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Introduction: MicroRNAs play a key role in neuropathic pain. In a previous study, miR-190a-5p 

was significantly downregulated in diabetic neuropathic pain (DNP). However, the role and 

pathological mechanism of miR-190a-5p in DNP still remain unclear.

Materials and methods: DNP model was established. The paw withdrawal thresholds were 

measured to assess the mechanical nociceptive response. Dual-luciferase reporter assay was used 

to confirm the target gene of microRNA. The expressions of microRNA, gene, and protein were 

detected by the quantitative real-time polymerase chain reaction or Western blot. The levels of 

IL-1β and IL-6 were detected with the enzyme-linked immuno sorbent assay.

Results: Compared with the control sample, the expression of miR-190a-5p was decreased and 

SLC17A6 was increased in the spinal tissue from those developing DNP. The bioinformatics 

and luciferase reporter assay demonstrated that SLC17A6 is a direct target of miR-190a-5p. Up-

regulation of miR-190a-5p and inhibition of SLC17A6 could significantly weaken the painful 

behavior and reduce IL-1β and IL-6 level in DNP.

Conclusion: miR-190a-5p is involved in DNP via targeting SLC17A6, and miR-190a-5p and 

SLC17A6 may be the therapeutic targets of this disease.

Keywords: miR-190a-5p, ,DNP, spinal tissue, painful behavior, IL-1β and IL-6, SLC17A66

Background
Diabetes neuropathy is the floorboard of the multiple lesions in the nervous system 

and is one of the most common, complex, and serious complications for diabetic 

patients, which is caused by the status of chronic high blood glucose.1–3 It is involved 

in any part of whole-body peripheral nervous system, including sensory nerve, motor 

nerve, and autonomic nerve, characterized by physical pain, hypoesthesia, hot and 

cold numbness, and spontaneous pain, and seriously affects the life quality of these 

patients.2,4,5 Nowadays, diabetic neuropathy is considered to be a very painful condi-

tion and urgent treatment is required.6,7 Therefore, it is important to understand the 

mechanisms underlying diabetic neuropathic pain (DNP) and provide a new strategy 

to treat this disorder.

MicroRNAs are a kind of small non-coding RNA, which are involved in the post-

transcriptional regulation of gene expression by binding the translation section leading 

to either mRNA degradation or translational inhibition and have been found to regulate 

crucial biological processes, including proliferation, differentiation, and apoptosis.8,9 

Emerging evidence has shown that some microRNAs are implicated in the gene regula-

tion of neural plasticity, pathological nerve pain, and pain  sensitization.10–12 Recently, 
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some studies have shown that abnormal microRNAs are pres-

ent in those patients with painful disorders, such as complex 

regional pain syndrome, osteoarthritis, and fibromyalgia.13–15 

In addition, abnormal microRNAs have been reported to be 

involved in the progress of pain generation and maintenance.16 

In a previous experiment, Gong et al showed that 

21 microRNAs were significantly upregulated and other 

21 microRNAs were downregulated in diabetes neuropathy 

through microRNA microarrays, and miR-190a-5p was vali-

dated to be the most significantly downregulated in diabetes 

neuropathy.17 However, the pathological mechanism of this 

microRNA under diabetes neuropathy still remains unclear. 

Therefore, in this study, the roles and mechanisms of this 

microRNA in diabetes neuropathy were investigated, and the 

results may provide a new strategy of treating this disease.

Materials and methods
Animals
Male Balb/c mice (8 weeks) were purchased from the Medical 

Research Center of Sichuan Academy of Medical Sciences 

& Sichuan Provincial People’s Hospital. They were housed 

in separate cages at constant room temperature, under a 

12:12 light–dark cycle, with optional food and water. The 

animals were kept to acclimate for 1 week before the experi-

ment. Test evaluations were performed between 8:00 AM 

and 6:00 PM. All experiments were approved by the animal 

care committee of Sichuan Academy of Medical Sciences 

& Sichuan Provincial People’s Hospital and were carried 

out according to the guidelines of the National Institutes of 

Health on animal care, and the protocol was approved by the 

ethics committee of Sichuan Academy of Medical Sciences 

& Sichuan Provincial People’s Hospital.

