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Background: Osteosarcoma, which originates in the mesenchymal tissue, is the prevalent 

primary solid malignancy of the bone. It is of great importance to explore the mechanisms of 

metastasis and recurrence, which are two primary reasons accounting for the high death rate 

in osteosarcoma.

Data and methods: Three miRNA expression profiles related to osteosarcoma were down-

loaded from GEO DataSets. Differentially expressed miRNAs (DEmiRs) were screened using 

MetaDE.ES of the MetaDE package. A support vector machine (SVM) classifier was con-

structed using optimal miRNAs, and its prediction efficiency for recurrence was detected in 

independent datasets. Finally, a co-expression network was constructed based on the DEmiRs 

and their target genes.

Results: In total, 78 significantly DEmiRs were screened. The SVM classifier constructed 

by 15 miRNAs could accurately classify 58 samples in 65 samples (89.2%) in the GSE39040 

database, which was validated in another two databases, GSE39052 (84.62%, 22/26) and 

GSE79181 (91.3%, 21/23). Cox regression showed that four miRNAs, including hsa-miR-10b, 

hsa-miR-1227, hsa-miR-146b-3p, and hsa-miR-873, significantly correlated with tumor recur-

rence time. There were 137, 147, 145, and 77 target genes of the above four miRNAs, respec-

tively, which were assigned to 17 gene ontology functionally annotated terms and 14 Kyoto 

Encyclopedia of Genes and Genomes pathways. Among them, the “Osteoclast differentiation” 

pathway contained a total of seven target genes and was analyzed further.

Conclusion: The 15-miRNAs-based SVM classifier provides a potential useful tool to predict 

the recurrence of osteosarcoma. Our results suggest the possible mechanisms of osteosarcoma 

metastasis and recurrence and provide fresh DEmiRs as potential biomarkers or therapeutic 

targets for osteosarcoma.
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Introduction
Osteosarcoma, which originates in the mesenchymal tissue, is the most frequent 

primary solid malignancy of the bone.1 The high death rate of osteosarcoma may be 

attributed to metastasis and recurrence, especially pulmonary metastasis, and over 90% 

of patients with osteosarcoma die from pulmonary metastases.1,2 However, molecular 

mechanisms of metastasis and recurrence are still not well known. Therefore, it has 

a very important significance to understand the molecular mechanisms of metastasis 

and recurrence, and this will be helpful to develop novel prognostic biomarkers and 

targeted therapeutic agents for osteosarcoma.
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MicroRNAs (miRNAs) are noncoding small RNAs 

involved in gene regulation, which repress translation and 

cleave mRNAs by base-pairing to the 3′-untranslated region 

of the target genes, and thus participate in the regulation of 

various critical biological processes, including differentiation, 

progression, apoptosis, and proliferation of tumor cells.3 

Recent research demonstrated that miRNAs played important 

roles in the occurrence and development of osteosarcoma, 

and there were abnormal expressions of many miRNAs in 

osteosarcoma.4,5 For example, downregulated miRNA-143 

in osteosarcoma could promote apoptosis and suppress tum-

origenicity by targeting Bcl-2,6 and downregulated miRNA-

199a-3p in osteosarcoma could regulate cell proliferation and 

migration.7 In contrast, overexpression of miR-125b could 

suppress proliferation and migration of osteosarcoma cells 

through downregulation of STAT3,8 and overexpression 

of miR-451 in the osteosarcoma cells could significantly 

inhibit cell proliferation, migration, and tumorigenesis as 

well as promote cell apoptosis.5 A study by Maire et al 

found that five upregulated miRNAs were related to genes 

with low expression, whereas five downregulated miRNAs 

were related to genes with high expression, indicating that 

miRNAs provide a novel post-transcriptional mechanism for 

fine-tuning the expression of specific genes and pathways 

relevant to osteosarcoma.9 Although accumulating evidences 

have proved the important roles of various miRNAs in osteo-

sarcoma, there remains a large amount of unknown miRNAs 

involved in osteosarcoma, and it is necessary to explore more 

novel miRNAs that can provide a new theoretical basis for 

development of targeted therapy for osteosarcoma.

In addition, a series of long non-coding RNAs (lncRNAs), 

which may be participants in the regulation of diverse cellular 

processes such as cell proliferation and apoptosis, stem cell 

pluripotency, and development,10–12 have been shown to be 

involved in osteosarcoma. For instance, MALAT1 promotes 

proliferation and metastasis of osteosarcoma cells by acti-

vating the PI3K/Akt pathway.13 Abnormal expressions of 

lncRNAs in osteosarcoma have been shown in many studies. 

For example, downregulation of lncRNA TUG1 inhibits 

osteosarcoma cell proliferation and promotes apoptosis,14 and 

decreased expression of lncRNA MEG3 could act as a poten-

tial predictor biomarker in the progression and poor prognosis 

of osteosarcoma.15 Overexpression of lncRNAs UCA1 and 

TUG1 correlates with poor prognosis in osteosarcoma,16,17 

and upregulation of lncRNA HNF1A-AS1 promotes cell 

proliferation and metastasis in osteosarcoma through activa-

tion of the Wntβ-catenin signaling pathway.18 Increasingly, 

studies have evidenced that lncRNAs are capable of acting as 

either competitive endogenous RNAs for miRNAs or miRNA 

sponges, thus modulating miRNA activity.19,20 Moreover, it 

has been demonstrated that lncRNAs and miRNAs cooperate 

closely in fine-tuning gene expression transcriptionally and 

post-transcriptionally.21 Tan et al have provided evidence 

for miRNA-mediated interplay between lncRNAs and 

mRNAs in mouse embryonic stem cells.22 Recently, it has 

been reported that crosstalks between lncRNAs and miRNAs 

are crucial for cancer metastasis.23 However, interactions 

between lncRNAs and miRNAs have not been systematically 

investigated in osteosarcoma.

