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Abstract: The first C
60

(OH)
24

-DNA complex and its fluorescence enhancement is reported. 

The enhanced fluorescence intensity of fullerenol C
60

(OH)
24

 is in proportion to the concentration 

of DNA in the range of 1 × 10-9 to 8 × 10-5 molL-1 and the detection limit was 1.3 ng mL-1. 

Fullerenol C
60

(OH)
24

 binds significantly to the phosphate backbone of native dsDNA and 

to base-pairs within the major groove of sodium salt of dsDNA.
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Introduction
Nanoscale materials seems to offer great opportunities for biomedical applications 

such as therapeutic and diagnostic tools.1–9 Biomedical applications under develop-

ment include drug delivery systems targeted to the brain and cancer tissues, gene 

transfection, and intravascular nanosensor and nanorobotic devices for imaging and 

diagnosis.3,9

In this context, the biological activities of fullerene derivatives have attracted much 

attention in the past 25 years.10–17 As potent free-radical scavengers and antioxidants18–23 

the water-soluble polyhydroxylated [C
60

]fullerenes, fullerenols, exhibit an exciting 

range of biological activities as glutamate receptor antagonists,24 antiproliferative,25–27 

neuroprotective,28–31 and anticancer agents.32–37

Knowing the ways fullerenols interact with proteins and nucleotides is a prerequisite 

for understanding their biological effects at membrane penetration and the intracellular 

level, only two studies deal with their binding to proteins38,39 and their interaction with 

DNA has not been reported to date.

On the other hand, the solution-based assays and quantitative analysis of nucleic 

acids are critical in current biochemistry and biomedical science. Throughout the years, 

a number of fluorimetric methods for the determination of nucleic acids have been 

developed with ethidium bromide,40–42 lanthanide cations,43–45 ruthenium complexes,46–48 

and asymmetric cyanine dyes as fluorescence probes.49–51

Despite the prominence of fullerenes in bionanotechnology, the exploration of 

their fluorescent properties in solution remains still at a very early age. Several studies 

have been devoted to dsDNA/single-walled carbon nanotube hybrid systems,52,53 but 

only very few deal with their fluorescent proprieties54,55 when dispersed in aqueous 

solution.

Herein, we are happy to report the first complexation of dsDNA with C
60

(OH)
24

 in 

aqueous media in the absence of a buffer in physiological pH-range.
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Materials and methods
C

60
 (99.5+%) was purchased from MER Corp (Tuscon, AZ, 

USA). KOH (99.99%, semiconductor grade) was purchased 

from Sigma-Aldrich (St. Louis, MO, USA). DNA (low 

molecular weight, salmon sperm) was purchased from Fluka 

(St. Louis, MO, USA). All other reagents were purchased 

from Sigma-Aldrich.

Fluorescence spectroscopy was performed with a Perkin 

Elmer LS55 spectrometer Perkin Elmer, Wellesley, MA, 

USA). To prepare fluorescence samples, the only opera-

tion was the mixing of two solutions before fluorescence 

measurements. X-ray photoelectron spectroscopy (XPS) 

measurements were carried out using a Leybold LHS 

10 spectrometer (Leybold, Cologne, Germany).

To the best of our knowledge, most of these fullerenols 

are not pure C
60

(OH)
n
, but a complex mixture of products. 

For instance, those synthesized through sulfuric/nitric acid,56 

hydroboration,57 or nitronium chemistry58 afforded products 

with average composition of C
60

O
x
(OH)

y
. The so-called 

fullerenols prepared by alkaline polyhydroxylation of C
60

 

under phase transfer conditions59 are not simply C
60

(OH)
x
, 

but stable radical anions with the molecular formula, 

Na+
n
[C

60
O

x
(OH)

y
]n-,60 and the fullerenol obtained by 

alkaline hydrolysis of C
60

Br
24

 is not C
60

(OH)
24

 as claimed by 

Bogdanovi and Dvordjevic,37,61 but C
60

(ONa)
8
(OH)

16
.62 In the 

light of this, many biomedical studies involving fullerenols 

species in the literature may need to be reconsidered. The 

pure fullerenol C
60

(OH)
24

 used in this study was prepared 

by a modified method of alkaline hydrolysis of C
60

Br
24

,62 

followed by demetallation of the obtained C
60

(OK)
8
(OH)

16
 

with a cation exchange resin and exhaustive purification by 

dialysis.

