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Objective: Comparative algorithmic evaluation of heartbeat series in low-to-high risk cardiac 

patients for the prospective prediction of risk of arrhythmic death (AD).

Background: Heartbeat variation reflects cardiac autonomic function and risk of AD. Indices 

based on linear stochastic models are independent risk factors for AD in post-myocardial 

infarction (post-MI) cohorts. Indices based on nonlinear deterministic models have superior 

predictability in retrospective data.

Methods: Patients were enrolled (N = 397) in three emergency departments upon presenting 

with chest pain and were determined to be at low-to-high risk of acute MI (7%). Brief ECGs 

were recorded (15 min) and R-R intervals assessed by three nonlinear algorithms (PD2i, DFA, 

and ApEn) and four conventional linear-stochastic measures (SDNN, MNN, 1/f-Slope, LF/HF). 

Out-of-hospital AD was determined by modified Hinkle–Thaler criteria.

Results: All-cause mortality at one-year follow-up was 10.3%, with 7.7% adjudicated to 

be AD. The sensitivity and relative risk for predicting AD was highest at all time-points for the 

nonlinear PD2i algorithm (p  0.001). The sensitivity at 30 days was 100%, specificity 58%, 

and relative risk 100 (p  0.001); sensitivity at 360 days was 95%, specificity 58%, and 

relative risk 11.4 (p  0.001).

Conclusions: Heartbeat analysis by the time-dependent nonlinear PD2i algorithm is 

comparatively the superior test.

Keywords: autonomic nervous system, regulatory systems, electrophysiology, heart rate 

variability, sudden cardiac death, ventricular arrhythmias, ECG, HRV, PD2i, nonlinear, non-

linear, chaos

Introduction
Analysis of heart rate variability (HRV) noninvasively provides real-time trending of 

beat-to-beat changes in the ECG that reflect changes in cardiac autonomic function 

and performance.1 Abnormalities are indicated by low indices of HRV.2 Such diminished 

measures are associated with increased susceptibility to ventricular arrhythmias and 

sudden arrhythmic death (AD).1,2

Decreased HRV indices are frequently found among patients with acute myocardial 

infarction (AMI), history of myocardial infarction (MI), congestive heart failure (CHF), 

diabetes, and alcoholic cardiomyopathy.1 The indices are independent risk factors for 

mortality in the post-MI and advanced CHF patients.1,2

HRV can be measured in either the time- or frequency-domain, with each measure 

correlating highly with the other. Linear stochastic HRV indices based on brief 

observational windows seem to have the same predictability for sudden AD as those 
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based on 24-hour records.3 Nonlinear deterministic indices 

may require a longer data length that depends upon the data 

itself,4,5 and often 24-hour records are used.6 Brief acquisition 

time, however, is essential for rapid triage in an emergency 

hospital situation or in a pre-hospital trauma setting.

The various HRV indices have not been widely adopted 

because no single measurement has yet demonstrated suf-

ficient statistical predictability of lethal arrhythmogenesis in 

individuals (ie, sensitivity and specificity statistics). This lim-

ited performance may be related to violation of the axiomatic 

presumptions about the data that are required by the model 

underlying the algorithm used to measure the beat-to-beat 

variation.7 For example, algorithms such as the standard 

deviation or power spectrum, which are based on a linear 

stochastic model, presume the data variation is random and 

distributed around a mean. We know, however, that heartbeat 

intervals have internal correlations, are not random, and thus 

violate the model assumptions.7 In contrast, an algorithm 

based on a nonlinear deterministic model presumes that the 

variation is caused physiologically and has no beat-to-beat 

errors. Comparative tests among competing algorithms, 

when applied to retrospective data, suggest that the time-

dependent nonlinear algorithms that treat the problem of 

data nonstationarity show the greatest promise for clinical 

HRV analyses.8–10

We now hypothesize that one of the nonlinear measures, 

in contrast to the more common ones based on the linear 

stochastic model, should be inherently more accurate at 

predicting AD because the physiological data better fit the 

underlying model.

The consideration about the fundamental nature of the 

cardiac rhythm and its measurement has stimulated the 

development of several new HRV algorithms,8,11,12 but has 

left the data length an open issue. Our objective is to evaluate 

prospectively in 15-min electrocardiograms (ECGs) several 

common algorithms previously used in clinical HRV analysis 

and compare them for prediction of documented ventricular 

fibrillation (VF) and defined out-of-hospital AD in a low- to 

high-risk chest pain cohort13 presenting to the emergency 

department (ED).

Methods
The clinical data
The clinical data were from a randomized sample of con-

secutively enrolled patients obtained from 1997 to 1998 at 

three urban teaching hospitals. Each subject was evaluated 

in the ED by a validated clinical protocol)13 that incorporates 

history, clinical symptoms, and conventional ECG findings to 

determine MI risk. Patients with risk less than 7% for an AMI 

were excluded and all others were enrolled and informed 

consent obtained. This open Harvard protocol was selected, 

instead of one yielding higher numbers of ADs (eg, GRACE, 

TIMI, PURSUIT),14 because it rules out only the very low-

risk patients leaving low-to-high-risk subjects; the recent 

high-yield protocols rule in only the higher risk subjects for 

the study of myocardial revascularization effects.

A 15-min digital ECG was recorded by a small 

battery-powered device (Vicor PD2i Cardiac Analyzer, 

digitization 1,000-Hz/channel; band-pass 0.1 to 1000 Hz; 

noise 2-microvolts RMS; Vicor Technologies, Inc., Boca 

Raton, FL, USA). Each digital ECG contained 1,000 

heartbeats made by an accurate R-R detector with only 1-ms 

error.15 All clinical evaluations were performed by an attend-

ing emergency physician, who was blinded to the digital 

ECG. Analyses of the high-resolution ECGs were made by 

a person blinded to the clinical data.

Patient follow-up for clinical events was performed at 

three months, six months, and one year. Death searches at the 

Social Security Administration confirmed or complemented 

all in-patient and out-patient clinical data. Subgroups were 

assigned as “in-hospital AMI” or “no-AMI”, and “history of 

prior MI” or “no history of MI”.