Furthermore, although more and more people devote effort 

to explore osteosarcoma-related miRNAs and lncRNAs, most 

of these studies focus on either miRNAs or lncRNAs, and 

underlying mechanisms remain unclear. Recent develop-

ments in bioinformatics and statistical genomics provide 

systems biology approaches, allowing for a better under-

standing of transcriptome organization and transcriptional 

regulation. Among these systems biology approaches, gene 

network analysis is a powerful approach that considers gene 

interactions and has been widely applied in gene expression 

studies of humans and model organisms.24–26

This study aimed to identify promising candidate miRNAs 

significantly associated with osteosarcoma recurrence and 

uncover the underlying molecular mechanisms. For doing 

this, we tried to use large quantities of miRNA-seq data 

in GEO DataSets to screen out miRNAs with differential 

expression between osteosarcoma recurrence and non-

recurrence samples, and then undertook correlational analysis 

between optimal feature miRNA combination and recurrence 

time. Finally, a co-expression network was constructed on 

the basis of the differential expression of miRNAs and their 

target genes. Moreover, lncRNAs related to osteosarcoma 

were searched in the lncRNA and disease (LncRNADisease) 

database, and the relationships between these lncRNAs and 

their target miRNAs were integrated using the two prediction 

databases – miRcode and starBase.

Data and methods
collection and pretreatment of expression 
profile data
Public expression profiling data in GEO DataSets were 

retrieved with “osteosarcoma, homo sapiens and miRNA” 

as key words on July 25, 2016. Three miRNA expression 

profiles, named GSE39040, GSE39052, and GSE79181, 

were achieved, among which the former two emerged from 

the platform “GPL15762 Illumina Human v2 MicroRNA 

Expression BeadChip”, whereas the last one arose from the 
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platform “GPL15497 Applied Biosystems TaqMan Array 

Human MicroRNA Cards”. There were 23, 15, and 14 osteo-

sarcoma recurrence samples, and 42, 11, and 9 osteosarcoma 

non-recurrence samples in these three datasets, separately. 

Meanwhile, original values of the abovementioned transcripts 

were downloaded in .txt format. Each probe was annotated 

as the corresponding gene after rejecting null probes, and 

then normalized by a limma package.

screening of differentially expressed 
miRNA (DEmiR) by meta-analysis
DEmiRs between osteosarcoma recurrent and non-recurrent 

samples were screened using MetaDE.ES of the MetaDE 

package.27 First, heterogeneity tests of miRNA expres-

sion values from various platforms were carried out using 

MetaDE.ES to obtain statistical parameters for judging 

heterogeneity, including tau2, Q value, and Qpval. The judg-

ment criteria were as follows: when the tau2 value was 0 or 

the Q value was submitted to the K-1 degree of freedom 

chi-square test with Qpval .0.05, the study object was 

homogeneous and unbiased. Subsequently, a significant 

expression difference test (P,0.05) of miRNA from the 

integrated dataset was conducted between different groups. 

In this study, sources of distinct miRNAs were ensured to be 

unbiased on the basis of reliable parameters of the homoge-

neity test (ie, tau2 =0 and Qpval .0.05). Moreover, P,0.05 

was chosen as a significant threshold of miRNA differential 

expression.

Construction of specimen classification 
model using support vector machine 
(sVM) and random forest (rF)
acquisition of optimal feature mirna combination
In the present study, GSE39040 was used as a training data-

set, and hierarchical clustering analysis was undertaken based 

on the expression values of DEmiRs and the unsupervised 

clustering method. Moreover, the aforementioned miRNAs 

had undergone selection of optimal feature combinations 

using a recursive feature elimination (RFE)28 algorithm, 

applied in machine learning. Performances of different 

types of samples were evaluated through combinations of 

iterative random features until the optimal feature combina-

tion was obtained. Representative miRNAs were selected 

out after serial analyses, which can be used as identifiers 

of clinical diagnosis to construct a model and assess recur-

rent osteosarcoma based on expression levels of represen-

tative miRNAs.

Construction of SVM classifier
A significant combination of informative miRNAs was achieved 

using optimization of feature selection, and a SVM classifica-

tion model was then constructed using the GSE39040 dataset 

by the e1071 package (https://cran.r-project.org/web/packages/

e1071/index.html). Samples were classified and discriminated 

according to expression values of their informative miRNAs; 

later, probabilities of samples belonging to some class were 

predicted and estimated on the basis of their eigen values, so as 

to distinguish and predict the risk of osteosarcoma recurrence 

based on these informative expression levels of miRNAs.

Construction of RF classifier
Furthermore, a RF classifier was established using the same 

informative miRNAs as in SVM classifier in the GSE39040 

dataset by the randomForest package (https://cran.r-project.

org/web/packages/randomForest/index.html). Samples were 

classified into different recurrence statuses and discriminated 

according to expression values of their informative miRNAs 

by the RF classifier.

Validation of SVM and RF classifier
In order to confirm the robustness and transferability of 

the SVM and RF classifier, the remaining two datasets – 

GSE39052 and GSE79181 – were used as verification sets. 

The classification effect was comprehensively evaluated in 

terms of sensitivity (Se), specificity (Sp), positive predictive 

value (PPV), negative predictive value (NPV), and the area 

under the ROC curve (AUROC).

correlation analysis of selected mirnas 
and recurrence time
Multiple analysis of optimal feature mirnas 
and recurrence time
All samples in the training set were divided into a recurrence 

group and a non-recurrence group using the SVM classifier. 