DNP model
DNP model was established as described in a previous 

study.17 Briefly, diabetes model was induced under a single 

intraperitoneal injection of streptozocin (STZ) (Sigma, St 

Louis, MO, USA) at a dose of 200 mg/kg body weight after 

an overnight fast.18 STZ was dissolved with fresh citrate buf-

fer (0.1 N; pH 4.5) before injection. Control mice were only 

injected with citrate buffer without STZ. After 6 weeks, if 

the blood glucose levels of the mice were >300 mg/dL, they 

were considered to be diabetic and were allowed for the 

development of neuropathic changes.

Assessment of mechanical nociceptive 
responses
The up-down method was used to assess the mechanical sen-

sitivity, which was described previously.17,19,20 Briefly, the von 

Frey filament with logarithmically incremental stiffness was 

used to measure the paw withdrawal thresholds, 0.04–2.04 g 

(0.04, 0.07, 0.16, 0.4, 0.60, 1.0, 1.4, 2.04 g); the mid-value 

of the series was 0.4 g, which was applied first. The animals 

were firstly adapted for 1 week in the test room, then, the 

corresponding stimulation method was evaluated in advance 

for 30 minutes before the formal testing. If paw lifting, lick-

ing, and shaking appeared within 5 seconds of the application 

of the filament for the mouse, it was regarded as a positive 

response. Then, a thin filament was applied. A significant 

reduction in the paw withdrawal threshold indicated a tactile 

allodynia. This method was first performed 3 times before 

STZ injection to establish the basal pain level. Then, for 

the next few weeks, mechanical nociceptive response was 

assessed once per week. 

RNA isolation and quantitative real-time 
polymerase chain reaction (qRT-PCR)
The lumbar spinal dorsal horn was separated from mice, and 

total RNA from tissues was isolated with the RNeasy plus mini 

kit (Qiagen, Hilden, Germany), according to the manufactur-

er’s protocols. Total RNA concentrations were detected by the 

NanoVue plus (GE Healthcare, Pittsburgh, PA, USA) for RNA 

concentrations. About 5 µL RNA was added into 15 µL reverse 

transcribed (RT) reaction to generate complementary DNA 

(cDNA) by the PrimeScript RT reagent Kit (TaKaRa, Dalian, 

China) according to the manufacturer’s protocols. MicroRNAs 

were measured with the TaqMan miRNA assays, and U6 was 

used as an internal control (at 95°C for 10 minutes, followed 

by 95°C for 15 seconds [40 cycles] and 60°C for 1 minute 

[40 cycles]). The primers of the relative gene were as follows: 

SLC17A6: 5′-gcggaggcaaagttatcaag-3′ (forward), 5′-cctg-

gaatctgggtgatgat-3′ (reverse). The expression of microRNAs 

or gene was evaluated based on the threshold cycle (Cq) as 

n = 2− ΔΔCq, where ΔCq = Cq related microRNA–Cq U6 and 

ΔΔCq = ΔCq experimental–ΔCq control.

Prediction of the target gene
miRanda, TargetScan, and PicTar databases were used to predict 

the potential target genes of miR-190a-5p. Among those target 

genes, solute carrier family 17 (sodium-dependent inorganic 

phosphate cotransporter), member 6 (SLC17A6) had a bind-

ing site in the 3′-untranslated regions (UTR) of miR-190a-5p.

Dual-luciferase reporter assay
Luciferase reporter vector was purchased from Saierbio 

(Tianjin, China), HEK293T cells were purchased from the 

Institute of Biochemistry and Cell Biology (Chinese Acad-

emy of Sciences, Shanghai, China), and the QuickChange 
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Lightning kit (Stratagene, Shanghai, China) was used for 

site-directed mutagenesis. Expressions of miR-190a-5p plas-

mid, SLC17A6 wild-type (WT), and mutated (Mut) 3′-UTR 

luciferase reporter were co-transfected into HEK293T cells. 