Representative procedure for synthesis 
of c60(Oh)24
All experiments were performed with Schlenk techniques 

under argon and protected from light. According to the 

literature, before the synthesis of the polyhydroxylated 

fullerene, bromofullerene C
60

Br
24

 was synthesized first.62 

In the synthesis of the C
60

(OH)
24

, to a sonicated (40 W, 

15 min) suspension of C
60

Br
24

 (200 mg, 0.075 mmol) in 

de-aerated water (100 mL), fresh KOH (200 mg, 3.57 mmol) 

was added under argon protection and stirred for 10 days at 

room temperature. After the reaction was completed, the 

resulting dark-brown solution was passed to a centrifuge 

at 4000 rpm for 30 min and the supernatant was brought to 

dryness in a rotavapor apparatus at 40 °C. The dark-brown 

residue was dissolved in 50 mL of deionized water, stirred 

with ion exchange resin AMBERJET™ 1200[H] (Rohm and 

Haas Company, Philadelphia, PA, USA) (20 mL) for 8 h 

and subjected to dialysis (Spectra/Por® 1000 D; Spectrum 

Laboratories, Rancho Dominguez, CA, USA) for four 

days. Finally, the dialyzed solution was brought to dryness 

in a rotavapor apparatus at 60 °C and dried at 80 °C and 

10-4 Torr for 24 h. The fullerenol thus obtained contained 

24 hydroxyl groups as characterized by elemental analysis, 

Fourier transform infrared (FT-IR) spectroscopy, and XPS 

spectroscopic measurements.

elemental analysis
Calculated for C

60
H

24
O

24
: C, 63.82; H, 2.12. Found: C, 63.66; 

H, 1.98. FTIR (KBr): ν max, 3436 (-OH), 1605 (C = C), 

1430 (δ –OH), 1095, 1046 (ν C-OH), 1018, 994, 825, 877, 

570, 530 cm-1.

XPs analysis
C1s components: % C = C (284.6 eV) 59.77 (clcd. 60); 

% C-OH: (285.8 eV) 39,76 (clcd. 40); O/C = 0.42 (clcd. 0.40).

Results and discussion
The fullerenol water solution, exhibited different maxima 

depending on the concentration (Figure 1a). In the range of 

1.6 × 10-5 to 4.4 × 10-5 molL-1 one fluorescent maximum 

was observed at 469 nm, while two fluorescence maxima 

where found for lower concentrations located at 469 nm and 

492 nm at λ
ex

 = 420 nm.

These emission profiles of fullerenol at different concen-

trations provided the baseline for understanding perturbation 

upon interaction with dsDNA. As shown in Figure 1a, the 

most appropriate concentrations of fullerenol in water for 

fluorescence measurements at λ
ex

 = 420 nm are within the 

range of 1.6 × 10-5 to 4.4 × 10-5 molL-1 (λ
em

 = 469 nm).

As can be seen from Figure 1b, the fluorescence intensity 

of fullerenol alone is dependent on its concentration in the 

range of 4.4 × 10-5 to 1.6 × 10-5 molL-1 according to a very 

significant linear relationship.