Using Kaplan–Meier survival analysis of survfit function in 

R language,29 correlation analysis between optimal feature 

miRNAs and the recurrence time of each corresponding 

sample was undertaken in the two groups.

cox regression analysis of optimal 
feature mirnas and recurrence time
According to clinical information, all samples in the train-

ing set were categorized into a recurrence group and a non-

recurrence group. With expression values of the optimal 

feature combination of miRNAs as variables, associations of 

optimal feature miRNAs with recurrence time were studied 
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by Cox regression analysis using the coxph R function of the 

survival package in R language.

Prediction of miRNA-regulated target 
genes using mirTarBase database
MiRTarBase (http://mirtarbase.mbc.nctu.edu.tw) provides the 

latest and extensive experimental validation of miRNA–target 

interaction information.29,30 Using the latest updated version of 

this database, the target genes of the miRNAs significantly asso-

ciated with recurrence were searched. Subsequently, interaction 

networks of target genes regulated by these miRNAs were 

established after integration of the interaction data of human 

genes from the three protein-interaction databases, including 

the Biological General Repository for Interaction Datasets 

(BioGRID) (http://thebiogrid.org/), Human Protein Reference 

Database (HPRD) (http://www.hprd.org/), and the  Database of 

Interacting Proteins (DIP) (http://dip.doe-mbi.ucla.edu/).

Function and pathway of target genes 
in mirna regulation network
The miRNA control networks were visualized by Cytoscape. 

Later, the gene ontology (GO) function nodes and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathways 

significantly enriched with the target genes were identified. 

The enrichment process was calculated by Fisher exact test 

algorithm, and the calculation formula was as follows:
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N is the total number of genes in the whole genome; M is 

the number of genes in the pathway; and K is the number of 

differentially expressed genes.

search of disease lncrnas and regulation 
relationship
search for lncrnas associated with osteosarcoma 
from database
LncRNAs related to osteosarcoma were searched in the LncR-

NADisease database31 (http://210.73.221.6/lncrnadisease) 

which contained 321 lncRNAs and 221 related diseases 

reported in more than 500 documents.

Prediction of relationship between 
lncRNAs and target-regulating miRNAs
The regulatory relation between lncRNAs and miRNAs was 

integrated using two prediction databases, miRecode (http://

www.mircode.org/)32 and starBase.33 Then, the regulatory 

relationship between the osteosarcoma-related lncRNAs and 

the miRNA-targeted genes was built according to the previ-

ously obtained miRNAs relevant to this disease.

Results
screening of candidate mirnas 
by meta-analysis
The parametric values of each miRNA, including pval, 

tau2, Qpval, and Qval, were calculated using the MetaDE 

package. According to the screening threshold described 

in the section “Data and methods”, there were 78 signifi-

cantly DEmiRs screened from the three datasets, of which 

the top ten miRNAs selected according to P-values were 

hsa-miR-432, hsa-miR-329, hsa-miR-889, hsa-miR-337-3p, 

hsa-miR-635, hsa-miR-296-3p, hsa-miR-548c-3p, hsa-

miR-625, hsa-miR-551a, and hsa-miR-510 (Table S1). 

Meanwhile, heat maps of the three datasets were drawn 

out by the heatmap.sig.genes function of the MetaDE pack-

age (Figure 1).

Model construction of sample 
classification using SVM and RF
Construction of SVM and RF classifier based 
on optimal feature mirna combination
Hierarchical clustering analysis was carried out in the training 

dataset GSE39040 based on expression values of DEmiRs 

and an unsupervised clustering method. The results indicated 

that samples of the same type tended to gather together on the 

basis of the expression values of the 78 DEmiRs (Figure 2A). 

In order to obtain a collection of miRNAs representative of 

all the DEmiRs the RFE algorithm was adopted to select 

the optimal characteristic combination of miRNAs with a 

significant difference in expression in the GSE39040 data-

set. Following serial analyses, the result showed that the 

optimal miRNA combination had the highest classification 

accuracy of 89.2% when the number of miRNA was set at 

15 (Figure 2B). These 15 miRNAs in the optimal combina-

tion were hsa-miR-10b, hsa-miR-146b-3p, hsa-miR-1324, 

hsa-miR-873, hsa-miR-1275, hsa-miR-129-3p, hsa-miR-124, 

hsa-miR-200c, hsa-miR-134, hsa-miR-139-3p, hsa-miR-122, 

hsa-miR-1227, hsa-miR-136, hsa-miR-127-3p, and hsa-miR-

885-3p (Table 1).

Using these 15 miRNAs in the optimal combination, 

analysis of two-way hierarchical clustering was applied to 

all samples (n=65) in database GSE39040, and the result was 

similar to that in Figure 2A; namely, samples of the same 

type also tended to gather together (Figure 3A). Moreover, 

the SVM classifier constructed by these 15 miRNAs could 
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accurately classify 58 of the 65 samples. The classification 

scatter diagram and ROC chart of samples are shown in 

Figure 3B and C, respectively.

For the RF classifier, those 15 miRNAs could accurately 

classify 60 of the 65 samples, including 21 recurrence sam-

ples and 39 non-recurrence samples. The RF classification 

confusion table diagram and the ROC chart of samples are 

shown in Figure 4A and B, respectively.

independent validation and evaluation 
of SVM classifier performance
GSE39052 and GSE79181, the remaining two datasets, were 

regarded as the verification sets to confirm robustness and 

transferability of the constructed classifier. The results 

showed that the SVM classifier categorized 22 samples 

precisely in GSE39052, with a classification accuracy rate 

of 84.62% (22/26); 21 of 23 samples were accurately clas-

sified in GSE79181, with 91.3% accuracy rate. The scatter 

diagrams and ROC charts of the two abovementioned datasets 

are presented in Figure 5.

