizone®) was given daily or on alternate days by 

iv slow infusion at a dose of 0.75–1.0 mg/kg/day for 15–20 

doses and was 99% effective.24

To reduce the severe side effects, which include nephro-

toxicity and hematotoxicity, different formulations have been 

developed and are currently available on the market under 

the trade names Abelcet®, Amphocil®, Amphotec® (lipid 

complexes), AmBisome® (liposomes), and Ampholip®.

Used in India and Europe, all of these formulations were 

found to be effective; the liposomal formulation, in which 

the drug is intercalated in a lipid membrane consisting of 

hydrogenated soy phosphatidylcholine (PC), cholesterol, 

and distearoylphosphatidylglycerol, is the most widely used 

against VL. Given at a dose of 3–4 mg/kg/day, for a total dose 

of 15–24 mg/kg, administered to various regimens, AmpB 

liposomal formulation had 90%–98% efficacy in southern 

Europe.25 Shorter treatments are also effective; in India, a 

single-course therapy of 10 mg/kg was found to give a 98% 

cure rate.26 The principal benefit of AmBisome is its reduced 

toxicity to mammalian cells, allowing higher doses to be 

administered, rather than any increase in its antileishmanial 

activity per se. The major drawback of AmBisome is its high 

cost (126–250 US dollars) vs Fungizone (30 US dollars for a 

30-day course of treatment), putting it out of patients’ reach 

in some countries; it is unclear whether this limitation is 

applicable to other geographical areas. Nevertheless, WHO 

and Gilead Sciences have signed agreements to donate hun-

dreds of vials of liposomal AmpB, extending their previous 

agreement until 2021.195 The new 5-year collaboration, whose 

estimated value is 20 million US dollars, includes funding 

that will allow populations affected by VL to benefit from 

enhanced access to diagnosis and treatment.

In a study investigating the extent to which the side effects 

of AmpB were reduced by the use of a lipid emulsion, a pre-

formed AmpB lipid emulsion (ABLE) was compared with 

Fungizone and AmBisome in terms of safety and efficacy.27,28 

Indian clinical trials showed that ABLE was a well-tolerated, 

efficacious, and affordable lipid formulation. In a recent study 

on a population of 500 patients, the efficacy of single day 

infusions of ABLE at 15 mg/kg/day was satisfactory, with 

an initial cure rate of 95.9%, compared to 100% for AmBi-

some. The proportion of patients with no clinical signs and 

symptoms of relapse of kala-azar during 6 months follow-up 

was 85.9% in the ABLE group compared to 98.4% in the 

AmBisome group.28

Resistance to AmpB has been induced in vitro, and a 

study has shown it to be related to the increased cell mem-

brane fluidity occurring when ergosterol is modified to its 

precursor cholesta-5,7,24-trien-3β-ol.29 The modification 

reduced AmpB’s attachment to sterol-modified membranes. 

In clinical isolates of L. donovani, a multifactorial response 
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was observed, in which altered membrane composition, 

ATP-binding cassette transporters, and an upregulated 

thiol metabolic pathway played roles in conferring 

AmpB resistance.30

PM (aminosidine) is an aminoglycoside antibiotic, used 

to treat intestinal infections such as amebiasis and cryptospo-

ridiosis, which was rediscovered as an antileishmanial agent. 

PM has been shown to be effective in Indian VL: a dose of 

15 mg/kg for 21 days administered iv gave a cure rate of 

93%–95%. The mechanism of action of PM in Leishmania 

is not precisely known, but protein synthesis machinery 

has been proposed as the target. Although there are no 

known clinical isolates of PM-resistant strains, a resistant 

L. donovani strain was readily generated experimentally: 

ribosomal proteins were found to be upregulated.31 PM must 

be administered by the parenteral route; however, because 

it undergoes rapid clearance after iv administration, being 

excreted in the urine upon glomerular filtration, treatment 

requires multiple dosages. Adverse effects such as nephrotox-

icity, ototoxicity, and hepatoxicity have been reported.32

MF (hexadecylphosphocholine) was the first, and still 

the only, orally available drug for the treatment of VL.33 

MF belongs to a class of alkylphosphocholine drugs initially 

developed in the 1980s to treat solid tumors. Treatment with 

150 mg/day per .50 kg body weight for 28 days in immu-

nocompetents gave a cure rate of 94% in India and ~90% 

in Ethiopia.34 Its antileishmanial activity involves action on 

several targets; however, no mechanism has been identified 

definitively: alkyl phospholipid metabolism, glycosylphos-

phatidylinositol anchor biosynthesis, signal transduction, 

mitochondrial dysfunction, and immunomodulatory effects 

might be involved.35 Whatever its indication of use, pharma-

covigilance for significant safety issues will remain a priority. 

Furthermore, MF should not be administered in pregnancy 

due to its teratogenicity.33

In India, post-kala-azar dermal leishmaniasis (PKDL) is a 

sequel to VL occurring within a year or up to 32 years after VL 

has been cured; a study suggests that oral MF for 2–3 months 

could be considered as a treatment of choice for Indian 

PKDL.36 MF has a median half-life of ~152 h, which might 

encourage the development of clinical resistance. Furthermore, 

being an oral agent, its improper use in endemic countries 

would increase the risk of resistance and would spread resistant 

parasites where the prevalence of infection is high.37

The risk of emergence of drug resistance in the field is 

exacerbated by the relatively easy production of in vitro 

resistant Leishmania clones, combined with the occurrence 

of relapses in immunocompetent patients, the presence of 

HIV/VL coinfections, and high levels of anthroponotic 

transmission in both Africa and India.38 Combination treat-

ment has the potential advantages not only of shortening the 

treatment duration (thus increasing compliance) and reducing 

the overall drug dose (thereby reducing toxic effects and 

cost) but also of reducing the probability that drug-resistant 

parasites are selected, and thus prolonging the effective life 

of available medicines. Several trials of combinations have 

shown favorable results.39,40 The combination of PM and 

antimonials produced a higher cure rate in VL patients in a 

trial in Bihar, than did antimonials alone, in which the lack 

of response was common.41

Many other compounds are considered to be the second-

line drugs for leishmaniasis, including pentamidine and the 

antifungal azole fluconazole, as well as fexinidazole and oleyl 

phosphocholine (OlPC), with approval status at different 

stages. The diguanidine-based compound pentamidine was 

initially developed as a synthetic analog of insulin. Pentami-

dine has shown high activity against the acute phase of human 

African trypanosomiasis;42 it has attracted renewed interest 

for its use as secondary prophylaxis in HIV-coinfected VL 

patients.43 The drug is given intramuscularly or, preferably, 

by iv infusion. However, pentamidine is now no longer 

recommended as a treatment option for VL. High doses are 

needed to achieve a cure, and irreversible diabetes has been 

reported in 4%–12% of cases.44

The primary action of pentamidine against Leishmania is 

not clearly understood, but the drug’s structural characteristics 

and experimental results suggest that the active transport 

system and the mitochondria are the final sites of inhibi-

tion. A series of experiments showed that it acts as an 

inhibitor of polyamine uptake and the arginine transporter,45 

while other findings indicate the mitochondrial replica-

tion system as possible target (through inhibition of 

topoisomerase II activity).46 Resistance to pentamidine in 

Leishmania has been associated with changes in the concen-

trations of polyamines and arginine within the cell.47

In collaboration with Sanofi, DNDi recently developed 

fexinidazole, a nitroimidazole derivative DNA synthesis 

inhibitor, for the oral treatment of human African 

trypanosomiasis. Fexinidazole has shown potent activity 

against L. donovani in vitro and in vivo in a VL mouse model.48 

A Phase II proof of concept study evaluating the efficacy of 

fexinidazole for the treatment of primary VL was initiated in 

November 2013 in Sudan (FEXI VL 001; NCT01980199); 

this open-label trial was designed to enroll 66 patients. 