Figure 2 shows the fullerenol and DNA emission spectra 

recorded at different excitation wavelengths. Inspection of 

how fluorescence emission spectra of fullerenol and DNA 

change as a function of excitation wavelength yield additional 

supporting information on the appropriate fullerenol excitation 

wavelength suitable for the fluorescence investigation of 

C
60

(OH)
24

 – DNA complex in aqueous media. One can observe 

that for a concentration higher than 1.6 × 10-5 molL-1, the 

emission spectra of fullerenol do not overlap with emission 

spectra of DNA when excited at 340, 360, 380, and 
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420 nm, respectively. Apparently, all these fluorescence 

excitations should be suitable for a fluorescence study of 

DNA-fullerenol interaction. However, the emission maxima 

of fullerenol at concentrations 1.6 × 10-5 molL-1 (Figure 1a) 

and DNA (Figure 2a) overlap at 492 nm when recorded at 

λ
ex

 = 420 nm. This is the reason why, to cover a large concen-

tration range (1-9-4.5-5 molL-1) of fullerenol, the fluorescence 

excitation at 420 nm and emission at 469 nm were used for 

fluorescence intensity measurements in this work.

In Figure 3a, the emission spectra of DNA-fullerenol 

complexes, with constant DNA concentration and increasing 

fullerenol content are shown. It can been seen that increasing 

the concentration of the fullerenol results in a strong increase 

in fluorescence intensity of fullerenol from 50 to 500 nm, 

without causing any perceptible shifts of the fluorescence 

maximum at λ = 469 nm. In order to establish the DNA 

binding affinity of fullerenol, these fluorescent-enhancing 

data were plotted (Figure 3b) according to the equation (6) 

derived from the equilibrium equation (1):

n[C (OH) ] + [DNA]   [C (OH) DNA]
 

60 24 60 24
K

 

 

-  (1)

 K = [C
60

(OH)
24

 - DNA]/[C
60

(OH)
24

]n [DNA] (2)

 [C
60

(OH)
24

 - DNA] = K[C
60

(OH)
24

]n [DNA] (3)

log [C
60

(OH)
24

 - DNA] = log K + nlog [C
60

(OH)
24

] + log [DNA]

 (4)

log [C
60

(OH)
24

 - DNA]/[DNA] = log K + nlog [C
60

(OH)
24

]

 (5)

 log F-F
1
/F

0
 = log K + nlog [C

60
(OH)

24
] (6)

where F
1
 is the fluorescence intensity from the fullerenol 

in the absence of DNA (Figure 1b), F
0
 is the fluorescence 

intensity from the DNA in the absence of fullerenol at 

467 nm for λ
ex

 = 420 ( Figure 2a), F is the fluorescence 

intensity from the DNA-fullerenol complex in the presence 

of different concentrations of the fullerenol (Figure 3b) and 

n is the number of associated molecules of fullerenol with 

one base pair of DNA. From the linear plot for (log(F-F
1
)/F

0
) 

vs (log[C
60

(OH)
24

]) (Figure 5), according to equation (1), 

the values of K and n were estimated to be 6 × 105 M-1 and 

0.8 ± 0.2, respectively.

In order to evaluate the range of [DNA] determina-

tion, the binding of fullerenol to DNA was characterized 

[C60(OH)24] rnol/L
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Figure 1 Fluorescence data of c60(Oh)24 in aqueous media.  A) Fluorescence emission 
spectra of c60(Oh)24 after 5 min incubation in water, with excitation at 420 nm. 
B) Plot of fluorescence intensity versus [C60(Oh)24], with excitation at 420 nm; 
average standard error, 3.76%.
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Figure 2 Fluorescence emission spectra of fullerenol ( - - - ) and dsDNA (_____) 
for different excitation wavelength.  A) λ = 420 nm. B) λ = 380 nm. C) λ = 360 nm. 
D) λ = 340 nm. [C60(Oh)24] = 1 × 10-4 molL-1; [DNA] = 1 × 10-4 molL-1.
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through fluorescence emission titration of fullerenol. The 

enhancement of the fluorescence intensity of fullerenol with 

DNA at increasing concentrations is shown in Figure 4. 

One can observe that even for nanoscale concentration 

of DNA the fluorescence intensity of fullerenol increases 

from 25 to 100 (Figure 4a). The plot in Figure 4b is bro-

ken down into two regimes corresponding to ranges from 

1.3 × 10-9 to 3.1 × 10-6 gL-1 and 2.5 × 10-5 to 5 × 10-5 gL-1. 

