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Abstract: Gold nanoparticles are promising as a kind of novel radiosensitizer in radiotherapy. 

If gold nanoparticles are shown to have good irradiation stability and biocompatibility, they 

would play an important role in radiotherapy. In this work, we investigated irradiation effects 

of gold nanoparticles under 2–10 kR gamma irradiation and cytotoxicity of gold nanoparticles 

with human K562 cells by using Cell Titre-Glo™ luminescent cell viability assay. The results 

revealed that gamma irradiation had not induced any obvious instability and size variations in 

gold nanoparticles. We found that gold nanoparticles showed excellent radiation hardness with 

an absorbed dose conversation factor of 9.491 rad/R. Meanwhile, the surface plasmon resonance 

of gold nanoparticles was enhanced obviously after 2–10 kR gamma irradiation. Subsequently, 

cytotoxicity tests indicated that the extremely high concentration of gold nanoparticles could 

cause a sharp decrease in K562 cell viability, while the low concentration of gold nanoparticles 

had no obvious influence on the cell viability. Our results revealed that gold nanoparticles were 

stable under high-energy ray irradiation and showed concentration-dependent cytotoxicity.
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Introduction
Gold nanoparticles (NPs) have attracted increasing interest in diagnosis and therapy 

of disease.1,2 Due to the strong and size-tunable surface plasmon resonance (SPR), 

fluorescence, and easy-surface functionalization, gold NPs have been widely used in 

biosensors, cancer cell imaging, photothermal therapy, and drug delivery.3–9 Today, 

gold NPs have been conceived as a type of radiosensitizer in radiotherapy because 

the strong photoelectric absorption and second electron caused by gamma or X-ray 

irradiation can accelerate DNA strand breaks.10–12 However, the advanced medical 

diagnoses instruments, such as X-ray, positron emission tomography, and computed 

tomography, are always closely related to high energy rays. Thus, the irradiation 

stability test for gold NPs becomes more and more important. In addition, the further 

cytotoxicity test for gold NPs is necessary for radiotherapy and drug delivery.

It is well known that gamma irradiation can induce defects of materials, such 

as color center, which is very useful for the fabrication of laser device and medical 

thermoluminescence dosimetry.13–15 However, gamma irradiation can also cause 

obvious instability and new optical transition of materials.16,17 Chung and colleagues 

showed that the Ni/SiC film was seriously unstable and could cause severe reaction 

in interface by gamma irradiation.18 In the oxides, gamma irradiation can induce the 

oxygen-deficient centers, which can influence thermal stability and optical properties 

of materials.19,20 In nanomaterials, the influence induced by gamma irradiation is 
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being reported more often. Recently, Withers and colleagues 

reported that increasing the gamma irradiation dose induced 

an 80-fold decrease in photoluminescence in the quantum 

dots (QDs), which indicated that the QDs were unstable after 

being exposed to high energy rays.21 The results indicated 

that cancer cell imaging and biomarkers of CdSe QDs should 

be used cautiously before applying the irradiation stability 

test. A similar concern for gold NPs has emerged because 

radiotherapy always includes a high energy ray. However, 

the study of the stability and optical influence of gold NPs 

induced by high energy gamma ray irradiation has been 

neglected.

In addition, a key area for nanotechnology will be the 

assessment of health effects and toxicity of nanomaterials. 

The increasing toxicity of nanomaterials such as NPs, QDs, 

nanowires, and nanotubes has been reported.22 The biosafety of 

metallic gold is well known and it has been used in vivo since 

the 1950s. However, functionalized gold NPs have shown 

obvious cytotoxicity.23 To clarify these problems, the cytotox-

icity of gold NPs in human cells has been studied in detail and 

the results showed that gold NPs were nontoxic up to 250 mM 

while the ionic gold showed obvious cytotoxicity at 25 mM.24 

Similar results were also reported in the recent radiotherapy 

of gold NPs in vitro.12 Nevertheless, a further cytotoxicity 

test at high gold concentrations is still essential because gold 

concentration in radiotherapy can be as high as 7 mg/mL.10 

Indeed, recent cytotoxicity tests showed that gold NPs were 

toxic at high concentrations.25 Thus, the cytotoxicity test will 

be helpful for further medical applications.

This work focuses on two aspects: whether gold NPs are 

stable under high energy gamma ray irradiation, and whether 

high gold concentration can influence the cell viability 

in vitro. Both aspects are related to the application of gold 

NPs in radiotherapy and health care.