DNDi terminated this trial in September 2015 due to lack of 

efficacy. However, the combination of fexinidazole and MF 
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is still in trial.196 Other members of the nitroimidazole class 

of molecules have emerged, and novel products are currently 

in advanced preclinical evaluations.49,50

Nanostructured anti-Leishmania 
delivery systems
The use of DDSs stands as a complementary strategy for 

developing new treatments and combination therapies for 

VL.9 An appropriate DDS can be used in antileishmaniasis 

therapy to produce the necessary high drug concentra-

tion in the intracellular phagolysosome or PV, where the 

Leishmania is hosted. The major challenge in using a small 

drug is the difficulty of enabling it to penetrate inside the 

macrophages: multiple membranes must be traversed by the 

therapeutic agent to reach parasitic target. The nonspecificity 

to  macrophages of current treatments leads to their accumula-

tion in normal, healthy tissues, with prevalent toxicity as side 

effects. Improving the safety/efficacy ratio by delivering a 

high drug concentration at a controlled rate, using an appro-

priate targeting strategy, is an attractive goal that has been 

vigorously pursued.

DDS may also overcome problems relating to the low 

water solubility of drugs and could protect the active mol-

ecule from degradation in biological fluids. Furthermore, 

alternative routes to parenteral drug delivery (eg, nasal, 

pulmonary, and topical) that can improve patient compliance 

are achievable with appropriate DDS. In particular, devel-

oping oral formulations of current chemotherapy options is 

the most attractive prospect, although the lack of treatment 

supervision may lead to patients failing to complete the full 

course of treatment. This is a critical issue, as it may facilitate 

the development of drug resistance in Leishmania. Finally, 

novel materials that are able to become “smart”, capable 

of responding to the physiological environment, can also 

considerably improve drug availability.51

The combination of antileishmanial drugs with nanocar-

riers is emerging as a promising approach, because the tra-

ditional nanocarriers (liposomes and polymer nanoparticles) 

are readily internalized by macrophages in the liver and 

spleen, releasing the drug inside the cell and thus leading 

to a high local concentration, and ultimately killing the 

protozoa. In this connection, the main strategy in treating 

Leishmania is to target the drugs directly to macrophages, 

using appropriate nanosized delivery systems.52 A targeted 

approach entailing modification of the nanocarrier surface 

will also increase parasite selectivity.

Another advantage is the possibility of packing multiple 

payloads in a single carrier, providing a combination therapy 

that may have a synergist effect (overcoming resistance). 

However, the sequencing and scale-up of approaches of this 

type are still very challenging.

The following sections review the recently reported 

research concerning anti-VL nanotechnology, with special 

emphasis on the use of liposomes, polymers, polysac-

charides, metal nanoparticles, and carbon-based materials 

loaded with chemotherapeutics currently used in VL treat-

ment (a schematic presentation of different delivery systems 

is given in Figure 1). Since AmpB is currently the most 

potent antileishmanial agent, the majority of efforts in 

nanotechnology have been focused on this drug. For this 

reason, we pay attention and detail on innovative AmpB 

delivery systems. Table 2 summarizes the principal charac-

teristics and the results obtained.

In particular, one of the most challenging achievements 

is the oral administration of AmpB. This is limited because 

AmpB is absorbed by passive diffusion through the intes-

tinal membrane. However, the process of passive diffusion 

is dependent on drug’s molecular weight and is efficient 

for drugs up to molecular weight 500 Da; efficiency then 

decreases at higher molecular weights. AmpB has a molecu-

lar weight of 924.08 Da, and thus, passive diffusion may be 

expected to be very low.53 Moreover, AmpB is relatively 

unstable at the acidic pH of the gastrointestinal tract, and 

upon oral administration might be degraded prior to absorp-

tion. In addition, it undergoes extensive P-gp efflux from 

the enterocytes, which further limits its oral bioavailability. 

Taken together, these factors lead to very low oral bioavail-

ability of AmpB (~0.3% of the administered dose).

Several nanosystems have also been developed to improve 

the bioavailability of AmpB (for an exhaustive review refer 

Torrado et al54), and some of them, related to VL treatment, 

are reported in the following sections. These delivery systems 

may have several advantages, as they might 1) enhance AmpB 

dissolution and also protect it from the acidic gastric environ-

ment, 2) increase intestinal permeability using either delivery 

systems of an appropriate size to enhance lymphatic uptake or 

carriers able to cross the gastrointestinal barrier, and 3) prolong 

gastrointestinal transit time through the use of bioadhesive 

systems. The biodistribution of AmpB is dependent on the 

type of formulation, and there is a weak correlation between 

drug plasma and organ levels.55 For this reason, AmpB plasma 

levels must be considered in combination with target tissue 

pharmacokinetics. An oral formulation would be of benefit to 

VL patients, but several issues remain to be resolved. 

For completeness, “Novel products with anti-leishmanial 

activity combined into nanocarriers” section comprises 
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DDS loaded with different products with antileishmaniasis 

activity.

Currently, all these experimental compounds, as well 

as the majority of nanostructured systems, have been tested 

in vitro and in animal (mice or hamsters) models. Thus, a 

clear comparison with currently available medicines has to 

be carefully pondered.

Liposomes
Liposomes are small artificial vesicles of spherical shape that 

can be created from cholesterol and phospholipids. Due to 

their biocompatibility, stability, ease of scaling up, and ability 

to carry various molecules as cargo, liposomes are currently 

used as DDS in a range of different treatments. Most lipo-

somal formulations available on the market target cancers. 

Information about this application can be find elsewhere.56

The reticuloendothelial system (RES) is the main site of 

accumulation of liposomes following their systemic admin-

istration, and in the RES, liposomes are mainly cleared by 

resident macrophages. Primary organs associated with the 

RES include the liver, spleen, kidney, lungs, bone marrow, 

and lymph nodes.

The best clinical results in VL treatment, as reported 

earlier, have been achieved with the liposomal formulation 

AmBisome, which allows to load an high concentration of 

AmpB (drug loading [DL] =12.5%) (drug weight/[drug + 

liposomal components] weight) and represents the gold 

standard for novel delivery systems. Over recent years, lipid 

complex formulations of AmpB have been proposed,57 

showing interesting in vitro activity but less efficient than 

AmBisome in in vivo evaluations. More recently, lipo-

somal formulations in which cholesterol was replaced by 

ergosterol, which constitutes 50% molarity of total lipids 

(Kalsome™ 10; Lifecare Innovations Ltd., Gurugram, 

India), have been evaluated.58,59 This change followed the 

in vitro observation that exogenous cholesterol, if added to 

the culture, enhanced the growth of Leishmania promastig-

otes; thus, the absence of cholesterol might make the drug 

more suitable for clearing parasites. Large multilamellar 

vesicles of ~1,000 nm in diameter were obtained and were 

kept separately by sonication. In vivo results confirmed 

Kalsome™ 10 efficacy in a murine VL model without major 

toxic effects. More recently, a possible cell death mecha-

nism in Kalsome™ 10-treated L. donovani was proposed.60 

Interestingly, the component of the liposomal formulation 

induced apoptotic-like cell death in L. donovani parasites, 

demonstrating its antileishmanial function.

A number of older anti-Leishmania antimonials, formu-

lated in liposomes, have been investigated, starting in 1977.61 

Liposomes with different surface charge (anionic and neu-

tral) were subsequently tested,62 but only recently, a robust 

effective treatment against infection with SSG-resistant 

Leishmania parasites in mice has been demonstrated, using 

cationic PC–stearylamine liposomes. When the charged 

Figure 1 Schematic representation of different classes of antileishmanial nanometric delivery systems.
Note: The character size (also bold type) evidences the number of publications related to each system.
Abbreviations: PCL, poly(caprolactone); PGA, poly(glycolic acid); PLA, poly(lactic acid); PLGA, poly(lactide-co-glycolide).
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phospholipids were encapsulated in liposomes, their binding 

to macrophages was shown to be greatly enhanced.63

To improve liposome stability and enhance blood cir-

culation time, sterically stabilized liposomes have been 

introduced: the addition of polyethylene glycol (PEG) to the 

liposome surface slows removal from the blood, improving 

half-life (eg, Doxil®).64 PEGylated and uncoated liposomes 

bearing MA in VL-infected dogs were compared;65 the 

former were more effective, although a mixed formulation 

of PEGylated and conventional liposomes showed greater 

activity, than either single formulation, for parasite elimina-

tion in the spleen and bone marrow.