The low [DNA] range in the plots of Figure 4b (detec-

tion limit = 1.3 ng/mL) are close to what can be accom-

plished with current available fluorescence probes, ie, 

Hoechst 33258 (20 ng/mL) and YO-PRO-1/YOYO-1 

(0.5–2.5 ng/mL). In addition, from the shape and intensity of 

emission spectrum recorded for [DNA] = 2.1 × 10-9 molL-1 

(Figure 4a), it is useful to point out that the sensitivity can 

be extended into lower regions.

As regards the chemical interactions between fullerenol and 

the DNA target, the electrostatic and intercalative binding are 

ruled out and hydrogen-bonding interaction can only be taken 

under consideration. Earlier studies38,39 have pointed out that 

hydrogen-bonding plays the main role in the interaction between 

fullerenols and proteins. Thus, the major groove binding of fullere-

nol through the hydrogen-bonding between its hydroxyl groups 

and free or bridged –NH
2
 in base-pairs of DNA is predictable.

Taking into account that phenols can interact with 

phosphates,63 the hydrogen bonding between fullerenol and 

phosphate backbone of DNA can be also suggested as a 

possibility for the binding of fullerenols with DNA.

From the linear plot in Figure 3b according to equation (1) 

the value of n was estimated to be 0.8 ± 0.2. This value 
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Figure 3 Fluorescence data of c60(Oh)14 in the presence od dsDNA. A) Fluorescence 
emission spectra of fullerenol (_____) in the presence of dsDNA ( - - -) with excitation at 
420 nm, as a function of fullerenol concentration; [dsDNA] = 6.31 × 10-5 molL-1. B) Plot 
for DNA-c60(Oh)24 system as a function of fullerenol concentration in the range of 0.94 × 
10-7 to 4.5 × 10-5 molL-1; [dsDNA] = 6.31 × 10-5 molL-1; average standard error, 0.17%.
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Figure 4 Dependence of fluorescence intensity of C60(Oh)24 on dsDNA concentration. 
A) Fluorescence spectra of fullerenol (- ⋅ - ) with increasing concentration of DNA 
(_____) with excitation at 420 nm ; B) Plot of fluorescence intensity of fullerenol as a 
function of [dsDNA] in the concentration range of 1.3 × 10-9 to 4.4 × 10-6 molL-1; 
[C60(Oh)24] = 4.5 × 10-5 molL-1; average standard errors: 2.69% for 2.5e-5-5e-5 region 
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groove of DNA (6 Å). The width of the major groove (12 Å) 

is larger than 9.8 Å and thus the fullerenol molecule can fit 

snugly according to a nonintercalation model as shown in 

Scheme 1a.

Indeed, upon binding to sodium salt of DNA (Figure 5), 

the fluorescence intensity of fullerenol does not increase, 

but decreases, which suggests that only in the absence of 

hydrogen bond-forming P-OH moieties of DNA, fullerenol 

binds to base-pairs into the major groove of DNA, according 

to a nonintercalative model, which strongly change its 

average local environment. The perceptible shift of the 

emission maximum of fullerenol also support a strong 

change of its average local environment. We can thus 

conjecture that, under the present experimental condi-

tions with native dsDNA, hydrogen binding to phosphate 

backbone to the outside of dsDNA helix is the main bind-

ing mode of fullerenol C60(OH)
24

 to DNA, as shown in 

Scheme 1b.

Conclusions
Fullerenol C

60
(OH)

24
 binds to phosphate backbone to the 

outside of native dsNNA and to base-pairs within major 

groove of sodium salt of dsDNA. The fluorescence of 

fullerenol C
60

(OH)
24

 is highly enhanced by dsDNA due 

to the binding of the probe to DNA in a nonintercalative 

way. Because of its high binding affinity (K = 105 M-1) and 

sensitivity (1.2 × 10-9 g/mL) towards DNA, there are good 

prospects that C
60

(OH)
24

 will be used as versatile fluorescent 

probe for DNA quantification. In addition to its high 

sensitivity, other advantages of this fullerenol-based method 

include its simplicity, nontoxicity, and rapidity.
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