Materials and methods
Gold NPs are fabricated by the classical method introduced 

by Turkevich.26 A volume of 100 mL of 0.01% chloroauric 

acid (HAuCl
4
 ⋅ 4H

2
O) solution is refluxed and 5 mL of 

1% sodium citrate solution added to the boiling solution. 

The reduction of gold ions by the citrate ions is completed 

after 5 min. The solution is further boiled for 30 min and is 

then left to cool to room temperature. This method yields 

spherical particles with an average diameter of about 15 nm. 

Although the actual value of the mean size might vary 

slightly from each preparation, the size distribution is found 

to be always about 12% of standard deviation. The size and 

morphology of gold NPs are analyzed by high-resolution 

field emission transmission electron microscopy (TEM) 

(Hitachi HF-2000; Hitachi, Guangzhou City, People’s 

Republic of China) operating at 200 kV. Optical absorption 

spectra in wavelength range of 200–850 nm are measured 

with DU800 Spectrometer (Beckman Coulter, Fullerton, CA, 

USA) in a 5 ml glass cuvette.

Gamma irradiation experiments are carried out in the 

Institute of Radiation Medicine, Chinese Academy of 

Medical Sciences (CAMS). The gold NPs are separated 

into four equal parts with 20 mL. Subsequently, they are 

irradiated by 137Cs with activity of 3600 Ci and photon energy 

of 662 KeV. In clinical radiotherapy, the exposure dose of 

gamma ray is around 0.1 to 10 kR. Thus, the irradiated doses 

of gold NPs are arranged for 2, 4, 6, 8, and 10 kR. After 

gamma irradiation, the TEM and UV-Vis spectrometer were 

used to investigate the morphology and optical effect.

Human erythroleukemia cells (K562 cells) are cultured 

in RPMI-1640 medium (Sigma Aldrich, St. Louis, MO, 

USA), supplemented with 10% heat-inactivated fetal bovine 

serum (FBS) and antibiotics (100 mg/mL streptomycin and 

100 U/mL penicillin) at 37 °C in humidified atmosphere 

with 5% CO
2
. The cells (in culture medium) are dispensed 

in 96-well plates (90 mL in each well containing 104 cells 

per well). Gold NPs of 10 µL are dissolved in culture 

medium and then 100 µL blending are added to each well 

with different concentrations (18.75–600 µg/mL). The 

effect of the concentration of gold NPs is assessed using 

Cell Titre-Glo™ luminescent cell viability assay (Promega, 

Madison, WI, USA). This assay is a homogenous method 

of determining the number of viable cells in culture based 

on the quantitation of adenosine triphosphate (ATP) present, 

which signals the presence of metabolically active cells. After 

the treatment, the cells are incubated with 20 µL of Cell 

Titre-Glo™ reagent and contents are allowed to mix on an 

orbital shaker in accordance with the assay protocols. This 

results in cell lysis and generation of a luminescent signal 

proportional to the amount of ATP present. The amount of 

ATP is proportional to the number of cells present in culture. 

The luminescence signal is recorded with a single tube 

luminometer (TD 20/20, Turner Biosystems Inc., Sunnyvale, 

CA, USA).

Results and discussions
Irradiation effect on gold NPs
Structural and optical properties  
of gold NPs under gamma irradiation
Figure 1 shows the surface morphology and size distribution 

of nonirradiated gold NPs, and 4 kR and 10 kR irradiated 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2009:4 167

Irradiation stability and cytotoxicity of gold nanoparticlesDovepress

submit your manuscript | www.dovepress.com

Dovepress 

Nonirradiation

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.25

0.20

0.15

0.10

0.05

0.00

12 13 14 15 16 17 18 19 20 21 22 23

4 kR

10 kR

12 13 14 15 16 17 18 19 20 21 22 23

12 13 14 15 16 17 18 19 20 21 22 23

Diameter (nm)

Diameter (nm)

Diameter (nm)

A
bu

nd
an

ce
A

bu
nd

an
ce

A
bu

nd
an

ce

Figure 1 TEM images of the nonirradiated, 4 and 10 kR irradiated gold NPs. The corresponding size histograms are given.
Abbreviations: NPs, nanoparticles;  TEM, transmission electron microscopy.

gold NPs. The shape of gold NPs is nearly spherical, and 

the standard deviation of size distribution is about 12% by 

statistical analysis, which is very close to the previous work.27 

The average diameters of gold NPs are 15.9, 16.7, and 16.1 nm, 

which correspond to nonirradiated gold NPs, and 4 kR and 

10 kR irradiated gold NPs, respectively, which reveals that 

gamma irradiation has not induced obvious variation in size. 