Other drugs commonly used as anticancer agents 

have been encapsulated in sterically stabilized liposomes: 

camptothecin66 and, more recently, doxorubicin have been inves-

tigated to integrate MA treatment, so as to decrease the resis-

tance of Leishmania against currently available drugs.67

From the toxicology standpoint, liposome-mediated 

delivery leads to greatly increased and prolonged concentra-

tions of antileishmanial drugs in the liver and spleen. This is 

an advantage in a disease such as VL, where macrophages are 

the target of the therapy, but the macrophages might already 

be impaired by the infection, and high tissue accumulation 

may lead to severe side effects.68

In a study aiming to improve the oral bioavailability 

of AmpB, the antileishmanial activity of two nanocarriers 

was compared: soya lecithin (Lec)-based biodegradable 

nanocarriers and liposomes. The surface of the Lec–AmpB 

nanoparticles was modified with PEG and Tween 20 to 

further improve their stability and biological activity. PEG 

nanoparticles showed more promising antileishmanial 

activity, possibly because of their better interaction with 

biological systems and membranes.69

To further increase the specificity of action to the dis-

eased area, liposomes decorated with specific ligands have 

also been developed. This strategy offers a vast potential 

for site-specific delivery of drugs to designated cell types 

or organs, which selectively express or overexpress specific 

ligands (eg, receptors and cell adhesion molecules) at the site 

of the disease.70 However, their real therapeutic advantage 

over nontargeted liposomes is still debatable, with conflicting 

results being reported; no targeted liposomal product has yet 

reached the market.

The targeting approach was applied to liposome- 

encapsulated AmpB, by decorating the particle surface with 

the naturally occurring macrophage activator tetrapeptide, 

tuftsin (Thr–Lys–Pro–Arg). Increased in vivo antileish-

manial activity vs standard liposomes was observed and T
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appeared to be due both to improved drug tolerance of the 

liposomal formulation (like that of AmBisome but with a 

DL of 2%) and to the increased specific uptake of tuftsin by 

the macrophages.71

C-type lectin receptors (CLRs) are highly conserved 

pattern recognition receptors with carbohydrate recogni-

tion domains that bind sugars (eg, mannose, fucose, and 

N-acetylglucosamine), present on the surface of many 

pathogens.72 In particular, the mannose receptor (also called 

CD206) was the first reported member of a family of four 

endocytic CLRs receptors; it plays a role in the clearance 

of endogenous glycoproteins and in pathogen recognition/

antigen presentation. The targeting of pattern recognition 

receptors on macrophages offers the advantage of triggering 

specific signaling pathways, thus inducing a tailored and 

robust immune response. Antileishmanial drugs have been 

encapsulated in mannosylated or fucosylated liposomes to 

target the corresponding receptors expressed by macrophages; 

they demonstrated successful treatment of experimental leish-

maniasis in a hamster model.73 Furthermore, a biodistribution 

study clearly showed that uptake of mannosylated liposomes 

in the liver and spleen was higher than either free AmpB 

solution or cationic liposomal formulation, indicating that 

active targeting to the RES occurred.73

Nanoemulsions (Nes) and niosomes
NEs are mixtures of two normally immiscible liquids that 

are stabilized by using a surfactant (emulsifier). The addition 

of surfactant is critical for the creation of small droplets 

(~100 nm) as it decreases the interfacial tension. The emul-

sifier also plays a role in stabilizing NE through repulsive 

electrostatic interactions and steric hindrance.74 Lipid AmpB 

formulations potentially suited to oral administration have 

been developed based on mono- and diglycerides with or 

without a lipophilic derivative of vitamin E, d-α-tocopheryl 

polyethylene glycol 1000 succinate (TPGS), as an alternative 

to the less temperature-stable monoglyceride. The formula-

tion, named ICo-010, retained AmpB in simulated gastric and 

intestinal fluids and exhibited a significant antileishmanial 

activity in a VL-infected murine model.75,76 ICo-010, cur-

rently being developed by iCo therapeutics, was granted 

orphan drug status by the FDA, but recent data from the 

company website do not show any further improvement from 

preclinical evaluations.197

A NE loaded with doxorubicin (NE–DOX) was fur-

ther grafted with phosphatidylserine (PS) to enhance the 

cellular uptake.77 There was significant improvement in 

activity with PS–NE–DOX on the spleen parasitic burden 

in Leishmania-infected hamsters, in comparison to uncoated 

NE or free drug.

Niosomes are vesicles consisting of nonionic surfactants 

with cholesterol. These are biodegradable, somewhat less 

toxic and more stable than liposomes, and relatively low in 

cost, making them an alternative to liposomes. These particu-

lar characteristics make niosomes promising candidates for 

commercial manufacturing.78 In an early study on delivery 

systems for VL, niosomal SSG was found to be more effec-

tive than liposomal vesicular formulations or than free drug, 

against experimental murine VL.79 More recently, the effect 

of itraconazole niosomes on the in vitro susceptibility of 

L. tropica was demonstrated.80 Entrapment efficacy of AmpB 

into niosomes has been also reported.81

Lipid cochleates
An interesting approach to prepare lipid systems for oral 

delivery is that of nanocochleates, cigar-shaped nanostruc-

tures composed of negatively charged lipid bilayers (usually 

PS) bridged by a divalent cation, normally calcium.82 Calcium 

induces dehydration of the interbilayer domains, and conse-

quently, the amount of water in this region is low, allowing 

better encapsulation efficiency of hydrophobic drugs, which 

have a high affinity for the hydrophobic interior of the lipid 

bilayers. AmpB is an ideal model for hydrophobic drugs. 

Nanocochleates containing AmpB or AmpB deoxycholate 

were in vitro tested against L. chagasi, and results showed 

similar activity.83,84 Lipid cochleates containing both AmpB 

and MF were also produced, and the incorporation stability 

was estimated.85 Some clinical trials for VL were initiated on 

the basis of the results obtained with an oral nanocochleate 

formulation of AmpB (Bioral® Amphotericin B), which 

reached Phase I development in the USA for the treatment of 

mycoses, but nowadays, the research appears to be discontin-

ued. However, Matinas BioPharma is developing MAT 2203, 

comprising nanocochleates of AmpB for oral administration 

in treating asperigillosis.198

Solid lipid nanoparticles (SLNs)
SLNs are nanospheres made from solid lipids, with size in the 

range of 50–1,000 nm. They consist of a solid lipid matrix, 

ie, glycerides, fatty acids, and waxes, stabilized by physi-

ologically compatible emulsifiers, such as phospholipids, 

bile salts, Tween, polyoxyethylene ethers, and polyvinyl 

alcohol. The lipids used in their production are solid at 

room temperature, and most of them have approved status, 

eg, Generally Recognized as Safe (GRAS), due to their 

low toxicity.86
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Chitosan-coated SLNs loaded with AmpB have been 

developed for immunoadjuvant chemotherapy of Leish-

mania infections. The in vitro antileishmanial activity 

revealed that chitosan-coated AmpB–SLNs were markedly 

more potent than commercial formulations (AmBisome 

and Fungizone). Furthermore, cytotoxic evaluation in 

macrophages and acute toxicity study in mice evidenced a 

better safety profile of the formulation compared to mar-

keted products.87

More recently, PM was incorporated into SLN made of 

stearic acid and Tween 80, and both characterization and 

in vivo data were reported.88,89 As with liposomes, it has 

been attempted to increase the uptake by macrophages by 

targeting to mannose receptors. Mannose-coated lipid nano-

particles of AmpB showed higher liver uptake and promising 

antileishmanial activity.90 Interestingly, SLN can also be 

used to improve oral administration protocols (AmbiOnp 

formulation),91 although this has not yet been applied in VL 

therapy. The loading of AmpB in the nontoxic superaggre-

gated form results in enhancing the oral bioavailability and 

increasing their safety profile.91

To reduce the side effects that limited the use of MF, 

delivery in lipid nanoparticles has been proposed.92 MF 

formulations were prepared using glycerin, cottonseed oil, 

oleic acid, cholesterol, and the emulsifiers, such as egg PC 

and Tween 80. A reduction in epithelial irritation in the gas-

trointestinal tract was observed in an in vivo study performed 

in Balb/C mice. Compared to the free drug, the formulation 

reduced in vitro hemolytic action and cytotoxic activity 

against macrophages and resulted in comparable level of 

in vitro cytotoxicity against promastigote and amastigote 

forms of L. chagasi.92

Polymer nanoparticles
Polymer nanoparticles may be of value in treating infec-

tious diseases such as leishmaniasis, since their small 

size enables them to pass through biological barriers 

upon parenteral administration, also enhancing cellular 

uptake and enabling therapeutic agents to be delivered 

to infected tissues.10 Polymer nanocarriers can be modu-

lated to give them advanced physicochemical properties, 

such as increased bioavailability, and precisely defined 

biodegradability, affording release of the encapsulated 

drug. Polymer system may consist of either a polymeric 

matrix (nano- or microspheres) or a reservoir system 

(nano- or microcapsules). Several different synthetic 

polymers can be used to prepare nanoparticles, includ-

ing poly(lactic acid) (PLA), poly(glycolic acid) (PGA), 

poly(lactide-co-glycolide) (PLGA), poly(caprolactone) 