Renilla luciferase (Promega, Shanghai, China) served as 

control. The luciferase signal was measured with the Dual-

Luciferase Reporter Assay System (Promega).

Western blot
The lumbar spinal dorsal horn was homogenized in a urea 

protein lysis buffer. Lysis buffer was used to extract whole 

cell lysates for Western blotting, and protein assay kit 

(Beyotime, Shanghai, China) was used to determine the 

total protein concentration according to the manufacturer’s 

instructions. Total protein (20 µg) was boiled, then chilled 

and separated, and finally transferred to the polyvinylidene 

fluoride membrane (Millipore Corporation, Billerica, MA, 

USA). The membranes were incubated overnight with pri-

mary antibody, and then incubated with secondary anti-rabbit 

or anti-mouse horseradish peroxidase-conjugated antibodies 

according to the manufacturer’s protocols. The primary anti-

bodies included a rabbit anti-SLC17A6 antibody (Synaptic 

Systems, Goettingen, Germany) and a mouse anti-β-actin 

antibody (Sigma). The protein expression of SLC17A6 was 

normalized to the β-actin.

ELISA
The lumbar spinal dorsal horn samples were suspended in a 

lysis buffer and phenylmethanesulfonyl fluoride, incubated 

on ice for 5 minutes, and centrifuged (10,000 × g, 4°C) for 

10 minutes. Supernatants were collected, and the protein 

content was detected by the MicroBCA assay (Thermo 

Scientific, Bonn, Germany). IL-1β and IL-6 were detected 

with the ELISA kit (R&D Systems, Wiesbaden, Germany), 

according to the manufacturer’s instructions. The iMark 

microplate reader (Bio-Rad, Munich, Germany) was used to 

detect the absorbance at 450 nm (with 540 nm as reference).

Transfection of miR-190a-5p
Lentiviral vectors were generated by Saierbio, which had the 

ability to upregulate miR-190a-5p and were enriched with 

overspeed centrifugal method. Lentivirus carrying up-regu-

lation of miR-190a-5p was injected into subarachnoid space 

of DNP mice by microinjection and induce up-regulation 

of miR-190a-5p in the lumbar spinal dorsal horn of DNP 

mice. Lentivirus carrying empty vectors was also injected 

into subarachnoid space of DNP mice by microinjection and 

these DNP mice were served as the control group. Briefly, the 

enriched lentiviral vectors with upregulation of miR-190a-5p 

were injected into the subarachnoid space twice, 2 µL every 

time. While injecting along the spinal cord, if the mice had tail 

swing behavior, the enriched lentiviral vectors were injected 

within 60 seconds. After injection, the DNP mice were housed 

in separate cages for 3 days, and mechanical nociceptive 

responses were assessed at fourth week after injection.

SLC17A6 inhibitor injection
The SLC17A6 inhibitor, Chicago Sky Blue 6B (CSB6B; 

Sigma-Aldrich, St. Louis, MO, USA), was dissolved in artifi-

cial cerebrospinal fluid (NaCl 147 mmol/L, KCl 2.7 mmol/L, 

CaCl
2
 1.2 mmol/L, MgCl

2
 0.85 mmol/L, Na

2
HPO

4
 1.0 mmol/L, 

pH 7.4), and the concentration was 5 µg/µL. Then, artificial 

cerebrospinal fluid with SLC17A6 inhibitor and without 

SLC17A6 inhibitor was injected into subarachnoid space 

twice, 5 µL every time. After injection, the DNP mice were 

housed in separate cages for 3 days, and mechanical nocicep-

tive responses were assessed at the first week after injection.

Statistical analysis
All data were analyzed by using SPSS 20.0 and GraphPad 

Prism 5.0. The data were presented as the mean ± standard 

deviation. Unpaired and paired Student’s t-tests were used for 

statistical analysis of the continuous data. Spearman’s corre-

lation analysis was used to evaluate the correlation. A p-value 

<0.05 was considered a statistically significant difference.