The protocol was approved by each local Institutional 

Review Board, and conformed to the principles outlined in 

the Declaration of Helsinki. The patients’ identities were safe-

guarded within each hospital’s database, and only coded identi-

fiers were used by the clinical investigators. The ECG data were 

from a larger clinical trial that has recently been published.16

Clinical outcome measures  
and classification
Primary clinical outcome measures were: 1) all-cause 

death, 2) documented fatal arrhythmias, and 3) presumed 

arrhythmic deaths, using Hinkle–Thaler17 criteria, as 

more recently used by Bigger and colleagues18 to assess 

mechanism of out-of-hospital deaths. A three-member events 

committee, blinded to the digital ECG data, reviewed each 

death to ascertain its location, underlying cause, probable 

mechanism and associated acute cardiac symptoms. When 

modified Hinkle–Thaler data were incomplete, available 

clinical information was used, including the in-hospital 

documentation of ventricular arrhythmias and abnormal 

ECGs and the occurrence of out-of-hospital death without 

evidence of respiratory obstruction, hemorrhage, infection, 

or stroke. The adjudicated AD designations were with and 

without documented arrhythmias and/or AMI.19
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Specific analytic algorithms
R-R interval determinations
The algorithm to detect the R-R intervals in the digital ECG 

had a 95% correspondence to the nearest millisecond for 

visually determined intervals.15 It uses a three-point run-

ning window convexity operator to identify an R-wave, in 

contrast to an R-wave detector based on threshold or dV/dt 

detection used in many commercially available systems. It is 

especially important to consider detection error as low-level 

noise impacts the accuracy of all nonlinear algorithms. 

Abnormal beats were detected automatically by outlier-

statistics: 3rd order autoregressive model fit to the data, using 

3.5 multiples above the interquartile distances as detection 

threshold, which turned out to reject the same outliers as 

a running 50-point mean with detection at 2.8 standard 

deviations above the mean; this is an acceptable method in 

low ectopy patients.20 Identified outliers were replaced by 

a linear-interpolation value (spline from RRi-2 to RRi+2) 

to assure all abnormal beats were removed and to preserve 

phase relationships. Pre-processing was reviewed by a senior 

cardiologist (MM). All algorithms to be described below 

were applied to the edited normal-to-normal intervals (N-N), 

as is required for the linear stochastic algorithms, but the 

point correlation dimension (PD2i), which is reported to be 

insensitive to arrhythmias at low rates,21 was also applied to 

unedited R-Rs.

heartbeat analyses
Seven algorithms were selected for comparative study. Each 

had a previously published indication for use in stratifying 

risk by clinical heartbeat analysis that was well established, 

over at least a decade. Some required parameters, so previ-

ously published values were used. Other algorithms could 

have been selected, but these seven were thought to be 

representative of the common linear, nonlinear, and other 

types (appropriate entropy) of algorithms.

Algorithms based on the linear stochastic model
1. Mean and

2. Standard deviation of normal heartbeats, MNN, SDNN; 

nonstationarities removed (N-N data)

3. Power spectrum: LF/HF (N-N data); LF normalized by 

natural logarithm (LF(ln))

4. 1/f Slope (N-N data)

Algorithms based on nonlinear models
5. Point correlation dimension (PD2i; N-N, R-R data); 

parameters: plot length = 0.15, linearity criterion = 0.3, 

convergence criterion = 0.4, Tau = 1 (see d. below).

6. Detrended fluctuation analysis (DFA; N-N data); alpha-1 

(short-term correlations), alpha-2 (long-term correlations, 

not normally used in HRV).

7. Approximate entropy (ApEn; N-N data); parameters: 

peak value for increments of the constant a; R chosen to 

be 25% of the standard deviation of the dynamic range.

Description of the algorithms
The PD2i algorithm is based on a nonlinear deterministic 

model22,23 developed to treat the problem of data nonstationar-

ities (ie, movement artifacts, PVCs, PACs, behavioral effects 

found in R-Rs). The algorithm uses the same parameters for 

unedited R-R intervals as for edited data in which the non-

stationarities (arrhythmias, movement artifacts) are removed 

(N-N);21 these parameters were fixed early and validated in 

many publications over the past decade.16,21–27 The parameters 

fit the data to the correlation integral of the algorithm and 

are limited to the small logR region.23 The parameters are: 

linearity criterion (LC) = 0.30 for determining the linearity 

of the scaling region; convergence criterion (CC) = 0.40 for 

determining convergence of the scaling region, plot length 

(PL) = 0.15 (initial 15% of correlation integral), m (embed-

ding dimension) = 1 to 12 for assuring convergence of the 

scaling region, Tau = 1 to include vector difference lengths 

contributed at high spectral frequencies. Fuller details of this 

algorithm are given in the detailed description of the PD2i 

algorithm, below.

The DFA algorithm has an underlying model (fractal) 

that has no requirements for the data distribution. It searches 

for similarities that are independent of scale (ie, amplitude) 

throughout the data. The calculations in the present study 

used the same parameters for the short-term and long-term 

correlations as those previously published for heartbeat 

data.6,28–31 For HRV analyses, the short-term (alpha-1) cor-

relations are usually used. The algorithm is a variation of the 

“random walk” algorithm used decades ago by physicists to 

distinguish between Brownian and Gaussian random data.

The ApEn computation resembles the correlation inte-

gral for two embedding dimensions and is sensitive to data 

regularities. It has no requirements for data distribution by its 

underlying model.32,33 ApEn was calculated as the peak value 

for increments of its constant parameter, a, and employed an 

R = 25% of the dynamic range of the data. Variations of the 

parameter, a, results in a single peak value for ApEn, which 

was then selected as the best estimate.

The remaining algorithms MNN,26 SDNN,34,35 Power 

spectrum LF/HF,36–38 LF normalized by natural logarithm 

(LF(ln)) and 1/f Slope39,40 are all based on the linear stochastic 
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model, a model which requires random variation of the 

heartbeat data around a mean. Each algorithm is relatively 

well known in the field of clinical HRV. The caveats and 

parameter selections are well established for these HRV 

measures. Arrhythmias and movement artifacts must be 

removed and the remaining N-N data cannot be from patients 

with atrial fibrillation (ie, it has randomized heartbeat 

intervals) or a paced rhythm.