(PCL), and poly(cyanoacrylate) (PCA).93 However, natural 

protein polymers, such as albumin and gelatin, and polysac-

charides, such as chitosan, alginate, and starch, have also 

been described as candidates for the delivery of particle-

based antileishmanial systems.94 Other polymers, such as 

PEG and N-(2-hydroxypropyl)methacrylamide (HPMA), 

have been used predominantly to produce polymer–drug 

conjugates in the form of macromolecular prodrugs. In this 

approach, the release mechanism entails splitting the linker 

between the polymer and the bioactive agent.

Concerning synthetic polymers, the first studies involved 

the use of PCA and PCL, loading different drugs with inter-

esting results.95 However, in recent years, PLGA has been 

one of the most attractive polymeric candidates, used to 

fabricate devices for drug delivery and tissue engineering 

applications.96 Currently, 15 FDA-approved PLGA-based 

drug products are available on the US market.199

Different research groups have investigated AmpB-

loaded PLGA nanoparticles. In particular, the efficacy of 

PLGA nanoparticle-encapsulated AmpB was compared 

to free drug or marketed formulations against intracellular 

L. infantum amastigotes as well as promastigotes. One 

nanoparticle formulation was more effective than AmBi-

some and, at the same time, less cytotoxic and hemotoxic.97 

Although very promising, especially as an antifungal agent, 

no further in vivo clinical applications have since been 

reported.

AmpB has been entrapped in PLGA nanoparticles to improve 

its oral bioavailability and to reduce its nephrotoxicity.53 

The addition of the stabilizer TPGS permitted the forma-

tion of stable nanoparticles of ,200 nm in diameter. It is 

worth remembering that TPGS, reported as a P-gp efflux 

inhibitor, is currently approved by the FDA for use as an 

excipient in various nanoparticle formulations and also as a 

solubilizing and emulsifying agent for poorly soluble com-

pounds to improve their absorption and bioavailability.98 The 

AmpB–PLGA formulation containing TPGS reduced drug 

nephrotoxicity on administration by either the oral route 

or the iv route compared with Fungizone. The relative oral 

bioavailability of AmpB was found to be about eight times 

higher when it was formulated in polymer nanoparticles 

than when it was administered as Fungizone.99 Further 

study on in vivo activity has only been reported for pulmo-

nary aspergillosis.100

MF loaded in PLGA–PEG nanoparticles also showed a 

fourfold increase in in vitro activity and in in vivo antileish-

manial efficacy and bioavailability vs free drug.101
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Lipid–polymer hybrid nanoparticles (LPNPs) loading 

AmpB with the anionic core composed of PLGA polymer and 

TPGS surfactant and the shell made of cationic stearylamine 

lipid have also been prepared.102 Stearylamine was selected 

for its cationic nature, biocompatibility, benign antiprotozoal 

activity, and immunopotentiation strength. LPNPs containing 

an interesting amount of AmpB (DL 9.8%, w/w) were 

reported. Receptor-mediated LPNP identification ensures 

considerable uptake into the macrophage cells and RES 

organs (spleen, liver, and so on), while uptake by the kidneys 

is very low. Furthermore, the positive charge of LPNPs allows 

them to bind to negatively charged sialic acid molecules on 

the macrophage surface, resulting in adsorption-mediated 

endocytosis. In vivo experiments demonstrated significantly 

stronger parasite growth inhibition (89.4%) in patients treated 

with AmpB–LPNPs than in those treated with carrier without 

stearylamine (63.6% inhibition), whereas 69.3% parasite inhi-

bition was observed with the AmBisome formulation.102

With regard to the active targeting approach, mannose-

bearing PLGA nano/microparticles have been designed to 

further improve macrophage targeting of antileishmanial 

agents. Mannose-grafted PLGA nanoparticles, with and 

without a PEG spacer, are reported to target AmpB;103 the 

presence of PEG spacer resulted in a more efficient inhibition 

of parasites in comparison to both the one without spacer 

and the free drug. Furthermore, both drug–polymer inter-

action and drug miscibility in the polymer affect the drug 

content of polymer nanoparticles. The PLGA hydrophobic 

core facilitates the loading of amphiphilic AmpB. The 

polymer slow precipitation, due to the slow rate of solvent 

removal, allowed more time for drug molecules to partition 

into the aqueous phase, leading to low % encapsulation 

efficiency. However, in the engineered version of polymer 

nanoparticles, in which mannose was directly linked to 

PLGA (M–PNPs) or to the edge of PEG (M–PEG–PNPs), 

an increased entrapment efficiency was observed, probably 

due to the higher drug–polymer miscibility, permitting the 

enhanced drug incorporation.103 The significant rise in drug 

content in M–PNPs and M–PEG–PNPs might be due to the 

stronger drug–polymer interaction (between the hydroxyl 

group of mannose and PEG and the amine group of AmpB) 

and to the high miscibility in the case of amphiphilic AmpB. 

Another study suggested that the acidic end-group of PLGA 

is responsible for drug incorporation and that increased chain 

length may increase the drug–polymer interactions, leading 

to improved drug incorporation efficiency.104

More recently, carbohydrate (mannose, mannosamine, 

and mannan)-functionalized PLGA nanospheres loaded with 

AmpB have been investigated in the treatment of murine 

VL.105 The uptake of mannan-coated nanoparticles (MNs) by 

macrophages was elevated. Furthermore, a single injection and 

a 1-week course of treatment with MN–PLGA AmpB nano-

particles were sufficient to achieve a significant decrease in 

the visceral organs parasite load, although AmpB loading was 

only 0.58% (w/w). The successful results were probably due 

to increased production of cytokines relevant in VL infection, 

such as INF-gamma, and nitric oxide (NO), which plays a key 

role in the organism’s defense against parasite infection.105

Polymeric nanosystems are also feasible as carriers 

for multiple drugs. In a recent study, PLGA nanoparticles 

loaded with AmpB and doxorubicin and further coated with 

chitosan as a macrophage targeting agent were developed. 

Chitosan-coated nanoparticles provide a signal for special-

ized phagocytes, because chitosan recognition involves 

multiple macrophage surface receptors inducing the drug 

internalization into cells. Furthermore, this system dem-

onstrated slow drug release to macrophages, with minimal 

hemotoxicity and tissue toxicity.106 Currently, no in vivo data 

on VL infected rodent models are available.

AmpB was recently targeted by PLGA nanoparticles 

using a coating with glycoprotein lactoferrin (Lcf).107 Lcf is 

an 80 kDa iron-binding glycoprotein with a single polypep-

tide chain of ~700 amino acids that provides several potential 

N-glycosylation sites. These sites of Lcf are recognized by 

the group of CLRs, ie, mannose receptors, which present 

as biomarkers on the monocyte/macrophage and dendritic 

cell surfaces. In vivo tests demonstrated significant in vivo 

antileishmanial activity of Lcf–PLGA–AmpB, compared 

with nontargeted and commercial formulations, as well as 

lower nephrotoxicity, attributed to the slower drug release. 

This might permit the administration of much higher drug 

doses, leading to increased efficacy in VL treating. It is worth 

noting that peptide fragments derived from Lcf, such as 

lactoferricin, exerted interesting activity against L. donovani 

promastigotes.108 AmpB encapsulated into PEG–PLGA 

nanoparticles, further decorated with anti-CD14 antibod-

ies, was recently evaluated for macrophage localization 

improvement.109 CD14 is mainly present on macrophages 

surface and, to a lesser extent, on neutrophils and dendritic 

cells. Interestingly, evaluations on promastigote and amas-

tigote revealed that the inhibition efficiency of nanoparticles 

was higher than that of free drug.