Moreover, the RF classifier was validated in GSE39052 

and GSE79181 datasets, which also showed high accuracy in 

recurrence status classification. The accuracy were 84.62% 

(22/26) in GSE39052 and 91.3% (21/23) in GSE79181 

(Figure 6).

Furthermore, the sample classification effect of the 

SVM and RF classifier after training was evaluated using a 

variety of indicators, such as “Correct Rate”, “Sensitivity”, 

“Specificity”, “PPV”, “NPV”, and “AUROC”, which are 

described in Table 2.

Figure 1 heat maps of datasets gse39052, gse39040, and gse79181.

Figure 2 Bidirectional hierarchical clustering of 78 mirnas based on their expression value (A) and feature elimination curves of 78 mirna (B).
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correlation analysis between optimal 
feature mirna combination and 
recurrence time
Expression values of the optimal feature miRNAs and recur-

rence time of each corresponding sample were obtained 

in the GSE39040 dataset, and all samples in the set were 

divided into a non-recurrence group and a recurrence group 

by the constructed SVM model. Kaplan–Meier survival 

analysis was then carried out for the two groups. The result 

showed that the survival time of the non-recurrence group 

was significantly longer compared to the recurrence group 

(P=4.61e-05; Figure 7).

In addition, using expression values of the optimal 15 

miRNAs as variables, their correlation with the recurrence 

Table 1 Statistical parameters of 15 miRNAs of optimal combi-
nation

miRNA_ID P-value Q Qp tau2

hsa-miR-10b 0.0009 1.6776 0.4322 0
hsa-miR-146b-3p 0.0083 0.1552 0.9253 0
hsa-miR-1324 0.0092 0.2516 0.8818 0
hsa-miR-873 0.0237 0.1581 0.9240 0
hsa-miR-1275 0.0296 0.2700 0.8737 0
hsa-miR-129-3p 0.0326 0.6742 0.7138 0
hsa-miR-124 0.0338 0.7222 0.6969 0
hsa-miR-200c 0.0365 0.9670 0.6166 0
hsa-miR-134 0.0390 1.2245 0.5421 0
hsa-miR-139-3p 0.0407 1.7569 0.4154 0
hsa-miR-122 0.0425 0.0150 0.9925 0
hsa-miR-1227 0.0437 0.4731 0.7894 0
hsa-miR-136 0.0441 0.4049 0.8167 0
hsa-miR-127-3p 0.0470 0.2269 0.8928 0
hsa-miR-885-3p 0.0494 0.8097 0.6671 0

Figure 3 Bidirectional hierarchical clustering of 15 mirnas from the optimal mirna combination (A), scatter diagram (B), and rOc chart (C) of gse39040 samples using 
the SVM classifier.
Abbreviations: aUc, area under curve; sVM, support vector machine.
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Figure 4 confusion table diagram (A) and rOc chart (B) of GSE39040 samples using the RF classifier.
Abbreviations: AUC, area under curve; Non, non-recurrence; Rec, recurrence; RF, random forest; ROC, receiver operating characteristic curve.
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Figure 5 Scatter diagram and ROC chart of classification by the SVM classifier in validation datasets GSE39052 (A, B) and gse79181 (C, D).
Abbreviations: aUc, area under curve; rOc, receiver operating characteristic curve; sVM, support vector machine.
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time and sample status (recurrence or non-recurrence) 

according to clinical information was analyzed by Cox 

regression analysis. Four miRNAs were significantly corre-

lated with recurrence, including hsa-miR-10b, hsa-miR-1227, 

hsa-miR-146b-3p, and hsa-miR-873 (Table 3). Kaplan–Meier 

survival curve analysis was conducted to validate the signifi-

cant relevance between the expression of the four miRNAs 

and recurrence (Figure 8). With median expression of each of 

Figure 6 confusion table diagram (A) and rOc chart (B) by the RF classifier in validation datasets GSE39052 (A, B) and gse79181 (C, D).
Abbreviations: AUC, area under curve; Non, non-recurrence; Rec, recurrence; RF, random forest; ROC, receiver operating characteristic curve.

Table 2 List of index items used in evaluating classification effect of the SVM and RF classifier in the test datasets

Datasets Number of 
samples

Correct rate Sensitivity Specificity PPV NPV AUROC

SVM classifier
gse39040 65 0.892 0.87 0.905 0.833 0.927 0.962
gse39052 26 0.846 0.867 0.818 0.867 0.818 0.903
gse79181 23 0.913 0.929 0.889 0.929 0.889 0.979

RF classifier
gse39040 65 0.923 0.875 0.951 0.913 0.929 0.976
gse39052 26 0.846 0.867 0.818 0.867 0.818 0.958
gse79181 23 0.913 0.927 0.889 0.929 0.889 0.948

Abbreviations: aUrOc, area under the rOc curve; PPV, positive predictive value; nPV, negative predictive value; rF, random forest; sVM, support vector machine; rOc, 
receiver operating characteristic curve.
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the four miRNAs as the cutoff, all samples in the GSE39040 

dataset were divided into two groups, separately. With 

regard to each miRNA, differences in the recurrence-free 

survival time between the patients with above-median value 

and the patients with below-median value were significant 

(P,0.05).

interaction network analysis of target 
genes regulated by mirna
Target genes of the four abovementioned miRNAs, including 

hsa-miR-10b, hsa-miR-1227, hsa-miR-146b-3p, and hsa-

miR-873, were discovered from the miRTarBase database, 

whose gene numbers were 137, 147, 145, and 77, separately. 