Detailed description of the PD2i algorithm
A vector difference length (VDLi,j) is the distance between 

two vector resultants having the same origin. The points 

i and j range through the R-R series and designate where suc-

cessive R-R values are selected to be used as the coordinates 

for making each of the two multidimensional vectors. The 

embedding dimension of each of the two vectors must be 

the same, and it is determined by how many successive 

coordinates are selected (ie, the embedding dimension, m, 

from m = 1 to k). The reference vector, starting at point, i, 

in the data series, remains fixed at i and then it is subtracted 

sequentially from each possible j-vector. The set of VDLi,j 

at each value of m and i exclude a few points: where j = i 

(ie, zero difference; vectors are identical) and where j = n-k 

(ie, not enough coordinates at the end of the R-R series to 

make a vector of m = k dimensions). Each set of VDLi, j at 

each value of i and m is then ranked according to the abso-

lute values of the VDLs; these ranked VDLs make what is 

called a correlation integral when plotted as the range (R) of 

the rank sizes and the counts of VDLs (C) within the range. 

This correlation integral has an embedding dimension of 

m = 1 to k, with i being fixed (ie, fixed in time, making the 

algorithm time-dependent). Once completed for all values 

of m, the point, i, is then incremented and a whole new set 

of VDLi,j at each value of m is again made.

To calculate a PD2i, the correlation integral (m, i) is 

plotted on a log C vs log R scale, where C is the cumulative 

count of the ranked vector-difference lengths that occur 

within a step size R (eg, a small value of R would include 

only the small VDLs, a maximum value of R would include 

all VDLs; only absolute values of VDLs are used). A different 

correlation integral is made for each value of m at each i. 

Each correlation integral or log-log plot of R vs C is then 

examined for a linear slope region called the scaling region. 

Linearity is determined by the range of the second derivative 

of initially 10 successive points in the correlation integral 

(LC = 0.30 means that  ± 15% deviation of the points 

from the mean of the second derivative is allowed). If the 

LC is met, then an 11th point is added, and so on, until the 

LC fails. The linear scaling region is defined as the slope of 

the longest interval meeting the LC.

The scaling region can be quite long and thus contain 

contributions from data nonstationarities in the j-series. 

Restricting the scaling region slope to the first 15% of the 

total correlation integral length (ie, to the small log-R values; 

PL = 0.15) is what makes the PD2i algorithm insensitive to 

data nonstationarities. This happens because data nonstation-

arities will make VDLs that only contribute to the correlation 

integral at values of R that lie above this restricted small 

log-R region. This small log-R effect can be observed as an 

empirical finding by tracking the coordinates of the VDLs in 

a nonstationary data series.23 The final constraint on the PD2i 

scaling region is that it begins just above the “floppy tail” of 

the initial small log R points in the logR vs logC plot;23 the 

“floppy tail” is unstable because of a lack of data points due 

to a finite digitization rate.

The slope of the linear scaling-region of the restricted 

correlation integral is then plotted as a function of m to 

detect convergence (ie, the point at which adding another 

embedding dimension coordinate to the m-dimensional 

vectors does not change the slope). Convergence is defined 

by the SD of the mean slope values for m = 9 through 

12 (CC = 0.40 means that the SD is  ± 20% of the mean 

of these four slope values). Tau is the number of jumps 

over successive data points before the next coordinate is 

selected for the m-dimensional vector (eg, for T = 1, the 

adjacent data point is selected; for T = 2, the adjacent point 

is skipped and the next selected, etc). Empirical “tuning” of 

the PD2i algorithm by the parameters (LC = 0.30, PL = 0,15, 

CC = 0,40, Tau = 1) has resulted in an algorithm that works 

quite well for accurately tracking the known degrees of 

freedom (dimensions) in nonstationary data made by 

linking sub-epochs generated by various nonlinear functions 

(ie, 4% error).24 The use of these fixed parameters works 

well in discriminating differences in physiological data, such 

as R-R intervals.8,16,21–25,43,44,46,47,49

Data-length, noise, and surrogate controls
A common rule4,5 was used for determining the minimum 

number of R-R data points using the calculated degrees of 

freedom; Ni  10df (eg, for df of D2, D2i or PD2i = 2, then 

Ni  102; for df = 3, then Ni  103; etc.) This rule has been 

employed successfully in all of the PD2i studies referenced 

above, and in and noise-free mathematical (Lorenz, Henon) 

data.24 To resolve PD2i’s between 0 and 3, Ni  1,000 

R-Rs is required and this is generally met by a brief 15- to 

20-min earlier ECG recording. A shorter data file that violates 
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the data-length rule can make the heartbeat data appear to 

contain small amounts of noise, as it will systematically 

increase the slope values in correlation integral. The R-R 

intervals inherently contain noise due to: digitization (dis-

cretization) errors (eg, 2% for 100 Hz; 0.2% for 1,000 Hz), 

R-R interval detector error (1 to 10 msec, depending on the 

method used), and unavoidable amplifier noise (2 to 5 mV, 

RMS, depending upon quality of components).

Nonlinear algorithms amplify noise in the data.27 A com-

mon way to address this problem is to use a control data file 

(“surrogate”) to decide if too much noise is in the data for 

nonlinear analysis.41,42 If the algorithmic evaluation of the 

data and its surrogate are not statistically significantly dif-

ferent from one another, then the data are not suitable for 

nonlinear analysis and can thus be a priori rejected from 

the study. To make the surrogate method work even better, 

adjustments for non-Gaussian distributions between the data 

and its surrogate can be made, but in the case of human R-R 

and N-N data that meet the Ni  10PD2i rule this additional 

procedure is not necessary.8 The randomized-phase surrogate 

is commonly used for the PD2i, as it is sensitive to phase, and 

the randomized-sequence surrogate is appropriately used for 

only the DFA algorithm, as it is insensitive to phase.