Polysaccharide polymers
Polysaccharides are ideal candidates for drug delivery and 

biomedical applications, as they are easily obtained from 
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natural sources. Examples of polysaccharides of plant origin 

include starch, cellulose, hemicellulose, hyaluronic acids, 

alginate, and guar gums, whereas polysaccharides originating 

from animals include chitin and chondroitin sulfate.110 Natural 

polysaccharides have been evaluated for their ability to act 

as antileishmanial agents, in some cases based on their use 

in traditional medicine111 and in others from exploring novel 

sources such as marine macroalgae, which contain sulfated 

polysaccharides with antileishmanial activity.112 Polysac-

charides with different structures act by different mecha-

nisms in macrophages:113 sulfated heterorhamnan, iota-/

nu-carrageenans, and arabinogalactan polysaccharides dem-

onstrated significant macrophage activation and a subsequent 

inhibition of intracellular amastigotes of L. amazonensis. The 

antileishmanial effects of the polysaccharides occurred by 

different mechanisms: for sulfated polysaccharides, this may 

be an expressive increase in NO production by macrophages, 

while for arabinogalactan, it may be attributed to stimulation 

of O
2
•− and TNF production.113

Polysaccharide polymers have also been used to deliver 

vanadium complexes, which are reported to be highly active 

metal-based drugs against a variety of trypanosomatids, 

including Leishmania species.114 The immunomodulatory 

effects of the polysaccharides arabinogalactan, galactoman-

nan, and xyloglucan, as well as their oxovanadium (IV/V) 

complexes, were evaluated on peritoneal macrophages exhib-

iting significant leishmanicidal activity (~60%–70%). The 

mechanism of action appears to be due to increasing levels 

of IL-1b and IL-6 released by macrophages.115 Vanadium 

complexes of stilbene demonstrated leishmanicidal activity 

in promastigote forms of L. amazonensis, inducing reac-

tive oxygen species (ROS) production and NO-dependent 

microbicidal action.116

Biopolymers such as chitosan and sodium alginate are 

potent macrophages activators, inducing the release of a 

range of cytokines and cytotoxic agents.117–119 Development 

of a biocompatible polymers formulation, which enhances 

immunological responses, might thus provide a new approach 

to improve leishmaniasis treatment. Naturally occurring poly-

saccharides, such as chitosan and alginate, have been utilized 

to deliver antileishmanial agents in nanoparticles. Nanometric 

AmpB-encapsulated chitosan nanocapsules (CNC–AmpB) 

have been formulated using a polymeric deposition technique 

mediated by NE template fabrication.120 The lipid core of 

the nanocapsule consisted of surfactant, glycerol, soybean 

oil, and soya lecithin. Enhanced efficacy of CNC–AmpB 

is likely due to active macrophage targeting by N-acetyl-

glucosamine unit of chitosan content of CNC, recognition 

being mediated by major histocompatibility complex class I 

and II, Fc receptors, and mannose receptors. The same team 

improved the targeting capability of chitosan, using manno-

sylated chitosan (Mnos-CS) copolymer, subsequently formu-

lated in a nanocapsule system (MnosCNc) for the delivery of 

AmpB.121 Using nanocapsules, DL of 9%–10% (w/w) was 

obtained. In vivo results showed that more drug was delivered 

by mannosylated nanocapsules than by CNC or plain AmpB 

in both liver and spleen.

Polyelectrolyte complexes (PECs) are formed by inter-

actions between two macromolecules bearing oppositely 

charged groups. Encapsulation of a drug during formation of 

PECs has shown great promise for preparing drug delivery 

carriers. For this purpose, the native positively charged 

polymer chitosan, and chondroitin sulfate, of negative 

charge was used to load AmpB,122 resulting in a good DL 

(11%, w/w). In evaluating the antileishmanial activity, it 

was observed that chitosan itself presented activity and a 

synergistic interaction between chitosan and chondroitin sul-

fate also occurred. The activity of AmpB nanoparticles was 

similar to those with pure AmpB; however, the cytotoxicity 

of the nanoparticle formulation was approximately one-tenth 

that of pure AmpB. Neither pure chitosan nor chondroitin 

sulfate, or the nanoparticles, presented any significant mac-

rophages toxicity.122

Chitosan was also chemically modified into glycol chi-

tosan stearate, an amphiphilic copolymer that forms carriers 

with a hydrophilic shell and a hydrophobic core comprising 

stearic acid.123 By increasing the rigidity of the bilayer of 

so-called lipo-polymerosomes (L-Psomes) using cholesterol, 

a very large amount of AmpB was loaded (25%), exploiting 

the hydrophobic interaction with the stearic acid chain. The 

AmpB–L-Psomes proved to be a biologically safe and stable 

delivery system, with improved efficacy compared to com-

mercial formulations; they can thus be proposed as an alter-

native low-cost product. A further study exploited a surface 

interaction between chitosan and sodium alginate (natural 

polymer with anionic charge) to stabilize the nanoparticles, 

maintaining the high AmpB loading (22%).124 The biopoly-

mers sodium alginate and chitosan are potent macrophage 

activators, inducing the release of different cytokines and 

cytotoxic agents.118 In vivo study demonstrated that L-Psomes 

facilitated the AmpB uptake in RES-rich organs and showed 

that AmpB remains in the tissues for prolonged periods, 

followed by slower distribution of the drug into the blood 

stream. Increased tolerance to AmpB was also observed.118

Alginate has also been used as active coating of a lipo-

somal AmpB preparation117 and, more recently, of doxorubicin 
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loaded in an NE (soybean oil with Tween as surfactant and 

protamine sulfate).125 This treatment strategy is based on the 

immune response modulation, combined with chemotherapy, 

to improve efficacy during infection.

Ionic amphiphile biovectors, first reported by Loiseau 

et al,126 comprised anionic lipids (dipalmitoyl phosphatidyl 

glycerol) included in a cationic cross-linked maltodextrin 

matrix, used as reservoir for AmpB. The nanoparticles of 

100 nm were loaded with 20% (w/w) AmpB and demon-

strated a high stability. The in vitro and in vivo activities 

remained in the same dose and concentration range as 

Fungizone and AmBisome, suggesting that their interaction 

with host cells, their uptake, and intracellular distribution 

were efficient, although the formulation is slightly less active 

and safe than AmBisome.126 Although in the early devel-

opment stage, ionic amphiphile biovectors have not been 

further improved or described. However, hydroxypropyl-γ-

cyclodextrin was used to solubilize AmpB solution (AmpB–

dextrin solution) by inclusion; it was then formulated into 

nonionic surfactant vesicles (NIVs) (consisting of a 3:3:1 

molar ratio of mono-n-hexadecylether tetraethylene glycol 

to cholesterol to dicetylphosphate). The antileishmanial 

activity of NIV and chitosan-coated NIV was compared 

with that of commercial AmpB formulations.127 It has been 

shown that the pulmonary route is not only suitable for lung 

conditions but can also be used to target the liver: treatment 

with an NIV formulation of AmpB significantly reduced 

L. donovani liver parasite burdens in treated mice and was 

also effective at reducing Aspergillus levels in the lungs.100 

Furthermore, a reduced toxicity in L. major-infected mice 

after several (15) doses indicated that both formulations, as 

well as the pulmonary route, minimized systemic exposure 

to AmpB.

Polymeric micelles
Polymeric micelles are nanoscopic core/shell structures made 

up of amphiphilic block copolymers. Both the intrinsic and 

the modifiable properties of polymeric micelles make them 

particularly well suited for drug delivery purposes.128 Among 

the polymers used for micelle preparation, poloxamers 

(α-hydro-ω-hydroxypoly[oxyethylene]
a
 poly[oxypropylene]

b
 

poly[oxyethylene]
a
 block copolymers) present interesting 

behavior and have been applied in a wide range of biomedical 

and pharmaceutical industries. Particularly, poloxamer in 

aqueous media exhibits micellar structures, which can convert 

into gel-like structures depending on their length, concentra-

tion, and temperature. In the search for new delivery systems 

to treat tegumentary leishmaniasis, AmpB-containing a 

polymeric micelle system (namely AmpB/M) was developed 

using poloxamer P407 (Pluronic® F127) and its in vitro and 

in vivo potency against L. amazonensis was evaluated.129 

When administered by subcutaneous injection in mice, the 

AmpB/M formulation turns into a semirigid gel on contact 

with local tissue, creating a reservoir system and keeping the 

drug in the extracellular space; this allows it to act against 

parasites at the local infection site. Over time, as the gel 

matrix is diluted by body fluids and phagocytosis, the drug 

is gradually released into systemic circulation, enabling its 

systemic action to be controlled.