The interactive relationships among these target genes were 

comprehensively searched in the three protein databases as 

described in the section “Data and methods”, and 141 pairs of 

gene links were obtained. Interaction networks of target genes 

under regulation of the four miRNAs were built by integrat-

ing two kinds of connections – miRNA–gene and gene–gene. 

The network contained two types of nodes after visualization 

by Cytoscape: compared with the non-recurrence group, 

a red square node represented a miRNA with upregulated 

expression in the recurrence group, and a green square node 

stood for a miRNA with downregulated expression in the 

recurrence group. Moreover, pink rounds indicated target 

genes (Figure 9).

Function annotation and pathway 
enrichment of target genes in mirna 
regulation network
The functions and pathways of target genes involved in the 

above interaction networks were enriched by the hyper-

geometric distribution pathway enrichment analysis using 

Fisher algorithm. The results in Figure 10 indicated 14 

significant KEGG pathways (Figure 10A) and 17 significant 

GO function terms (Figure 10B and Table S2). Among these 

significant KEGG pathways, one named the “Osteoclast 

differentiation” pathway was considered to be closely related 

to osteoblasts and osteosarcoma, and significantly involved 

a total of seven target genes, including Interleukin 1 alpha 

(IL1A), CAMK4, TNFSF11, NCF4, PPP3CB, MAP3K7, and 

suppressor of cytokine signaling (SOCS) 3 (Table S3). They 

were validated to be targeted by hsa-miR-10b, hsa-miR-1227, 

and hsa-miR-146b-3p, separately, in this study.

Searching of osteosarcoma-related 
lncrnas and establishment of relationships 
among lncrna, mirna, and target genes
Three lncRNAs – named BC040587,34 LSAMP-AS3,35 and 

MALAT113 – were checked for an association with osteosar-

coma in the LncRNADisease database. miRNAs regulated 

by the three lncRNAs were searched in the miRecode and 

starBase databases and, afterward, compared with the four 

obtained important miRNAs in hsa-miR-10b, hsa-miR-1227, 

hsa-miR-146b-3p, hsa-miR-873. A regulatory network of the 

lncRNA–miRNA–target gene pathway was built by integrat-

ing various relationships between lncRNA and miRNAs, 

miRNAs and target genes, and target genes involved in 

pathways (Figure 11). In the regulatory network, MALAT1 

may directly regulate hsa-miR-146b-3p, which imposed a 

regulatory effect on the IL1A gene involved in the osteogenic 

differentiation pathway related to osteosarcoma.

Discussion
Metastasis and recurrence are the main factors that affect the 

prognosis of osteosarcoma, and involve a series of functional 

and regulating factors, such as miRNAs. Recent research 

demonstrated that miRNAs played important roles in the 

occurrence and development of osteosarcoma, and there were 

abnormal expressions of many miRNAs in osteosarcoma.4–9 

There was great significance and relevance in comparing the 

expression of miRNAs between osteosarcoma recurrence 

Figure 7 Kaplan–Meier survival curve between recurrence and non-recurrence 
samples. 

Table 3 results of cox regression analysis

miRNA Hazard ratio 95% CI P-value

hsa-miR-10b 3.354 1.314–8.56 0.0062
hsa-miR-1227 1.337 0.583–3.066 0.0423
hsa-miR-146b-3p 2.203 0.932–5.209 0.00931
hsa-miR-873 0.516 0.222–1.203 0.0107
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samples and osteosarcoma non-recurrence samples. In the 

present study, three miRNA expression profiles related to 

osteosarcoma recurrence samples and osteosarcoma non-

recurrence samples – named GSE39052, GSE39040, and 

GSE79181 – were first downloaded from GEO DataSets, 

and then the DEmiRs were screened using MetaDE.ES of 

the MetaDE package.27 In total, 78 significantly DEmiRs 

were screened from the three datasets, and hierarchical 

clustering analysis on the basis of these miRNAs expression 

values indicated that the same-type samples in the GSE39040 

dataset tended to gather together. The top ten DEmiRs were 

hsa-miR-432, hsa-miR-329, hsa-miR-889, hsa-miR-337-3p, 

hsa-miR-635, hsa-miR-296-3p, hsa-miR-548c-3p, hsa-miR-

625, hsa-miR-551a, and hsa-miR-510. Among these, hsa-

miR-337-3p,36 miR-62537, and miR-551a38 were reported to 

be associated with lymph node metastasis of human gastric 

cancer, indicating the potential relationship between these 

miRNAs and osteosarcoma.

The SVM, a supervised machine-learning technique, 

has been shown to perform well in multiple areas of bio-

logical analysis, including evaluating microarray expression 

data,39 and in analyzing expression data.40,41 In the present 

study, in order to construct a specimen classification model 

using the SVM, the selection of optimal feature miRNA 
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Figure 8 Kaplan–Meier curves of hsa-miR-10b (A), hsa-miR-146b-3p (B), hsa-miR-873 (C), and hsa-miR-1227 (D), which are significantly associated with recurrence 
information.
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combination was first done in the GSE39040 dataset, and 

results showed that the optimal miRNA combination had 

the highest classification accuracy (89.2%) when the number 

of miRNA was set at 15. Further analysis of two-way hier-

archical clustering was applied to samples in the GSE39040 

database using the 15 miRNAs in the optimal combination, 

and the result was similar to that obtained using 78 signifi-

cantly DEmiRs. Moreover, the SVM classifier constructed 

by these 15 miRNAs could accurately classify 58 of 65 

samples in the GSE39040 database, and this sample clas-

sification effect was validated and evaluated in another two 

databases – GSE39052 and GSE79181 – which showed that 

the classifier could successfully categorize 22 samples in 

GSE39052 (84.62%, 22/26) and 21 samples in GSE79181 

(91.3%, 21/23), indicating the sound performance of the 

SVM classifier constructed in the present study.