Small amounts of noise can be accommodated by the 

nonlinear PD2i algorithm.43 After setting small correla-

tion integral slopes less than 0.5 to zero, a small amount 

of noise in the R-R data can be tolerated (ie, ±5 integers, 

where 1 mV = 1 integer). For example, one can add random 

noise of less than ±5 integers peak-to-peak to, say, Lorenz 

data, without significantly altering the scaling region or 

linear-slope values (ie, PD2is) found in the correlation 

integral.43,44 For all other algorithms noise is generally dealt 

with by excluding files with atrial fibrillation (randomized 

R-R intervals) and by removing arrhythmias and artifacts to 

produce N-N heartbeat data.

Data files that show significant differences in comparison 

to their surrogate files can still contain a small amount of 

low-level noise. To better apply the noise-tolerance capabil-

ity of the PD2i algorithm, a noise consideration algorithm 

(NCA) was adopted.43 The NCA is a two-step method that 

first observes successive 20-beat samples of each R-R or N-N 

file, expressed as 1 integer/msec. In the present study these 

serial snippets were inspected for beat-to-beat background 

noise (ie, the low-level high-frequency data which will vary 

up and down around a short linear trend). Those files with 

a majority of the 20-beat samples  ± 5 integers SD are 

defined by the NCA to contain low-level noise beyond the 

noise-tolerance capability of the PD2i. The second step in 

the NCA method is to reduce the above-threshold noise level 

by removing a bit (ie, dividing by two) from each data point 

prior to analysis. For values of PD2i that lie in the transition 

zone between 1.6 and 1.4 (the cut-point, ROC area = 0.91)16 

very small amounts of low-level noise can falsely increase 

low PD2i’s into this region; if data files had such transition 

zone PD2i scores, then a transition zone algorithm (TZA) 

was applied: if the mean PD2i was highly reduced from 

normal with 75% of the PD2i’s being below 3.0, then 0.2 

degrees of freedom (dimension) was subtracted from each 

PD2i value.

Statistics
Because of the small size of the cohort, the distribution of the 

outcomes could not be presumed to be normal, so the nonpara-

metric binomial probability statistic was used to assess the 

significance of death-outcome prediction by each algorithm. 

Conservative α-protection for multiple nonparametric tests 

employed an α divided by the number of tests. The sensitivity, 

specificity, and relative risk statistics were assessed for 

predictability, using Fisher’s exact test to determine the 

significance of each true–false vs alive–deceased contingency. 

Power was determined using the proportions method 

of Fleiss,45 1-b  90% (see Table A3 in Fleiss).45 All data 

analyses were by persons blinded to the clinical outcomes to 

prevent any possibility of a statistical bias.

Parametric t-tests were used to compare each N-N data 

file with its randomized-phase (or randomized sequence) 

surrogate. Each test had greater than 1,000 data points and an 

approximately unit-normal distribution. One-tailed α-levels 

were used for the surrogate tests, as the null hypothesis for 

these tests is directional.

The logistic regression model statistic reveals whether 

or not the algorithmic output is correlated with the temporal 

probability of AD. This may or may not be the useful statistic 

in patients in whom hospital intervention occurs (ie, a high 

false-positive rate is expected). Therefore, relative risk 

may be the more useful statistic for such clinical data as 

it emphasizes the false-negative type of error, which is far 

worse for a medical test than a false-positive. Both logistic 

regression and relative risk statistics were run on the com-

parative algorithmic results; these were determined by SAS 

(SAS Institute, Cary, NC, USA) and Prism (GraphPad, La 

Jolla, CA, USA) software packages.

Results
The study enrolled 397 patients, each of whom had risk for 

AMI of 7% according to the Harvard chest pain protocol 
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used to eliminate only the very low risk subjects. There were 

no other exclusions, except for a paced rhythm. Follow-up 

(one year) was completed in 388 of the patients. There were 

40 all-cause deaths within one year of follow-up (10.3%). 

Of these, 30 were classified by the events committee as AD. 

The median age was 60 years with a range of 26 to 95. The 

gender balance was 51% male, 49% female. The ethnic/racial 

distribution was Caucasian 25%, African-American 66%, 

Hispanic 7%, and Asian 1%. No differences in histories 

of hypertension or drug therapies were noted between the 

Caucasian and African-American patient groups.

Sixty-six patients did not have digital ECGs recorded: 

47 were “missed”; 19 had electrodes applied, but no ECGs 

recorded; seven had paced rhythms; two left the hospital 

against medical advice; one did not sign the informed con-

sent form. The enrolled subjects that did not have an ECG 

recorded were due to ED personnel not being available at the 

time (47 “missed”) or to the subject being transferred out of 

the ED (19 “electrodes applied, no ECG”).

The ED-cohort was not composed of a majority of post-MI 

survivors. Only 97 of the 397 enrolled patients had a history 

of MI (24.4%) and only 22 of these 97 had an AMI while in 

the hospital (22.7%), and only four of these 22 manifested AD 

within one year (18.4%). There were a total of 73 documented 

AMIs (18.4%) and 19 of these manifested AD within the 

year (26.0%). In 268 documented cases without an AMI or 

history of MI, there were 11 ADs (4.1%), a proportion nearly 

identical to that of the post-MI subgroup. Of the 30 total 

ADs, six occurred in patients admitted for only 24 hours of 

monitored observation and then discharged (20.9%). Half of 

the 30 total AD fatalities occurred within 30 days.

Table 1 shows the comparative algorithmic results using 

N-N data with arrhythmias and artifacts removed. The 

comparisons were tabulated for a total of 312 of the 397 patients, 

as these had follow-ups completed and digital ECGs recorded. 