Gachard and colleagues investigated the kinetics properties 

of KAuCl
4
 solution with different radiation doses in detail.28 

The results revealed that gold NPs concentration increased 

with increased irradiation dose. Actually, the gold ions in 

the solution are reduced to the metallic state by reacting 

with hydrated electrons produced as a result of radiolysis of 

water by the incident gamma ray. When the dose is increased, 

nucleation of the gold NPs increases up to a limiting value 

corresponding to the total reduction of the solution. Thus, we 

can deduce that the slight increase in size may originate from 

a chemical reaction in rudimental auric solution induced by 

the irradiation. In addition, we notice that the nonirradiated 

gold NPs are well dispersed, although slight aggregation is 

inevitable. Gamma irradiation can induce the aggregation of 

gold NPs on small scale. Especially, the aggregation of gold 

NPs irradiated by 10 kR are more obvious than that of 4 kR. 

However, it is necessary to point out that gold NPs do not turn 

out to be agglomerated in these dose ranges and the distance 

between gold NPs become closer. It is very interesting to 

note that similar aggregation phenomenon in gold NPs has 

been reported under laser irradiation.29 Actually, due to the 

strong photoelectric effect, high energy gamma irradiation 

can cause lots of surface electrons and charge transfer of gold 

NPs, which is related to the aggregation of gold NPs. These 

results also support and explain the recent cell experiment in 

which unknown aggregation of gold NPs has been observed 

near the cell membrane after 0.1–1 kR X-ray irradiation.12 
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In radiotherapy, the increasing aggregation of gold NPs 

can induce the enhancement of optical absorption so that 

radiosensitization and optical imaging of gold NPs can be 

more effective.

Figure 2 gives the optical absorption of nonirradiated gold 

NPs, 2, 4, 6, 8, and 10 kR irradiated gold NPs. The SPR band 

of 521 nm has been observed in nonirradiated gold NPs, and 

the peak is not shifted after gamma irradiation. Indeed, the so 

slight size variation should not induce the obvious shift of SPR 

peak. Mie theory is the exact solution to Maxwell’s electro-

magnetic field equations for a plane wave interacting with a 

homogenous sphere of radius with the same dielectric constant 

as bulk metal.30 The size of gold NPs is in good agreement 

with the results calculated by Mie theory. Group 2 is added in 

order to illustrate the validity and reproducibility of results, in 

which the concentration of gold NPs is half of group 1. The 

sole SPR peak in the spectra indicates that gamma irradiation 

has not caused obvious defects in gold NPs. The full width at 

half-maximum of the SPR band is about 50 nm, and has no 

obvious variation after gamma irradiation, which also indicates 

that gold NPs are very stable after gamma irradiation.

It is worth noting that the SPR peak of gold NPs is enhanced 

obviously after gamma irradiation. The enhancement of SPR 

is very obvious at the dose of 4 kR and the enhanced effect 

is gradually stable above 6 kR. Both groups perform good 

reproducibility. Besides, we have also investigated the optical 

effect of sodium citrate solution under 2–10 kR irradiation, 

which has not shown any absorption in the 500–800 nm. 

This indicates that the enhanced absorption is from the SPR 

of gold NPs, not the dissolved citrate. Figure 3 shows the 

enhanced effect of SPR in group 1 of Figure 2. It can be 

observed that the absorbance of SPR is increased from 1.56 

of nonirradiation to 2.23 of 40 kR irradiation, and stabilized 

to 2.0 in the range of 6–10 kR. After normalization, the 

enhancements of SPR intensity are 10.9%, 40%, 29.1%, 

25.5%, and 23.1%, which correspond to 2, 4, 6, 8, and 10 kR 

irradiated doses, respectively. We notice that the high dose 

irradiations of 6–10 kR have not induced obvious variation 

in SPR, which indicates that 4 kR may be the optimal energy 

for SPR modification of gold NPs.

Irradiation mechanism
The interaction between gamma rays and gold NPs can 

be classified for photoelectric effect, Compton scattering, 

electron–positron pairs, and high energy excitation 

(see Figure 4).31 The photoelectric effect mainly occurs in 

the 10–500 keV range, while electron–positron pairs caused 

by photon annihilation dominate above 1.02 MeV. Thus, the 

photon of 662 keV mainly falls into Compton scattering and 

excitation. The results of Compton scattering are re-excitation 

and photoelectric effect. The high energy excitation can 

induce lots of phonons and less photons because the dominant 

transition of gold NPs is photon–phonon transition processing. 