Results
Characteristics of diabetic mice induced 
by STZ and mechanical allodynia
STZ was used to induce diabetes in mice. The results showed 

that compared with the basal blood glucose level, blood glu-

cose level was significantly increased from the second week 

in mice induced by STZ. Compared with the basal blood 

glucose level, blood glucose level showed no statistical dif-

ference in the control mice. Compared with the control mice, 

the blood glucose level was significantly increased from the 

second week in mice induced by STZ (Figure 1A).

The results also showed that the basal body weight and 

paw withdrawal thresholds significantly decreased from the 

third week in diabetic mice. Compared with the basal body 

weight and paw withdrawal thresholds, there was no statistical 

difference in the control mice. Compared with the control 

mice, these were also significantly decreased from the third 

week in diabetic mice (Figure 1B and C).

Spearman’s correlation analysis was used to evaluate the 

correlation between blood glucose level and paw withdrawal 
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thresholds. The results showed that there was a negative 

correlation between the blood glucose level and  mechanical 

threshold, r=–0.98 (95% confidence interval =–0.994 to 

–0.981) (Figure 1D).

The expression of miR-190a-5p in lumbar 
spinal dorsal horn from DNP
The lumbar spinal dorsal horn was separated from mice, and 

the expression of miR-190a-5p was detected by qRT-PCR. 

The results showed that compared with the basal expression 

and control mice, miR-190a-5p was significantly downregu-

lated in diabetic mice from the fourth week to the sixth week 

(Figure 2A).

SLC17A6 was the target gene of miR-
190a-5p
According to target gene prediction analysis, SLC17A6 

had a putative binding site in the 3′-UTR of miR-190a-5p 

and might be the target gene of miR-217 (Figure 3A). The 

dual-luciferase reporter assay method was used to further 

investigate whether miR-190a-5p directly targeted SLC17A6. 

The results showed that miR-190a-5p inhibited luciferase 

activity under 3′-UTR of WT SLC17A6 (Figure 3B). In addi-

tion, miR-190a-5p did not inhibit luciferase activity under 

3′-UTR of Mut SLC17A6 (Figure 3C).

The expression of SLC17A6 in lumbar 
spinal dorsal horn from DNP
The lumbar spinal dorsal horn was separated from mice, and 

the expression of SLC17A6 was detected by qRT-PCR and 

Western blot. The results showed that compared with the basal 

expression and control mice, the gene and protein expression 

of SLC17A6 was significantly upregulated in diabetic mice 

from the fourth week to the sixth week (Figure 2B and C).

The therapeutic effect of miR-190a-5p in 
DNP
The lentivirus carrying up-regulation of miR-190a-5p or empty 

vectors was injected into subarachnoid space of DNP mice by 

microinjection, and the levels of miR-190a-5p, SLC17A6, 

Figure 1 The characteristic of diabetic mice induced by streptozocin (STZ) and mechanical allodynia. (A) Change in blood glucose level; (B) change in body weight; (C) 
change in paw withdrawal thresholds; (D) correlation between blood glucose level and paw withdrawal thresholds.
Note: **p-value<0.01 was considered to represent a statistically significant difference.
Abbreviation: w, week.
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Figure 2 The expression of miR-190a-5p and SLC17A6 in lumbar spinal dorsal horn from diabetic mice. (A) The expression of miR-190a-5p; (B) the gene expression of 
SLC17A6; (C) the protein expression of SLC17A6.
Note: **p-value<0.01 was considered to represent a statistically significant difference.
Abbreviation: w, week.
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Figure 3 The dual-luciferase reporter assay of miR-190a-5p. (A) Putative mmu-miR-190a-5p-binding sequence in the SLC17A6 3′-UTR and the site-directed mutant 
SLC17A6 3′-UTR. (B, C) The WT or Mut reporter plasmids or NC or miR-190a-5p mimics were co-transfected into HEK293T cells.
Note: **p-value<0.01 was considered to represent a statistically significant difference.
Abbreviations: Mut, mutated; NC, normal control; WT, wild-type.
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IL-1β, and IL-6 were detected by qRT-PCR, Western blot, 

and ELISA method. The results showed that after injection, 

compared with the blank control lentivirus, miR-190a-5p was 

upregulated, SLC17A6 was downregulated, IL-1β and IL-6 

were decreased in lumbar spinal dorsal horn under lentiviral 

vectors with the upregulation of miR-190a-5p (Figure 4A–E). 