For the nonlinear algorithms the randomized-phase surrogate 

test (SUR) eliminated 65 files from analysis because of 

noise content and various others were eliminated because 

the result was 3 SD from the mean (OUT). The 65 SUR 

files contained all cases of atrial fibrillation (AF = 27) and 

high arrhythmia rates (high AR = 38, 10% of beats). For 

DFA, only 17 were eliminated by the randomized-sequence 

Table 1 Comparison of linear and nonlinear algorithms in 312 low-to-high-risk patients presenting in the emergency department with 
chest pain and assessed risk of AMi  7%. All subjects had ECGs recorded, follow-up completed, and no paced rhythms. The defined 
arrhythmic death outcomes are expressed as true or false predictions (T or F) by positive or negative algorithmic tests (P or n). The 
same edited n-n data set was used for the comparative algorithmic analyses

Nonlinear deterministic algorithmsa–d

PD2i  1.4 PD2i  1.4 DFA-OUT DFA-IN 1/fS  -1.07 1/fS  -1.07 ApEn  1.0 ApEn  1.0

TP = 20 Tn = 130 TP = 6 Tn = 52 TP = 6 Tn = 149 TP = 4 Tn = 161

FP = 96 Fn = 1e FP = 218 Tn = 4 FP = 75 Tn = 14 FP = 57 Fn = 16

Sen = 95** SUR = 65 Sen = 30 SUR = 17 Sen = 30 SUR = 65 Sen = 20 SUR = 65

SPe = 58** OUT = 0 SPe = 19 OUT = 6 SPe = 67 OUT = 3 SPe = 74 OUT = 9

ReL  23** n = 312 ReL = 0.13 n = 312 ReL = 0.86 n = 312 ReL = 0.80 n = 312

Linear stochastic algorithmsf–i

SDNN  65 SDNN  65 MNN  750 MNN  750 LF/HF  1.6 LF/HF  1.6 LF(ln)  5.5 LF(ln)  5.5

TP = 19 Tn = 55 TP = 19 Tn = 154 TP = 7 Tn = 188 TP = 19 Tn = 90

FP = 197 Fn = 6 FP = 98 Fn = 6 FP = 62 Fn = 18 FP = 160 Fn = 6

Sen = 76 AF = 29 Sen = 76 AF = 29 Sen = 28 AF = 29 Sen = 76 AF = 29

SPe = 23 OUT = 6 SPe = 61 OUT = 6 SPe = 76 OUT = 8 SPe = 36 OUT = 8

ReL = 0.93 n = 312 ReL = 4.33* n = 312 ReL = 1.16 n = 312 ReL = 1.69 n = 312

Notes: **p  0.001; binomial probability test; with multiple-test alpha-protection (alpha level required is 8-fold smaller); expansion of (P + Q)n × eightfold protection implies 
p = 0.00016; also p  0.001 by Fisher’s exact test for row vs column associations in a 2 × 2 contingency table; all others in Table 1 are not significant by binomial probability 
test or Fisher’s exact test. aPD2i, point correlation dimension (positive if minimum PD2i  1.4 dimensions, with a systematic low-dimensional excursion of more than 1 PD2i 
value); cases of randomized-phase SUR were identical to the cases of %n  30%. bDFA-OUT, detrended fluctuation analysis (α1 [short-term] is positive, if outside normal range 
of 0.85 to 1.15); randomized-sequence surrogate rejections (SUR). c1/f S, 1/f Slope (positive, if  -1.075 for slope of log[microvolts2/hz] vs log [hz] integrated over 0.04 hz 
to 0.4 hz). SUR = randomized phase. dApen, approximate entropy (positive with cut-point 1.0 units, slope distance). SUR = randomized phase. eThis single AD patient died at 
79 days and may not be a true FN; the ECG was recorded prior to two normal clinical ECGs, followed by a third positive one (ie, the patient could be classified as an “evolving 
acute Mi” who may have been Tn at the time the eCg was recorded). fSDnn, standard deviation of normal beats (positive, if 65 msec; for positive, if  50 msec, TP = 17). 
gMnn, mean of normal R-R intervals (positive, if 750 msec). hLF/hF, low frequency power (0.04 to 0.15 hz)/high frequency power (0.15 to 0.4 hz) (positive, 1.6). iLF(ln), 
low frequency power (0.04 to 0.15 hz), normalized by natural logarithm (positive, 5.5).
Abbreviations: AF, atrial fibrillation-rejection (required for linear stochastic algorithms);  AMI, acute myocardial infarction; ECG, electrocardiography; OUT, outlier-rejection; 
REL, relative risk; SEN, sensitivity (%); SPE, specificity (%); SUR, surrogate-rejection; N, total number of subjects.
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surrogate test (SUR), which means that some of the previously 

unaccepted files were accepted by this different surrogate 

test. When the randomized-phase surrogate was used for 

DFA, however, no significant change in the results occurred. 

For the linear algorithms, all cases of AF were eliminated 

a priori as is customary, with some of the high AR files being 

eliminated as outliers (OUT), but others remained in the 

analyses as is customary, with dependence on the removal of 

arrhythmias and artifacts for the N-N data. The results show 

that the sensitivity of the prediction of AD is relatively high 

for several algorithms, but sensitivity and specificity together 

are statistically significant for only the PD2i (p  0.001) and 

Mean N-N (MNN, p  0.001).

Relative risk (REL) is a statistic that considers the 

true-positive (TP)/false-negative (FN) ratio adjusted for test 

outcome proportions (REL = TP/FN × [TN + FN/TP + FP]). 

It emphasizes the impact of the medically undesirable FN 

type of error, as this number is in the denominator. Table 2 

shows that REL was considerably higher across all subgroups 

for the PD2i algorithm compared to all of the others, and 

that only the PD2i was statistically significant by both 

parametric and nonparametric statistics (p  0.001) across 

all subgroups. MNN and LF(ln) were significant in some of 

the subgroups. The PD2i is a statistically significant predictor 

of AD in both the AMI and post-MI patients, subgroups 

that constitute the usual types of cardiac patients admitted 

to hospitals. But perhaps even more importantly the PD2i 

algorithm is the only statistically significant predictor of AD 

in the non-AMI and nonpost-MI subgroups.

The sensitivity and relative risk for predicting AD was 

highest at all time points (30, 180, and 360 days) for the 

nonlinear PD2i algorithm (p  0.001). The sensitivity at 

30 days was 100%, specificity 58%, and relative risk 100 

(p  0.001, FN = 1 was used for calculation, instead of 0); 

the sensitivity at 180 days was 91%, specificity 58%, and 

relative risk 11.4 (p  0.001); sensitivity at 360 days was 

95%, specificity 58%, and relative risk 11.4 (p  0.001).