A poloxamer P407-based paramomycin-containing 

micelle nanogel system has been evaluated. The system was 

tested for in vivo tolerance, ex vivo cytotoxicity on cells, 

and antileishmanial activity against promastigotes. The 

results showed the product to possess negligible toxicity 

and effective antileishmanial activity against L. major and 

L. infantum promastigotes. It was concluded that the for-

mulation provides controlled, effective, and safe delivery 

of paramomycin in mice.130

An interesting approach to obtain stable micelles with high 

DL is based on the self-assembling ability of prodrugs with 

amphiphilic properties. Regarding pentavalent antimonials, 

the use of nonionic surfactants as complex agents has been 

investigated.131 The formation of an amphiphilic antimony 

(V) complex using N-alkyl-N-methylglucamide (with carbon 

chain lengths of 8 and 10) produced stable nanodispersions 

(~115 nm). The most significant advantages of the system 

were its great solubility in water, its superior bioavailability, 

and sustained drug release properties. These results were 

much better than those obtained with a cyclodextrin-based 

oral formulation of MA proposed by the same group.132 

Micelles of the amphiphilic antimony (V) complex may 

also offer a possibility for solubilizing lipophilic drugs and 

achieving oral coadministration of anti-VL drugs.

Inorganic compounds as delivery systems
The majority of nanoparticles of pharmaceutical interest 

are made of organic polymers (biodegradable or not), but 

inorganic systems, as well as organic–inorganic hybrid 

materials, are now also receiving considerable attention in 

the pharmaceutical field. Mesoporous silica nanoparticles, 

hydroxyapatite nanostructures, metallic nanoparticles such 

as Fe
3
O

4
, gold, and silver nanoparticles, and carbon-based 

nanostructures (nanotubes, graphene, nano-onions, and 

horns) exhibit several interesting features and enable dif-

ferent functionalities (eg, diagnostic and therapeutic) to be 

combined in a single device.133,134
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Small clearly defined aggregates of noble metals can 

be produced with very precise and controlled methods, 

modulating the reaction conditions used in their prepara-

tion. Metals in nanoparticulate form might be of interest in 

treating leishmaniasis, owing to their ability to produce ROS. 

In particular, silver nanoparticles135 were found to inhibit the 

survival of amastigotes in host cells and, in the presence of 

UV light, the effect was more significant. L. tropica promas-

tigotes lost their shape, and their internal organelles were no 

longer distinguishable.135

Metal oxide nanoparticles, especially titanium dioxide 

(TiO
2
), silver oxide (Ag

2
O), zinc oxide (ZnO), magnesium 

oxide (MgO), and, more recently, selenium oxide (SeO
2
) 

nanoparticles, have been extensively explored, demonstrating 

a significant antibacterial activity.136 Among metals, the high-

est antileishmanial activity was observed for nanoparticles 

composed of Ag, followed by Au, Ti, Zn, and Mg. Both 

UV and infrared irradiation increased the antileishmanial 

properties of all these nanoparticles. However, they were 

found to possess macrophages cytotoxicity. Selenium nano-

particles demonstrated less cytotoxic effect on uninfected 

macrophages but have stronger antiamastigote and antipro-

mastigote activities than SeO
2
.137

Another study focused on the development of six biocom-

patible nanoparticles of ZnO doped with different concentra-

tions of Cu and their in vitro efficacy against the Leishmania 

parasite.138 Especially those from ZnCuO to ZnCuO
5
 have 

been proposed against leishmaniasis, because of their 

biocompatibility and enhanced ROS yield: after irradiation, 

they generated measurable quantities of singlet oxygen. Simi-

larly, with Ag as dopant of the semiconductor, nanoparticles 

of zinc oxide demonstrated the production of ROS when 

activated by daylight and were able to kill L. tropica.139

More recently, two approaches were combined, using 

AmpB adsorbed on preformed spherical biogenic silver 

nanoparticles surface. AmB–Ag nanoparticles were more 

potent in inhibiting L. tropica in in vitro tests. Furthermore, 

the antileishmanial activity of the prepared nanoparticles was 

enhanced upon irradiation with visible light, which may be 

attributed to the formation of excess ROS by the released 

silver ions. The study limitation is the lack of the information 

about the amount of AmpB loaded.140

Among the inorganic nanomaterials, carbon compounds 

are attracting interest due to their excellent mechanical, 

thermal, and optical properties. Drugs may be covalently 

linked to carbon nanotubes (CNTs) or strongly absorbed by 

π–π stacking on their surface (eg, doxorubicin). However 

in its early ages in anti-Leishmania applications, a way of 

using multiwalled CNT to deliver covalently bound AmpB 

has been devised.141 Unusually, this product was obtained 

without using any condensing agent and was thought to 

be covalently linked via an ether bond instead of an amide 

bond. The intraperitoneal administration route led to a higher 

percentage suppression of parasites in the spleen with CNT–

AmpB (89.8%) than with AmpB (68.9%). Without any 

improvement in characterization, the same formulation was 

orally administered, resulting in antileishmanial activity in 

hamster spleen tissues.142

Due to their dimensions, similar to those of the inorganic 

components of calcified tissues, nanosized calcium phosphate 

materials are expected to have better bioactivity and biocom-

patibility than conventional materials. Furthermore, calcium 

phosphate is a cheap drug cargo that is chemically stable, 

composed of inorganic minerals native to the body, which 

can be metabolized as a nontoxic degradation product.143,144

The preparation of calcium phosphate nanoparticles 

loaded with AmpB has been reported.145 The method involved 

mixing two microemulsions containing, separately, calcium 

chloride and disodium phosphate, and sodium silicate in the 

presence of a surfactant. Nanoparticles ,200 nm in size, with 

an interesting AmpB loading of 11%, were obtained. In vivo 

efficacy of the formulation was assessed in a L. donovani-

infected golden hamster model. The in vivo activity of 

AmpB-loaded nanoparticles was stronger than that of mar-

keted formulations or AmpB suspension, which is the col-

lective outcome of higher internalization by macrophages via 

clathrin receptor-mediated phagocytosis and enhancement 

of Th1-biased immune response by nanoparticles, which 

ultimately targeted macrophages and retarded nonspecific 

distribution of AmpB. Furthermore, the calcium phosphate 

nanoformulation was able to release the encapsulated drug 

in a slow and sustained manner, with preferential accumu-

lation in macrophage-rich organs such as liver and spleen. 

A toxicity assessment study was also reported.145

Similar approach was also used to investigate the potential 

oral administration of pentavalent antimonials. Nanoparticle 

phosphate-based composites containing Sb(V) have been 

explored in terms of their in vitro activity.146 This system 

allowed the Sb(V) delivery into the cells in which the parasite 

is internalized, and the elevation of calcium concentrations 

inside the vacuoles might increase parasite apoptosis.

Covalently linked drug to polymers
In the nanosystems described earlier, the drug was always 

adsorbed, loaded, or entrapped in its native form. The 

covalent conjugation of drugs to an appropriate carrier is 
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another strategy used to deliver drugs to particular target 

sites. The development of specific carrier–drug conjugates 

was first proposed for the delivery of small hydrophobic drug 

molecules to their sites of action147 and has recently reached 

significant results in anticancer therapy with antibody–drug 

conjugates. These delivery systems basically comprise a 

water-soluble polymer, bearing a number of drug molecules 

covalently linked. The main advantages of this approach are 

1) increased water solubility of little soluble or insoluble 

drugs, therefore enhancing drug bioavailability; 2) protection 

of drugs from deactivation and relative activity preservation 

during circulation; and 3) most importantly, specifically drug 

targeting to the site of action. Unlike other approaches, in this 

case, the active agent must be considered as a prodrug that 

generates the activity only after release. For this reason, the 

role of linker between polymer and drug is of paramount 

importance, because it defines the mechanism for drug 

release (pH, enzyme derived, chemical reaction, and so on). 