Moreover, compared with paw withdrawal thresholds before 

injection and control lentiviral vectors, paw withdrawal thresh-

olds were significantly increased under lentiviral vectors with 

upregulated expression of miR-190a-5p (Figure 4F). 

The therapeutic effect of 
SLC17A6 inhibitor in DNP
SLC17A6 inhibitor was injected into subarachnoid space 

in vivo through intrathecal injection, and the expression of 

SLC17A6, IL-1β, and IL-6 was detected by Western blot and 

ELISA. The results showed that after injection, compared 

with the control, SLC17A6 was downregulated and IL-1β 

and IL-6 were also decreased in the lumbar spinal dorsal horn 

under SLC17A6 inhibitor (Figure 5A–C). Moreover, com-

pared with paw withdrawal thresholds before injection and 

control, paw withdrawal thresholds were also significantly 

increased under SLC17A6 inhibitor (Figure 5D).

Discussion
The animal model induced by STZ is a well-recognized 

animal model of diabetes.21 When the blood glucose levels 

of diabetic mice are significantly increased and body weights 

are significantly decreased after STZ injection, a supporting 

diabetes model is successfully established. After the diabetes 

model, when the paw withdrawal thresholds from diabetes 

mice are significantly decreased, the DNP model is success-

fully established. Furthermore, some studies have shown that 

this method could be used to duplicate the DNP model.17,22 

These confirm that the DNP model developed by this method 

is successful. Although there are many studies in the field of 

neuropathic pain, the research on DNP is still less studied. 

Nowadays, diabetic patients are increasing, and DNP is one 

of the most common, complex, and serious complications 

for diabetic patients. Therefore, it is necessary to understand 

the pathophysiological mechanisms of DNP, and better treat-

ments for this disease need to be provided. 

MicroRNAs are small, non-coding RNAs that have the 

ability of regulating protein-coding genes by binding the 

translation section, leading to either mRNA degradation or 

translational inhibition. More evidences show that microR-

NAs are dysregulated in the progress of DNP and play 
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Figure 4 The therapeutic effect of miR-190a-5p in diabetic neuropathic pain. (A) The expression of miR-190a-5p; (B) the gene expression of SLC17A6; (C) the protein 
expression of SLC17A6; (D, E) the level of IL-1β and IL-6; (F) change in paw withdrawal thresholds.
Note: **p-value<0.01 was considered to represent a statistically significant difference.
Abbreviations: Before, before injection with lentiviral vectors; After, at the fourth week after injection with lentiviral vectors.
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important roles in these diseases.23 In previous experiments, 

miR-155 was significantly upregulated, and the l-arginine 

and ibuprofen could delay the development of tactile 

allodynia and inhibit the expression of miR-155 in DNP.22 

Another study also showed that a large number of microRNAs 

were dysregulated in DNP, and miR-190a-5p was validated to 

be the most significantly downregulated in DNP.17 However, 

the pathophysiological mechanism of miR-190a-5p in DNP 

remains unclear. In this study, the DNP model was dupli-

cated and the miR-190a-5p was detected in DNP; the results 

showed that miR-190a-5p was significantly downregulated in 

the lumbar spinal dorsal horn from DNP induced by STZ. In 

addition, lentivirus carrying up-regulation of miR-190a-5p 

was injected into subarachnoid space of DNP mice by micro-

injection and  could improve pain behavior of these mice. 

Therefore, miR-190a-5p played an important role in DNP 

and could be considered as the therapeutic target for DNP.