No rationale exists to support the hypothesis that the 

nonlinear measures should have a linear regression with AD 

occurrence, but this common hypothesis was tested anyway. 

The logistic regression analysis showed only the mean N-N 

(MNN) variable to have a statistically significant regression 

(negative) with the probability of AD (p  0.001; odds ratio 

1.02, concordance-agreement between prediction of death 

and whether patient died = 82%). Adjustments by multiple 

variables (eg, left ventricular ejection fraction, troponins, 

hypertension, diabetes, current beta-blockers) also were not 

significant.

The data were insufficient in number to enable evaluation 

of the specific effects of cardioactive drugs or other interven-

tions on the AD and non-AD results. Of the 30 ADs, however, 

it was noted that only nine (30%) were on beta-blocker drugs 

at the time of death. Three patients in the study received 

an implanted cardiac defibrillator and none died or had the 

device trigger within one year of follow-up.

Figure 1 shows sample data from three typical patients. 

One was a normal (NORM) control that was enrolled 

but turned out to have gastroesophageal reflux disorder 

(GERD). Another had an AMI, but lived for at least the year 

of follow-up (LIVED). The third had a matched MI, but 

manifested arrhythmic death (AD) after hospital discharge. 

In the AMI/AD patient (Figure 1D) both transient and rather 

sustained PD2i excursions can be seen, each of which goes 

below the horizontal criterion line at PD2i = 1.4. These two 

types of PD2i trajectories are examples of what constitutes 

a positive PD2i test.

Individual point-estimates of the PD2i that met all the 

scaling and convergence criteria determined the fractional 

Table 2 Subgroup comparison of algorithms using the relative 
risk (ReL) statistic.   All subjects had eCgs recorded and follow-up 
completed (n = 312). Rejections of noisy n-n data were the 
same as in Table 1, and these rejections included all cases of 
atrial fibrillation and high arrhythmia ratea. The arrhythmic death 
outcomes were expressed as true or false predictions (T or F) 
by positive or negative tests (P or n), and then the ReL was 
determinedb

AMI non-AMI post-MI nonpost-MI

PD2i 7.39** 12.17** 4.51* 16.85**

DFA 0.70 0.44 0.63 0.48

1/f Slope 1.67 0.56 0.87 0.90

Apen 0.50 1.44 0.00 0.72

SDnn 0.68 1.75 0.83 1.34

Mnn 1.94 20.82** 3.00 3.61*

LF/hF 1.08 0.66 2.52 0.61

LF(ln) 1.08 5.13* 0.73 2.09

Notes: aAtrial fibrillation, high sinus arrhythmia and high ventricular ectopy tend to 
randomize the heartbeats, with or without movement artifacts removed; rejection 
occurs when the edited normally-conducted beats are not statistically different 
from their surrogate. The randomized phase surrogate rejections were used for all 
algorithms, except DFA, which used the randomized sequence surrogate (ie, it is not 
sensitive to phase). bReL = TP/Fn × [Tn + Fn/TP + FP]. *p  0.05, Fisher exact Test 
for row vs column association in 2 × 2 contingency table; the  sign means that ReL 
went to infinity because FN = 0; the values shown used Fn = 1; **p  0.001.
Abbreviations: PD2i, point correlation dimensions; DFA, detrended fluctuation 
analysis; 1/f S, 1/f Slope;  Apen, approximate entropy; SDnn, standard deviation of 
normal beats; Mnn, mean of normal R-R intervals; LF/hF, low frequency power/high 
frequency power; LF(ln), normalized by natural logarithm;  AMi, documented acute 
myocardial infarction; non-AMi, documented no AMi; post-Mi, documented history of 
myocardial infarction; nonpost-Mi, no history of myocardial infarction.
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acceptance ratio, %N. If a %N 30% was found for a 

given N-N interval series, then it was also found that the 

mean PD2i could not distinguish between that N-N series 

and its randomized-phase surrogate (SUR). The variation in 

%N displayed among the three different cases in Figure 1 

is typical of the %N variation: %N for GERD = 53%, for 

AMI/LIVED = 57%, AMI/AD = 92%.

Cumulative all-cause deaths were examined as a function 

of the time of death after the ECG recording. Most ADs, 

that is, 26 of the 30 (86.7%), were distributed out to only 

180 days following the recording of the ECGs, with the high-

est rate occurring within the first two weeks. The majority 

of the noncardiac deaths occurred in elderly subjects (mean 

age = 77 years) and after 180 days. Two noncardiac deaths 

occurred earlier than 180 days and were terminal cancer or 

sepsis-related deaths.

Examination by the NCA of the files that passed the 

randomized-phase surrogate test revealed only three cases 

that, when low-level noise was halved, had an effect on their 

PD2i test result. These files were all marginally-negative 

PD2i test outcomes and each had: 1) low-dimensional PD2i’s 

well below 3.0 (75%) with a mean below 4.0, 2) a “flat” 

appearance of the N-Ns (SD of 400 N-Ns 17 msec), and 

3) a high heart rate (25 or more N-Ns 710 msec). Removal 

of the “noise-bit” from each R-R data-point brought the 

background noise in these files below the tolerance level and 

thus converted these marginally-negative results to clearly 

positive PD2i Tests. The TZA was qualified for use in nine 

cases, with only one being an AD patient.

There were insufficient data in the ED cohort to consider 

multi-test approaches to the prediction of AD. Only 21 ADs 

with useful data were available to examine independent inter-

actions among the various algorithms, most of which were 

not significant in their AD-predictability. It is estimated that 

more than twice this number would be required for sufficient 

b-power.45 The b-powers for the contingency-table results 

shown in Table 1 were greater than 90%.