Kaplan–Meier survival analysis is one of the best options 

to measure the fraction of subjects living for a certain amount 

of time after treatment.42,43 In the present study, Kaplan–

Meier survival analysis was first carried out according to the 

expression values of optimal feature miRNAs, the recurrence 

time of each corresponding sample, and the status (including 

recurrence and no recurrence) classified by the previously 

constructed SVM model, and the results showed that the 

survival time of the non-recurrence group was significantly 

longer than that of the recurrence group, and the decline 

rates of the survival ratio of the former group were signifi-

cantly lower than that of the latter group. In addition, using 

expression values of the 15 optimal miRNAs as variables, 

their correlation with the recurrence time and sample status 

was analyzed by Cox regression, and four significantly 

correlated miRNAs – hsa-miR-10b, hsa-miR-1227, hsa-

miR-146b-3p, and hsa-miR-873 – were identified. The 

hsa-miR-10b is a particularly interesting candidate miRNA, 

given its close correlations with metastatic behaviors of 

breast cancer44 and gastric cancer.45 The hsa-miR-1227, a 

miRNA abundant in large oncosomes, can enhance migra-

tion of cancer-associated fibroblasts.46 A number of studies 

have examined the role of miR-146b microRNAs in cancer 

cell lines, one isoform of which, miR-146b-3p, was identi-

fied as a frequent constituent of six-miRNA SVM classifiers 

that could predict recurrence with a mean accuracy of 69%; 

the expression level of miR-146b-3p in human non-small 

cell lung cancer was associated with the recurrence of this 

cancer postoperatively.47 The hsa-miR-873 is a novel tumor 

suppressor in ER-positive breast cancer48 and can inhibit 

tumorigenesis and metastasis of glioblastoma.49 This study 

suggests that these four miRNAs might be possible biomark-

ers for osteosarcoma recurrence.

It is well known that miRNAs are involved in cancer 

initiation and progression as well as in multiple metabolic 

pathways by regulating target gene expression.50,51 Due 

to the rapid development in bioinformatics and statistical 

genomics, gene network analysis has become a powerful 

approach that considers gene interactions and has been 

widely applied in gene expression studies of humans and 

Figure 9 Interaction network among target genes of hsa-miR-10b, hsa-miR-1227, hsa-miR-146b-3p, and hsa-miR-873. A pink circle indicates a target gene; a red square node 
indicates a miRNA with upregulated expression in the recurrence group against the non-recurrence group, whereas a green square node indicates a downregulated miRNA 
in the recurrence group.
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model organisms.24,26 In the present study, 141 pairs of 

interaction links between hsa-miR-1227, hsa-miR-146-

b-3p, hsa-miR-873, and their target genes were obtained, 

and interaction networks were built by integrating the two 

kinds of connections, miRNA–gene and gene–gene. As 

genes that are highly interconnected within the network 

are usually involved in the same biological modules or 

pathways, functional annotations of the miRNA targeted 

genes according to GO and KEGG databases would provide 

ample numbers of candidate genes and more information 

about the mechanism of osteosarcoma. In total, 17 GO 

functionally annotated terms and 14 KEGG pathways were 

identified, of which one KEGG pathway was “Osteoclast 

differentiation”, which was closely related to osteoblasts 

and osteosarcoma.52,53 There were a total of seven target 

genes involved in the “Osteoclast differentiation” pathway, 

including IL1A, CAMK4, TNFSF11, NCF4, PPP3CB, 

MAP3K7, and SOCS3. The IL1A is known as a mediator of 

inflammation and a regulator of the blood–testis barrier, and 

participates in inhibiting Leydig cell steroidogenesis and 

stimulating Sertoli cell transfer.54 TNFSF11 is a member of 

the tumor necrosis factor family and plays essential roles 

in lymph node organogenesis, normal cellular immunity, 

osteoclastogenesis, and skeletal development.55 MAP3K7, 

also known as TGFβ-associated kinase 1 (TAK1), is asso-

ciated with early prostate-specific antigen recurrence in 

prostate cancer.56 SOCS3 is a cytokine-inducible inhibitor 

with critical, but selective, cell-specific effects, and also 

Figure 10 Kegg pathway (A) and column chart of gO function annotation (B) significantly related to target genes.
Abbreviations: gO, gene ontology; Kegg, Kyoto encyclopedia of genes and genomes.
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Figure 11 A regulatory network of lncRNA–miRNA–target gene pathway significantly related to osteosarcoma.

acts as an essential negative regulator of IL-23 signaling, 

the inhibition of which constrains the generation of Th17 

differentiation.57 These target genes were validated to be 

targeted by hsa-miR-10b, hsa-miR-1227, and hsa-miR-146-

b-3p, separately. These results suggest that hsa-miR-10b, 

hsa-miR-1227, and hsa-miR-146b-3p might exert an effect 

on the osteoclast differentiation pathway via regulation of 

the seven target genes, thus affecting recurrence.