Although many are undergoing the final phase of clinical 

trials and several polymer–protein conjugates have been 

approved by the FDA for clinical use, to date no polymer–

synthetic drug conjugate has been approved.148

Polymer–drug conjugates have been used for targeting 

macrophages and have already shown potential in antileish-

manial chemotherapy. HPMA is undoubtedly the best-known 

synthetic polymer exploited in macromolecular conjugates. 

It is water soluble and nonimmunogenic and has undergone 

clinical trials in the cancer field.149 In a detailed article, the 

synthesis of HPMA conjugate of AmpB obtained through a 

degradable GlyPheLeuGly linker is described. The linker was 

chosen as it is known to be cleaved by cathepsin B, which 

has been found in the PV.150 Its in vitro activity was compa-

rable to that of free AmpB and Fungizone, and although less 

active than AmBisome in in vivo experiments (though of a 

similar order), no signs of toxicity were recorded, even at 

the maximum used dose of 3 mg/kg AmpB equivalent used. 

It should be noted that this dose is above the reported 50% 

lethal dose (LD50) of 2.5 mg/kg for Fungizone. No signifi-

cant difference in antileishmanial activity was found using 

a similar but targeted conjugate with mannose.150 Further 

studies on polymer–drug conjugates in this field have not 

been reported, and clinical evaluation is thus lacking.

Another interesting natural polymer that can act as 

delivery platform and targeting scaffold simultaneously is 

hyaluronic acid.151 Recently, a versatile synthetic method to 

link pentamidine to hyaluronic acid, affording DL of up to 

33% (w/w), was presented. Assayed against the intracellular 

amastigote form of the parasite, the bioconjugate was more 

efficient than free drug in the internalization of infected 

macrophages but, at the same time, less cytotoxic.152

Novel products with antileishmanial 
activity combined into nanocarriers
The need for alternative treatments, in particular to reduce 

the duration of clinical treatment, led to a program to screen 

natural products for potential use in leishmaniasis therapy, 

as recent reviews report,153–156 and also to the screening of 

currently available medicines with potential use in VL. 

In parallel, quantitative structure–activity relationship 

(QSAR) study has been used to identify new organic com-

pounds with stronger activity.157 Another approach examined 

the role played by known active molecules in medicinal 

plants traditionally used against leishmaniasis, as well as in 

documented plants that have yet to be explored.158–161

Several active agents from different chemical classes 

are also reported to have in vitro antileishmanial activity. 

The more promising candidates appear to be the nitroimida-

zoles, quinoline scaffold-based derivatives such as indolyl 

quinoline analogs, naphthoquinones, the cytotoxic drug 

doxorubicin, and also antimicrobial peptides.108,162 A recent 

review clearly summarizes these results.163 Disulfiram, 

a drug extensively used to treat alcoholism, has recently been 

reported to be active at nanomolar concentrations against the 

intracellular amastigotes of L. donovani.164 Although clinical 

trials have not yet been carried out to assess the efficacy of 

disulfiram as monotherapy or in combination to treat different 

types of leishmaniasis, the implementation of a clinical trial 

is feasible, since disulfiram is a known and approved drug 

and, furthermore, is administered orally.

OlPC is a structural analog of MF. The in vitro efficacy 

of OlPC against the intracellular amastigotes of different 

Leishmania spp. was similar to the profile of MF, with 

IC
50

 values in the low micromolar range, except for L. major 

and L. braziliensis.165 When tested on a VL hamster model 

with L. infantum, OlPC was found to be more potent than 

MF after multiple or single oral dosing. Furthermore, short 

oral treatment with OlPC improves clinical signs of canine 

L. infantum leishmaniasis.166 The pharmacokinetic profiles 

of OlPC, administered either in water or as a liposomal 

preparation, have also been reported recently.167

Natural agent, namely andrographolide, is a diterpenoid 

lactone extracted from the leaves of Andrographis paniculata, 

with strong antiparasitic and antileishmanial activity.168 Fur-

ther progress was achieved upon studying andrographolide’s 

behavior regarding resistance, with PLGA nanoparticles 

loaded with andrographolide and stabilized with vitamin 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2017:12submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

5304

Bruni et al

E TPGS.169 Nanoparticles were delivered into macrophage 

cells infested with sensitive and drug-resistant amastigotes 

of L. donovani parasites. Antileishmanial activity was 

found to be significant for the nanoparticles with TPGS at 

about one-tenth of the free drug dosage and one-third of the 

nanoparticles without TPGS dosage. When andrographolide 

was incorporated in TPGS nanoparticles, the selectivity of 

andrographolide increased eightfold in resistant cells.169

Recently, the same approach was used to deliver oleanolic 

acid (OA), a naturally occurring pentacyclic triterpene with 

antileishmanial activity.170 In vivo evaluation indicated that 

OA suppressed the amastigote burden in the spleen after 

the fourth dose (67.69%±4.12%), whereas the percentage 

of suppression was increased to 98.82%±1.92% in the case 

of OA PLGA nanoformulation.

A further example concerns bisnaphthalimidopropyl 

(BNIP) derivatives, which exert significant antiproliferative 

activity on L. infantum.171 Encapsulation of BNIP aminooc-

tane derivative into PLGA nanoparticles resulted in a reduc-

tion of aspecific toxicity and in the 80% increase of in vivo 

efficiency on L. infantum compared to free drug.172 This 

nanoformulation remained active after oral administration 

in infected BALB/c mice.

Artemisinin, a potent drug used against Plasmodium 

falciparum malaria, potentially possesses antileishmanial 

activity, although bioavailability and stability are low.173 

Encapsulating artemisinin into PLGA nanoparticles reduced 

the free drug macrophage toxicity, increasing leishmanicidal 

activity.174 Furthermore, NO production may intercede in 

the antileishmanial effect of the nanoformulations. Unfor-

tunately, the curative effect was not as high as the standard 

liposomal AmpB formulation.175

Curcumin (diferuloylmethane), the main yellow bioactive 

component of turmeric, has been shown to have a wide 

spectrum of biological action, including leishmanicidal 

activity in vitro.176 Different approaches have been proposed 

to deliver curcumin. A particular type of prodrug-based 

approach, named “squalenoylation” has been proposed.177 

In this approach, the derivatization of small molecules by 

conjugation with a squalene moiety enables conjugates to be 

produced that spontaneously self-assemble into 60–300 nm 

nanoparticles. Although to date it has mainly been applied 

in the anticancer field,178 a squalenoyl prodrug of curcumin 

was recently investigated in promastigote and amastigote 

forms of L. donovani and showed enhanced activity vs 

the parent drug.179 Recently, PLGA nanoparticles loaded 

with curcumin (nanocurcumin) were proposed to support 

MF in exerting leishmanicidal effect at a subcurative dose 

through immunomodulation. Nanocurcumin monotherapy or 

combination therapy with MF did not exhibit any hepato- or 

nephrotoxicity effect.180

Compound 8-hydroxyquinoline (8-HQN) and its 

derivates have been experimentally evaluated in different 

studies as chemotherapeutic agents with interesting anti-

leishmaniasis activity.181,182 Recently, polymeric micelle 

system was exploited to deliver 8-HQN.183 After daily 

subcutaneous injections for 15 days in L. infantum-infected 

mice, the treated group showed a more marked reduction 

in the parasite load than the control group. The formulation 

was highly effective in treating the disease, more so than free 

8-HQN or AmpB; the highest levels of nitrite were found in 

the 8-HQN/M-treated mice, together with a significant Th1 

immune response.

In a different approach NPC1161, a model 8-amino-

quinoline drug with antileishmanial activity was conjugated 

with HPMA and targeted with N-acetylmannosamine.184

Inorganic carrier such as CNTs was recently used to 

deliver betulin, a pentacyclictriterpenoid with antileishmanial 

properties.185 Counting the amastigote cells inside the infected 

macrophage cells using a microscope, a dose-dependent 

response was observed with betulin and with CNT-linked 

betulin, whereas CNT alone did not show any antileishmanial 

effect. In addition, CNT was seen to downregulate the activity 

of P-gp efflux, which would help to increase the bioavail-

ability of any drug incorporated into the carrier system and 

overcome resistance mechanisms. However, toxicity data are 

still limited, and further effort will be required to evaluate in 

depth not only the potency but also the in vivo fate of these 

formulations (eg, biodistribution and elimination from the 

body).185 A complete toxicological evaluation must also be 

made before they can be administered safely.