Then, the dual-luciferase reporter assay was used to 

confirm miR-190a-5p directly targeted SLC17A6, in addi-

tion, the gene and protein expression of SLC17A6 was 

significantly upregulated in DNP. The solute carrier family 

17 (sodium-dependent inorganic phosphate cotransporter), 

member 6 (SLC17A6) is also known as VGLUT2, the family 

of transporters that package glutamate into synaptic vesicles, 

and plays a key role in the progress of most fast excitatory 

synaptic transmission in the vertebrate nervous system.24 

It had been reported that this was involved in neuropathic 

pain, for example, SLC17A6 was significantly upregulated 

in related nociceptors, deletion of SLC17A6 from these 

reduced acute heat and mechanical and chemical pain 

responsiveness.25, SLC17A6 was significantly upregulated 

in rat dorsal root ganglia and spinal cord following spared 

nerve injury.26 Finally, SLC17A6 was transiently upregulated, 

and the level was returned to the basal level by 36 hours in 

neuropathic pain in spared nerve injury model.27 However, 

the expression of SLC17A6 in DNP remains unclear. In this 

study, the results found that SLC17A6 was also significantly 

upregulated in DNP. Therefore, SLC17A6 was also involved 

in the progress of DNP and played an important role in DNP. 

In addition, the therapeutic effect of SLC17A6 inhibitor 

in DNP was explored, and after treatment with SLC17A6 

inhibitor, painful behavior was also improved. Therefore, 
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Figure 5 The therapeutic effect of SLC17A6 inhibitor in diabetic neuropathic pain. (A) The protein expression of SLC17A6; (B, C) the level of IL-1β and IL-6; (D) change 
in paw withdrawal thresholds.
Note: **p-value<0.01 was considered to represent a statistically significant difference.
Abbreviations: Before, before injection with SLC17A6 inhibitor; After, at first week after injection with SLC17A6 inhibitor.
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SLC17A6 played an important role in DNP and could be the 

therapeutic target for DNP.

For the mechanisms of SLC17A6 in neuropathic pain, 

some studies have shown that SLC17A6 was involved in 

neuropathic pain after nerve injury through the aggrava-

tion of glutamate imbalance and upregulation of glu-

tamatergic signaling and also played a key role in the 

crucial mechanism of neuropathic pain.27 In addition, the 

upregulation of SLC17A6 lasted for a very short time, 

and this expression was returned to the basal level, which 

might be due to the inactivation of the TrkB signaling 

pathway.27,28 Moreover, upregulation of SLC17A6 might 

be related to brain-derived neurotrophic factor (BDNF), 

which was reported to increase the VGLUT expression 

in cultured neurons.27,28 Finally, Chicago Sky Blue 6B 

(CSB6B) selectively inhibited the function of VGLUTs 

and was reported to weaken inflammatory pain in related 

mouse model.29,30 In this study, the results showed that 

when miR-190a-5p was upregulated, SLC17A6 was 

downregulated, IL-1β and IL-6 were decreased in lumbar 

spinal dorsal horn, and painful behavior was improved. In 

addition, when SLC17A6 was inhibited, IL-1β and IL-6 

were also decreased in lumbar spinal dorsal horn, and pain 

behavior was also improved. Some studies have shown that 

the activation of glial and immune cells was involved in 

the pathogenesis of neuropathic pain in the peripheral and 

central nervous systems.31,32 Glial cells regulated the release 

of many inflammatory mediators, including chemokines 

and cytokines, which were very important to establish and 

maintain neuropathic pain.31,33 In diabetes model, microglia 

had been reported to be activated in the dorsal horn of the 

lumbar spinal cord and released many inflammatory media-

tors leading to neuropathic pain.3,34 Therefore, glial cells 

may play an important role in the development of diabetes 

neuropathy pain; in these cells, downregulation of miR-

190a-5p regulates the expression of SLC17A6 and raises 

inflammatory response and leads to diabetes neuropathy 

pain. In addition, in these cells, miR-190a-5p is increased 

and SLC17A6 is decreased, inflammatory response is 

weakened, and diabetes neuropathy pain can be improved. 

Conclusion
In conclusion, first, the results of this study confirm the 

expression of miR-190a-5p in DNP. Then, the results verify 

that SLC17A6 is the target gene of miR-190a-5p. Moreover, 

they show that miR-190a-5p contributes to DNP via targeting 

SLC17A6. Finally, they provided a new strategy of treating 

this disease.
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