Thus, gamma irradiation can provide strong energy to gold 

NPs so that it can be transformed to thermal energy and 

abundant electron. It is well known that the thermal treatment 

is a kind of common method to boost nucleation of NPs and 

enhance SPR.19 Laser irradiation is regarded as a good way 

to enhance the SPR of gold NPs.32 By the same mechanism, 

the thermal effect induced by gamma irradiation can boost 

nucleation of gold NPs and thus induces enhancement of 

SPR.33 While an abundance of free electrons excited by 

gamma irradiation can lead to production of surface electrons 
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Figure 2 The optical absorption of the nonirradiated, 2, 4, 6, 8, and 10 kR irradiated 
gold NPs.  The gold concentration of group 2 is half of group 1.
Abbreviation: NPs, nanoparticles.
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Figure 3 The relative and normalized SPR enhancement of gold NPs dependent on irradiated dose.
Abbreviations: NPs, nanoparticles; SPR, surface plasmon resonance.
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Figure 4 Outline of the interaction between gamma rays and nanoparticles.

and charge transfer between gold NPs, which is responsible 

for SPR enhancement of gold NPs. Moreover, this detailed 

charge transfer process, such as electron and hole, has been 

described by the reaction:19,28

	 Au+	+ e−→Au0	 (1)

Gachard and colleagues proposed that the radiation 

reactions could be classified as three procedures: (1) radiolytic 

yields of the radicals in solution, (2) nucleation of NPs, and 

(3) stabilization processing of NPs. Intense gamma rays cause 

radiolysis of water in aqueous solutions producing primarily 

species such as H+, H, HO, OH− and hydrated electrons.28 

These transient species interact with themselves, water, the 

solute components, or free radicals generated by irradiation.34 

Lamaestre and colleagues reported that the nucleation of gold 

NPs was accelerated by the aggregation of charge and the 
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environmental redox potential.35 Therefore, we can conclude 

that 2–4 kR gamma irradiations induce SPR enhancement. 

However, with an increasing radiation dose, the residual 

auric solutions may be used up.28 Meanwhile, high energy 

radiation may destroy the chemical bond and cause some 

damage.28,34,35 Thus, 6–10 kR irradiations induce the slight 

decrease of SPR compared with that of 4 kR. Combined with 

the previous theory and experimental works, we suggest that 

the high radiation dose may induce partial destruction of the 

Au–Au chemical bond while the low dose irradiation may be 

helpful for the nucleation of gold NPs. Gamma irradiation is 

an efficient means of modifying and controlling the system’s 

redox state via charge transfer and transitions between surface 

charge states and precursors.

Radiation hardness
The gamma irradiation mechanism of gold NPs is similar to 

that of QDs. However, the influences of gamma irradiation 

between QDs compounds and gold NPs seem obviously 

different. In order to evaluate the irradiation hardness of 

gold NPs, the exposure dose is converted to the absorbed 

dose, which is dependent on atomic number (Z) and structure 

of materials. The absorbed dose D can be described by the 

following formula:21,31

	 D	=	0.88	[µen
	(hv)/ρ]Au/[µen

	(hv)/ρ]air,	 (2)

where hv is the gamma photon energy and [µ
en

 (hv)/ρ] is 

the mass energy absorption coefficient for the subscript 

material. It is well-known that the energy absorption 

coefficient at 662 keV is about 2.93 × 10−3 m2/kg for air 

and 3.16 × 10−2 m2/kg for gold.36 Calculated from Eq. 2, the 

absorbed dose conversation factor for gold NPs is found 

to be 9.491 rad/R. Compared with the previously reported 

CdSe QDs of 0.899 rad/R, gold NPs have better radiation 

hardness. The gamma irradiation in the ranges of 2–10 kR 

can destroy the chemical bond of QDs and lead to the rapid 

decomposition of QDs,37 while gold NPs have no similar 

problems in these dose ranges. Thus, it can be expected that 

gold NPs show good irradiation stability in radiotherapy.

Cytotoxicvity of gold NPs
The objective of this cell viability study is to assess the 

cytotoxicity of gold NPs for K562 cells, and further obtain 

the cytotoxicity curve. Cell Titer-Glo™ luminescent cell 

viability assay has been used to assess cytotoxicity after 

culturing in presence of the gold NPs for 48 hours. As is 

evident in Figure 5, cell viability decreases with increasing 

gold concentration, which indicates that the cytotoxic 

effect of gold NPs increases. It can be observed that the 

low concentration gold (75 µg/mL) has not affected the 

cell viability obviously, and has no obvious cytotoxicity. 