Discussion
interpretation of results
The goal was to find the best algorithm for analyzing brief 

R-R and N-N data recorded from ED patients and predicting 

prospectively an AD outcome. The comparative results in 

312, consecutively-enrolled, low-to-high-risk, ED patients 

with all clinical and ECG data are shown in Tables 1 and 2, 

which indicate that only the PD2i is statistically significant 

across all sub-groups. The results are observed for each of 

the various algorithms run on the same data set (blinded) with 
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Figure 1 Power spectra, R-R intervals, and associated PD2is of three representative patients. A) The power apectra of the edited heartbeats (n-n) is shown for a normal 
patient with gastroesophageal reflex disorder (GERD), a patient with an acute myocardial infarction (AMI) who lived for at least the one year of follow-up (LIVED) and a patient 
with a matched AMi who died of arrhythmic death (AD) after discharge. B) The R-Rs (unedited) and the corresponding PD2is of the geRD patient. C) The R-Rs (unedited) 
and corresponding PD2is of the AMi, LiVeD patient. D) The R-Rs (unedited) and corresponding PD2is of the AMi, AD patient.
Notes: R-R values are in milliseconds, PD2is are in dimensions (degrees of freedom); the horizontal bar in B through D is at PD2i = 1.4.
Abbreviations:  AD, arrhythmic death; AMI, acute myocardial infarction; GERD, gastroesophageal reflux disorder; LIVED, lived for at least one year of follow-up; NORM, 
normal patient; PD2i, point correlation dimensions.
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the same surrogate tests used to exclude data for excessive 

noise (eg, from atrial fibrillation, high arrhythmia rates, 

movement artifacts and inherent recording noise). The only 

other a priori exclusion for the ECG was a paced rhythm. All 

cases of atrial fibrillation and high arrhythmia rate (10% 

of beats) were excluded by the surrogate-tests.

The PD2i is a nonlinear algorithm that is time-dependent 

and insensitive to data nonstationarities. Its underlying model 

does not make any presumptions about the data, including 

that for stationarity. The linear stochastic algorithms require 

random distribution of the RRi intervals around a mean, and 

the other nonlinear measures presume data stationarity and 

are not time-dependent. The PD2i itself shows the N-N data 

to be both nonrandom (the degrees of freedom are low and 

finite) and nonstationary (significant changes occur over 

small windows of time, as in Figure 1D). The time-dependent 

and nonstationary capabilities of the PD2i, together with 

the consideration of inherent noise and its treatment by 

the NCA and TZA noise-handling routines, would seem to 

underlie the high predictive ability of the PD2i algorithm 

compared to all of the others when used in the same data 

set of  brief 15-min ECGs. These PD2i results are confirmed 

by other recent publications from our Group in brief 15-min 

ECGs.16,46,49

All of the tested algorithms have been shown in previous 

studies to have statistical significance and adequate powering, 

but none used the brief R-R intervals required for emergency 

situations or surrogate testing for noise content. Noise is espe-

cially important to consider, as the noise gets amplified during 

any nonlinear analysis.27 There were 65 patient files (21%) 

that were rejected from study (Table 1, SUR, randomized 

phase surrogate) for each of the nonlinear algorithms, except 

DFA. For DFA, which used a different surrogate test (Table 1, 

SUR, randomized sequence surrogate) only 17 (5.5%) were 

surrogate-rejected; when the same exclusions were made 

using the randomized-phase surrogate test, the DFA results 

were still not significant. The DFA algorithm is a significant 

predictor when using 24-hour data length,6 but for a brief 

15-min ECG sample, obtained in an emergency situation, 

DFA does not seem to have significant AD-predictability. 

Nor do any of the other algorithms, except for mean N-N and 

normalized LF power, which do show some predictability, 

but only in some subgroups.

Of the 65 rejections made by the randomized phase 

surrogate test, 29 were for files that manifested AF and 36 

that had high AR (atrial and/or ventricular, 10% of beats). 

AF and the removal of spurious results that were outliers 

were the rejections made for the algorithms based on the 

linear stochastic model, as these are the ones typically made 

in published results.

The PD2i test was considered positive when PD2i  1.4, 

which is an a priori cut-point, observed in a previous clinical 

retrospective study.8 The ROC-curve in a recent publication16 

confirms 1.4 as the cut-point (area under the curve = 0.91). 

All AD patients in the present study were PD2i-positive with 

the exception of the single FN case, a case in which two 

of three clinical ECGs were normal (eg, as in an evolving 

thrombosis). The sensitivity and specificity were statistically 

significant by both parametric and nonparametric statistics 

(Table 1). The relative risk statistic (Table 2) shows that only 

the PD2i of the brief R-R intervals is a statistically significant 

predictor of AD in all subgroups. The PD2i algorithm also 

showed considerably larger relative risk values than any of 

the other linear or nonlinear algorithms, a result directly 

related to its low FN rate.

Voss and colleagueses in a recent comparative study48 and 

review12 suggested that although DFA may not work well in 

a data set of brief R-R intervals, other newer algorithms may 

(eg, symbolic dynamics, renormalized entropy and sample 

entropy). But entropy measures (eg, patterned entropy, 

largest lyapunov exponent, dynamic determinism), and 

others, did not perform well when pitted against PD2i,8 likely 

because they are not time-dependent, are sensitive to data 

nonstationarities, and require greater data length.

de Araujo-Goncalves and colleagues14 showed the relative 

merits of GRACE, PURSUIT, and TIMI risk-scoring methods 

for defining a high-risk cohort in which to asses myocardial 

revascularization. Such cohorts, however, may have missed 

the inclusion of subjects of low-to-moderate risk that were 

included in this current study. Six of the 30 ADs (20%) were 

in patients admitted to low-level telemetry observation for 

24 hours and discharged only to die later at home. The PD2i 

correctly stratified risk in these subjects, as well as in non-

AMI and nonpost-MI subjects (Table 2).

The measure of accepted PD2is relative to their total 

number (%N) is a useful quantifier of noise in the data 

like surrogate testing. The %N Test (ie, reject the file if 

%N  30%) identifies the same data files that are rejected by 

randomized-phase surrogate testing, and this correlation of 

the two tests has been confirmed in public ECG data.49 It is 

concluded that the %N test can be calculated, along with the 

PD2i test, and thus avoid the more complex surrogate testing 

to reject data unfit for nonlinear analysis.

The NCA and TZA subroutines examine low-level noise 

in data that has already passed the %N or surrogate testing. 