Considering lncRNAs may participate in the regulation 

of diverse cellular processes, such as cell proliferation and 

apoptosis, stem cell pluripotency, and development,10–12 

a series of lncRNAs have been shown to be involved in the 

osteosarcoma. Emerging studies have suggested that several 

lncRNAs play a regulatory role in cellular processes via 

a complicated network involving mRNAs, miRNAs, and 

protein.58,59 Furthermore, networks involving lncRNAs, 

miRNAs, and mRNAs were explored in the present study. 

lncRNAs related to osteosarcoma were searched in the 

LncRNADisease database,31 which screened out three 

lncRNAs – BC040587,34 LSAMP-AS3,35 and MALAT1.13 

The regulatory relationship between osteosarcoma-related 

lncRNAs and miRNA-targeted genes was then built accord-

ing to the previously obtained miRNAs relevant to this 

disease. The result showed that MALAT1 might directly 

regulate hsa-miR-146b-3p, which exerted a regulatory effect 

on the IL1A gene involved in the osteogenic differentiation 

pathway related to osteosarcoma. Previous studies have 

proved that MALAT1 could promote proliferation and 

metastasis of osteosarcoma cells by activating the PI3K_Akt 

pathway,13 and could be a potential therapeutic target in 

osteosarcoma.60 All of the above published studies prove 

the reliability of our present study and, therefore, the rest 

of the identified miRNAs and lncRNAs could be fresh fac-

tors related to the survival of patients with osteosarcoma. It 

should be mentioned that biological experiments were not 

carried out in this study. Further experimental studies using 

a large cohort of samples will be undertaken to validate the 

findings of this study.
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Conclusion 
This study proposes a 15-miRNAs-based SVM classifier as 

a potential useful tool to predict osteosarcoma recurrence. 

The hsa-miR-10b, hsa-miR-1227, hsa-miR-146b-3p, and 

hsa-miR-873 miRNAs were closely associated with recur-

rence of osteosarcoma. Several pathways and GO functions 

significantly enriched with target genes of the four miRNAs 

were unraveled. LncRNA MALAT1 may directly regulate 

IL1A, involved in the osteoclast differentiation pathway, 

by targeting hsa-miR-146b-3p in osteosarcoma. Our results 

suggest possible mechanisms of osteosarcoma metastasis and 

recurrence, and provide DEmiRs which could be applied as 

potential biomarkers or therapeutic targets for osteosarcoma 

recurrences. More studies are warranted to verify the results 

of this study.
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Supplementary materials

Table S1 Screened 78 miRNAs with significant differential 
expression

miRNA_ID P-value Q Qp tau2

hsa-miR-432 0.00002 0.6704 0.7152 0
hsa-miR-329 0.00002 0.2139 0.8986 0
hsa-miR-889 0.0002 0.7548 0.6857 0
hsa-miR-337-3p 0.0002 0.0778 0.9619 0
hsa-miR-635 0.0004 0.4406 0.8023 0
hsa-miR-296-3p 0.0004 1.4533 0.4835 0
hsa-miR-548c-3p 0.0006 0.8417 0.6565 0
hsa-miR-625 0.0006 0.0724 0.9644 0
hsa-miR-551a 0.0006 0.2312 0.8908 0
hsa-miR-510 0.0006 0.0666 0.9672 0
hsa-miR-10b 0.0009 1.6776 0.4322 0
hsa-miR-375 0.0015 1.2804 0.5272 0
hsa-miR-586 0.0017 0.1737 0.9168 0
hsa-miR-211 0.0018 1.2030 0.5480 0
hsa-miR-338-3p 0.0030 0.3902 0.8227 0
hsa-miR-509-3-5p 0.0030 0.5238 0.7696 0
hsa-miR-601 0.0032 0.8572 0.6514 0
hsa-miR-506 0.0035 0.1168 0.9433 0
hsa-miR-493 0.0036 0.8930 0.6399 0
hsa-miR-382 0.0052 0.4549 0.7966 0
hsa-miR-448 0.0052 0.3315 0.8473 0
hsa-miR-485-3p 0.0056 1.9759 0.3723 0
hsa-miR-330-3p 0.0061 1.7235 0.4224 0
hsa-miR-885-5p 0.0062 0.4348 0.8046 0
hsa-miR-154 0.0067 0.5234 0.7697 0
hsa-miR-323-3p 0.0073 1.4660 0.4805 0
hsa-miR-381 0.0081 1.0856 0.5811 0
hsa-miR-146b-3p 0.0083 0.1552 0.9253 0
hsa-miR-1324 0.0092 0.2516 0.8818 0
hsa-miR-544 0.0095 0.2217 0.8951 0
hsa-miR-342-3p 0.0099 1.7962 0.4073 0
hsa-miR-944 0.0122 0.2137 0.8987 0
hsa-miR-409-3p 0.0124 0.3380 0.8445 0
hsa-miR-362-3p 0.0128 1.5226 0.4671 0
hsa-miR-520a-3p 0.0129 1.0973 0.5777 0
hsa-miR-299-5p 0.0141 0.9906 0.6094 0
hsa-miR-99b 0.0145 1.2373 0.5387 0
hsa-miR-576-3p 0.0198 1.0569 0.5895 0

(Continued)

Table S1 (Continued)