Discussion
At present, only a small number of antileishmanial drugs 

are available for clinical use: three injectables and the sole 

orally administrable MF. There is thus a pressing need to 

develop other antileishmanial drugs as each of the available 

drugs suffers from various drawbacks (toxicity, repeated dose 

requirement, and so on).

To reduce dosage, enable improved release, and promote 

high drug concentrations in the intracellular (macrophage) 

vesicle where Leishmania is hosted, DDSs may play a cru-

cial role. Colloidal carriers can also protect drugs against 

extracellular degradation, improving the pharmacokinetic 

profile of the active agent. The most significant result is 

the case of AmBisome, which has significantly improved 
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VL treatment, as it provides almost complete eradication of 

parasite burden, with minor toxic effects. However, the cost 

of this lipid formulation is a severe deterrent, in the light of 

the need to provide a reasonably priced therapeutic option to 

third world countries. Resistance to AmpB has not yet been 

observed in clinical practice, although it has been reported 

in in vitro study.29 Thus, the DDS approach had not been yet 

evaluated on resistant lines.

Since AmpB is currently the most potent antileishmanial 

agent, the majority of efforts in nanotechnology have been 

addressed to improving its specificity, reducing its adverse 

effects, and in some cases, using noninvasive route. For this 

reason, in this section, we critically evaluate and discuss the 

role and advantages that may be played by innovative AmpB 

delivery systems. The principal systems, methods and results, 

described in the text, are summarized in Table 2. Considering 

the structure, the majority of the systems comprise polymeric 

nanoparticles or nanocapsules of size (100–300 nm) greater 

than that of AmBisome. As far as, the stability of the carrier 

is concerned, the polymeric systems are much more stable 

than liposomes, and from the regulatory standpoint, the use 

of polymers that are already approved by FDA/EMA may 

reduce the need for toxicological studies, in comparison 

to other systems. PLA and PLGA are widely used in 

many FDA-approved drug products.96 DL is an important 

parameter to predict the strength of an approach. If drug 

capacity is ,4%–5% (w/w) of the carrier material, either 

the quantity of drug administered will not be sufficient to 

achieve a pharmacologically active concentration in the rel-

evant body compartment capable of eradicating the parasite 

burden, or the amount of carrier material required will be 

too large, leading to toxicity.186 The hydrophobic core of 

PLGA nanoparticle (NP) and LPNP facilitates the loading 

of AmpB, which can reach significant levels. Another issue 

in nanoparticle systems that may lead to lower activity, and 

potentially to more toxicity, is the rapid release or premature 

“burst release” of the encapsulated drug. This phenomenon 

is not frequent in the case of AmpB, because in polymeric 

NP, only a small fraction of the drug is present in the free, 

monomeric form, the majority remaining superaggregated 

and associated with the delivery system.97

The majority of nanostructures achieved interesting 

ranges of DL (up to 44% in one case). Passive or “natural” 

targeting, since the MPS cells are considered to be the main 

target for therapeutic interventions in leishmaniasis, is a 

mechanism that may be used to enhance drug concentra-

tion, reducing aspecific toxicity (hematotoxicity and kidney 

toxicity). Nevertheless, the active targeting approach (using 

mannose, stearylamine, mannan, and antibody fragments) 

appears to slightly increase the uptake in liver and spleen 

lesions. In particular, the surface charge of LPNPs created 

by stearylamine enhanced uptake by macrophages, demon-

strating interesting immunoadjuvant properties. In LPNP, 

the lipid component of the formulation also behaves as a 

targeting agent, while in the majority of formulations, surface 

decoration was preferred. In the latter case, clearly illustrated 

by the use of antibodies, difficulties may arise because there is 

as yet no clear information concerning the “optimum” range 

of ligand characteristics (ie, valency, avidity, conformation, 

and packing) on the surface of nanocarriers that results in 

reproducible target binding and internalization. Manufac-

turing these products may be challenging; this is clearly of 

great practical importance, as is shown by the lack of actively 

targeted liposomes on the market for cancer therapy.

Owing to their complexity, site-directed DDSs will always 

require full and in-depth characterization before being 

proposed for industrial development and manufacturing. 

Especially when novel components (lipids, lipid polysaccha-

rides, and so on) with unknown toxicological properties are 

added to the formulation, or when too many complex steps are 

required, industrial interest decreases sharply. Regarding cost-

effectiveness, PLGA, a pharmaceutically accepted polymer, 

including from the regulatory standpoint, is more advantageous 

than more “sophisticated” systems, although these may be of 

interest, as is the case of L-Psomes or targeted systems.

Nevertheless, it is important to notice that each study, 

able to combine novelty and promising in vivo results, should 

be compared with the best treatment available (AmBisome). 

This comparison was done only in 44% of the studies reported 

in Table 2.

Also molecular conjugates, typically prepared to increase 

drug pharmacokinetic profile, did not significantly improve 

the AmpB antileishmanial activity.150 A remarkable review 

by Duncan148 reflects very clearly on the current status of 

polymer therapeutics, the major issues concerned, and future 

opportunities.

Conclusion
Bearing in mind the results obtained in some clinical trials 

where a single-course iv therapy of 10 mg/kg AmBisome 

was found to give a 98% cure,26 the space for robust and 

market-oriented innovation seems to be represented mainly 

by the delivery of AmpB by oral route, but this delivery must 

be directed in targeted tissues to elicit its pharmacological 

effect while reducing its nephrotoxicity and infusion-related 

side effects.
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Even if it remained difficult to select and design an 

appropriate formulation to improve AmpB oral absorption, 

some novel DDSs have emerged as effective. In particular, 

lipid cochleates and an SLN formulation (AmbiOnp) appear 

very promising, not least because they are already involved 

in industrial development. Both approaches provide high DL-

reduced AmpB toxicity and production protocols that avoid 

expensive compounds or processes. Further improvement 

could involve a polymer such as chitosan, which combines 

bioadhesion and absorption-enhancing properties, to prolong 

contact between the DDS and the mucosa, increasing the 

amount of AmpB that can be absorbed.

In recent years, material sciences and biomedical sciences 

have produced numerous new systems and materials with 

the potential to treat disease. However, two major limita-

tions must be borne in mind. First, as the recent literature 

concerning DDSs shows, there is a flourishing strain of 

articles in which increased complexity appears to be seen as 

an advantage, without any real justification in terms of the 

balance between complexity and feasibility. Second, complex 

delivery systems obviously cost more to develop and manu-

facture than do conventional therapeutic agents. The resulting 

higher prices may only be acceptable if the performance of 

these systems is sufficiently increased, thereby reducing the 

treatment period and overall cost, leading to savings to the 

health care system. It is becoming ever more imperative to 

formulate standards for system characterization, and robust 

means of comparative testing, so as to facilitate close and 

critical analysis of proposed strategies. Further efforts and 

investments will still be necessary for this approach to 

achieve greater clinical applicability in humans.

Meanwhile, with regard to the identification of novel drugs, 

there can be no doubt that the availability of the complete 

genome sequence of Leishmania has given the scientific com-

munity the possibility for large-scale analysis, which may lead 

to a better understanding of the parasite’s biology and conse-

quent identification of novel drug targets.187 Furthermore, the 

use of powerful CRISPR–Cas9 techniques of genome editing 

is now making it possible to accelerate the characterization of 

Leishmania genes, so as to develop new drugs, diagnostics, and 

vaccines.188 From another standpoint, the medicinal chemistry 

approach continues to improve “old drugs”, suggesting novel 

AmpB derivatives with high activity and increased safety.189

However, since the goal is to eliminate parasitic infec-

tions, a “discovery science” for the development of drugs and 

diagnostics must be conducted on the global stage, involving, 

in the local context, scientists, clinicians, regulators, and 

health ministries in disease-endemic countries. Furthermore, 

“implementation science” must take place in the local 

context. To achieve the goal, it is of fundamental importance 

to involve multidisciplinary teams, including pharmaceutical 

and medical scientists, policymakers, social scientists, health 

administrators, and communication scientists, working 

together in new ways.190
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