The results showed that the NCA only needs to be applied 
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to the few marginally-negative PD2i cases and the TZA to 

only those few with a minimum PD2i that is almost at the 

criterion level for being positive (minimum PD2i in the 

range 1.4 to 1.6).43

The method of R-R interval determination should always 

be considered, as this is a source of low-level noise. The 

convexity-operator used in the current study has less than 

1-ms error. The noise-reducing and noise-handling methods 

used in conjunction with the %N test led to the sharpened 

accuracy of the PD2i algorithm and support the proposition 

that low-level noise in the data must be considered prior to 

application of any nonlinear algorithm.

The present prospective results confirm our earlier 

retrospective studies in brief (15-min) clinical ECG data that 

compared PD2i, ApEn, patterned entropy and other nonlin-

ear algorithms for risk-stratification in a high-risk cohort 

in which each patient had nonsustained ventricular tachy-

cardia and VF occurred within 24 hours8,21,50 In these prior 

retrospective studies, only the PD2i algorithm manifested 

high sensitivity, specificity, and relative risk. The present 

multicenter study shows that prospective prediction of AD 

by the PD2i in a data set of brief ECGs extends out to weeks 

or months, far beyond the 24-hour range examined in the 

earlier retrospective studies.

What the PD2i measures
There can be little doubt that cardiac vulnerability to lethal 

arrhythmogenesis is regulated by the brain and autonomic 

nervous system, for blockade of the descending effer-

ent pathways, either at the level of the frontal cortex51 or 

amygdala,52 the hypothalamus51 or fields of Forel,51 or the 

peripheral cardiac nerves,53 will prevent VF following 

coronary artery occlusion in an animal model. These higher 

neural systems all receive visceral sensory inputs as well 

as have outputs over autonomic effectors forming sensory-

motor regulatory loops. Each loop, besides regulating 

cardiac vulnerability, also regulates heart rate. The higher 

loops through the frontal cortex and amygdala regulate heart 

rate in “fight-or-flight”; the mid-level loops through the 

hypothalamus and mesencephalon regulate heart rate after 

changes in blood pH or temperature; the loops through the 

brainstem regulate the baroreflex and the respiratory sinus 

arrhythmia. This overlap in function of the cerebral centers 

explains why heart rate assessments can predict cardiac 

vulnerability to VF.

During quiet wakefulness each of these sensory-motor 

loops along the neural axis contributes to the regulation of 

the R-R intervals by an interaction on its own individual 

time scale. The degrees of freedom that result from the net 

interactions ranges from 4 to 6, as indicated in Figure 1 

(NORMAL). This type of tied-together regulation results in 

the erratic R-R interval series that is clinically referred to as 

the “normal sinus rhythm”. It is the physiological evolution of 

abnormal dynamics in this tied-together regulation that leads 

to the type of altered rhythm associated with susceptibility to 

AD in hospitalized patients (Figure 1, AD). This abnormal 

dynamics is related to a transient or sustained reduction in 

the number of degrees of freedom, an effect which implies 

greater momentary “cooperation” (integrated phase rela-

tionships) among the independent regulators. We do not yet 

know how this transient coordination actually comes about 

physiologically.

The denervated heart of the human transplant recipi-

ent manifests a resting dynamics of PD2i = 1.0, with little 

variation.54 Besides denervation, the lowering of the heart-

beat PD2i to 1.0 can be achieved by blockade of the cerebral 

NMDA receptors.25 These receptors are synaptic mediators 

found in virtually all of the higher cognitive centers in the 

brain and brainstem. These two independent studies both 

indicate that it is the nervous system that produces the higher 

degrees of freedom found in the heartbeats of the normal 

subject. It is these higher degrees of freedom that are tran-

siently reduced in association with vulnerability to AD.

The rather brief swings of the PD2i to lower degrees of 

freedom suggests a momentary nonstationary coordination of 

interaction among the competing neural loops that determine 

the heartbeat dynamics. Enhancement of the coordination 

among these autonomic neural loops (ie, to PD2i  1.4) 

is somehow able to set the stage for the evolution of lethal 

arrhythmogenesis. The mechanisms for the momentary 

coordination of the afferent-efferent loops and the parallel 

enabling of lethal arrhythmogenesis in the ischemic heart are 

presently unknown, but there can be little doubt that these 

processes are organized within the brain and are projected 

onto the nodal and ventricular tissues of the heart through 

the autonomic nervous system.

The PD2i algorithm is a measure of autonomic 

regulation that, instead of being based on a linear stochastic 

model, like the standard deviation and power spectra, is a 

nonlinear measure that does not require any presumptions 

about the data in the underlying model. The motivation for 

developing the PD2i algorithm was the simple observa-

tion that the primary presumption of each linear stochastic 

algorithm is violated: the series of heartbeat intervals is not 

a sequence of independent numbers randomly distributed 

around a mean.
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Conclusions
We conclude that the PD2i algorithm, which is based on 

a nonlinear deterministic model, provides superior assess-

ment of R-R interval fluctuations in brief ECGs compared 

to measures based on either the linear stochastic model 

or other nonlinear ones, and thus provides the basis for 

a rapid, accurate, and cost-effective stratification of risk 

of AD among patients presenting in the ED and having 

low-to-high-risk of AMI  7%. The PD2i test can be 

made with only a 15- to 20-min sample of the resting ECG 

(ie, 1,000 R-Rs to resolve PD2is  3.0). Once recorded, 

the brief digital ECG can be examined with automated 

software for its noise content, that is, to determine whether 

or not the data are suitable for nonlinear analysis. The PD2i 

acceptance ratio (%N) can detect and thus exclude data with 

large amounts of noise that are unfit for nonlinear analysis 

(eg, cases of AF and high AR  10% of beats). The NCA 

and TZA are important adjuncts to the PD2i analysis that can 

detect and treat low-level background noise to keep it below 

the ±5-integer noise-tolerance level that has been designed 

into the PD2i algorithm. The optimum PD2i criteria for 

determining risk of AD are, 1) low-dimensional excursion at 

or below PD2i = 1.4 degrees of  freedom, with 2) %N  30% 

and 3) background noise below ±5-integers SD in the defined 

marginally-negative cases. The use of the PD2i test on a 

large scale could potentially save lives as well as hospital 

resources.
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