However, the high concentration gold (150 mg/mL) 

can indicate the slight decrease of cell viability. In detail, 

cell viabilities are 93.9%, 96.7%, 93.3%, 77.5%, 68.8%, 

and 41.8%, which correspond to 18.75, 37.5, 75, 150, 

300, and 600 µg/mL gold, respectively. In addition, the 

cytotoxicity of phosphate-buffered saline has also been 

checked in Figure 6, and it has not shown cytotoxicity. The 

results indicate that gold NPs have obvious cytotoxicity in 

high concentrations, which is in good agreement with the 

recent results.25,38
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Figure 5 Cytotoxicity of gold NPs with different concentrations and incubation with 
K562 cells after 48 hours.
Abbreviation: NPs, nanoparticles.
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Figure 6 Cytotoxicity of PBS buffer and incubation with K562 cells after 48 hours.
Abbreviation: PBS, phosphate-buffered saline.
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Several groups examined the cytotoxicity of gold 

NPs. The consensus is that gold NPs are safe at low 

concentrations. However, the results are still controversial 

and conflicting at high concentrations. Recent reviews 

highlighted the size, shape, and concentration-dependent 

cytotoxicity of gold NPs.38–40 We summarized some recent 

cytotoxicity tests of gold NPs in Table 1. Connor and 

colleagues examined the uptake and potential toxicity of a 

series of gold NPs in human leukemia cells.24 The results 

indicated gold NPs were nontoxic and its surface modifiers 

showed cytotoxicity, which was in good agreement with the 

results of Goodman23 and Patra.41 This cytotoxicity could be 

related to the electrostatic adsorption between the cationic 

NPs and the negatively charged cell membranes. In addition, 

cytotoxicity of gold NPs also depends on the types of cells. 

For example, gold NPs were found to be noncytotoxic 

to baby hamster kidney and human hepatocellular liver 

carcinoma cells, but cytotoxic to a human carcinoma lung 

cell line at certain concentrations.38 A similar inconsistency 

has been found between human–Chinese hamster ovary 

(CHO) cells and human dermal fibroblast cell lines. Size 

and shape also play an important role in cytotoxicity of 

gold NPs. Chan and colleagues examined the uptake of 

gold NPs of various sizes and shapes into HeLa cells and 

found that 50 nm spheres were taken up more quickly by 

the cells than both smaller and larger spheres.44 Meanwhile, 

Pan and colleagues reported that 15 nm gold NPs had good 

biocompatibility while 1.5 nm gold NPs could cause the 

acute toxicity of fibroblasts, epithelial cells, macrophages, 

and melanoma cells.45

Actually, nearly anything can be toxic at a high enough 

concentration. Pernodet and colleagues confirmed that a high 

concentration of gold NPs showed strong decrease of cell 

proliferation, adhesion, and motility in the human dermal 

fibroblast cells, which is consistent with our results.25 We find 

that gold NPs show concentration-dependent cytotoxicity, 

although 15 nm gold particles showed good biocompatibility 

in previous investigations. The cytotoxicity of gold NPs is 

more important at the potential concentrations where they 

might be used. In radiotherapy, gold concentration may 

be as high as 7 mg/mL. Besides, gamma irradiation can 

induce abundant electrons, which may influence the cellular 

selectivity of gold NPs. The time-dependent cytotoxicity 

effect of gold NPs is still not clear, and the toxicity study 

in vivo also becomes more and more important. Thus, the 

further toxicity of gold NPs should be essential before 

radiotherapy sensitization and drug delivery.

Conclusions
In summary, the stability test and SPR-enhanced effect of gold 

NPs exposed in gamma irradiation have been investigated. 

The results show that gamma irradiation cannot induce 

obvious size variations in gold NPs under 2–10 kR 

irradiation. Meanwhile, the SPR of gold NPs was enhanced 

obviously and gamma irradiation did not cause evident 

defects. Cytotoxicity test shows that high gold concentrations 

can cause obvious decrease of cell viability while low gold 

concentrations have no obvious influence on the cell viability. 

Gold NPs are a stable material for radiotherapy and drug 

delivery. However, further cytotoxicity tests in vivo is still 

necessary before high-concentration gold NPs can be used 

in radiotherapy.
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