miRNA_ID P-value Q Qp tau2

hsa-miR-636 0.0202 0.9612 0.6184 0
hsa-miR-31 0.0207 1.4158 0.4927 0
hsa-miR-543 0.0219 0.0557 0.9725 0
hsa-miR-509-5p 0.0233 0.2104 0.9002 0
hsa-miR-873 0.0237 0.1581 0.9240 0
hsa-miR-572 0.0245 0.2224 0.8947 0
hsa-miR-148b 0.0251 1.7011 0.4272 0
hsa-miR-324-5p 0.0262 1.6948 0.4285 0
hsa-miR-422a 0.0262 0.3929 0.8217 0
hsa-miR-181a 0.0269 0.5740 0.7505 0
hsa-miR-25 0.0276 1.7530 0.4162 0
hsa-miR-29c 0.0286 0.3219 0.8513 0
hsa-miR-517c 0.0290 0.7942 0.6723 0
hsa-miR-501-5p 0.0296 0.7887 0.6741 0
hsa-miR-639 0.0296 0.6441 0.7247 0
hsa-miR-1275 0.0296 0.2700 0.8737 0
hsa-miR-129-3p 0.0326 0.6742 0.7138 0
hsa-miR-921 0.0327 0.3280 0.8487 0
hsa-miR-124 0.0338 0.7222 0.6969 0
hsa-miR-147 0.0358 0.4122 0.8138 0
hsa-miR-28-5p 0.0362 0.4770 0.7878 0
hsa-miR-200c 0.0365 0.9670 0.6166 0
hsa-miR-518f 0.0382 1.0540 0.5904 0
hsa-miR-134 0.0390 1.2245 0.5421 0
hsa-miR-29a 0.0395 0.4061 0.8162 0
hsa-miR-337-5p 0.0399 0.9856 0.6109 0
hsa-miR-501-3p 0.0402 1.0533 0.5906 0
hsa-miR-139-3p 0.0407 1.7569 0.4154 0
hsa-miR-122 0.0425 0.0150 0.9925 0
hsa-miR-431 0.0425 0.0928 0.9546 0
hsa-miR-630 0.0436 0.8171 0.6646 0
hsa-miR-1227 0.0437 0.4731 0.7894 0
hsa-miR-136 0.0441 0.4049 0.8167 0
hsa-miR-127-3p 0.0470 0.2269 0.8928 0
hsa-miR-204 0.0471 0.1403 0.9322 0
hsa-miR-361-3p 0.0471 0.5252 0.7691 0
hsa-miR-720 0.0488 0.1208 0.9414 0
hsa-miR-342-5p 0.0490 0.5989 0.7412 0
hsa-miR-885-3p 0.0494 0.8097 0.6671 0
hsa-miR-302d 0.0497 0.5082 0.7756 0
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Table S2 GO annotation significantly related to target genes

Term Count P-value Genes

lymphangiogenesis 3 0.0043 PPP3CB, FLT4, BMPR2
Transmembrane receptor protein serine/threonine kinase activity 3 0.0069 LTBP4, LTBP1, BMPR2
Feeding behavior 7 0.0078 MCHR1, PPYR1, OPRD1, GLS, ASIP, PHF21A, IAPP
RNA polymerase II carboxy-terminal domain kinase activity 3 0.0043 GTF2H1, CDK9, GTF2H4
copper chaperone activity 2 0.0077 PARK7, CCS
Fatty acid elongation, saturated fatty acid 2 0.0077 ELOVL4, ELOVL6
Fatty acid elongation 3 0.0029 ELOVL2, ELOVL4, ELOVL6
intracellular receptor signaling pathway 13 0.0090 ZNF536, CCNE1, DCBLD2, PGR, MAP3K7, GPR56, ITCH, 

NOD1, KANK2, THRA, PARK7, RXRB, DDX5
negative regulation of protein complex assembly 7 0.0071 THRA, HEY2, SPTAN1, MAP3K7, OPRD1, MAPRE1, PARK7
Positive regulation of stress-activated MAPK cascade 8 0.0064 IL1A, FLT4, MAP3K10, TNFSF11, NOD1, HIPK2, MAP3K7, 

STK25
lymph vessel morphogenesis 3 0.0059 PPP3CB, FLT4, BMPR2
intrinsic apoptotic signaling pathway in response to hydrogen peroxide 2 0.0077 PARK7, STK25
Paracrine signaling 2 0.0077 TNFSF11, PGR
sertoli cell development 3 0.0059 DMRT1, ARID4B, SDC1
Positive regulation of stress-activated protein kinase signaling cascade 8 0.0067 IL1A, FLT4, MAP3K10, TNFSF11, NOD1, HIPK2, MAP3K7, 

STK25
serine/threonine protein kinase complex 5 0.0072 GTF2H1, CDK9, MAP3K7, RB1CC1, GTF2H4
Protein kinase complex 7 0.0026 GTF2H1, CDK9, CCNE1, PRKAB2, GTF2H4, MAP3K7, 

RB1CC1

Abbreviation: gO, gene ontology.

Table S3 The KEGG pathway significantly related to target genes

Term Count P-value Genes

arginine biosynthesis 3 0.0100 ARG2, GOT2, GLS
Fatty acid elongation 3 0.0171 ELOVL2, ELOVL4, ELOVL6
nucleotide excision repair 4 0.0178 GTF2H1, LIG1, RAD23B, GTF2H4
Osteoclast differentiation 7 0.0195 IL1A, CAMK4, TNFSF11, NCF4, PPP3CB, MAP3K7, SOCS3
rheumatoid arthritis 5 0.0379 ITGAL, TNFSF11, IL8, MMP3, IL1A
Phenylalanine metabolism 2 0.0128 GLYAT, GOT2
selenocompound metabolism 2 0.0128 SEPHS1, TXNRD1
Fat digestion and absorption 3 0.0152 PNLIPRP1, ABCA1, GOT2
Ubiquitin-mediated proteolysis 6 0.0235 PIAS3, CBL, TRIM32, ITCH, TRIM37, SOCS3
Biosynthesis of amino acids 4 0.0276 ARG2, GOT2, RPE, MAT2B
Transcriptional misregulation in cancer 7 0.0351 CDK9, MMP3, IL8, PAX5, RXRB, CCNA1, DDX5
rna degradation 4 0.0354 DDX6, CNOT6, 10200, CNOT4
Biosynthesis of unsaturated fatty acids 2 0.0459 ELOVL2, ELOVL6
Non-alcoholic fatty liver disease (NAFLD) 6 0.0500 IL1A, PRKAB2, IL8, ITCH, NDUFA4L2, SOCS3

Abbreviation: Kegg, Kyoto encyclopedia of genes and genomes.

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com/oncotargets-and-therapy-journal
http://www.dovepress.com/testimonials.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
www.dovepress.com

	Publication Info 4: 


