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Abstract: Gambogic acid (GA) has a significant anticancer effect on a wide variety of solid 

tumors. Recently, many nanoparticles have been introduced as drug-delivery systems to enhance 

the efficiency of anticancer drug delivery. The aim of this study was to investigate the potential 

benefit of combination therapy with GA and magnetic nanoparticles of Fe
3
O

4
 (MNPs-Fe

3
O

4
). The 

proliferation of K562 cells and their cytotoxicity were evaluated by MTT assay. Cell apoptosis 

was observed and analyzed by microscope and flow cytometry, respectively. Furthermore, real-

time polymerase chain reaction and Western blotting analyses were performed to examine gene 

transcription and protein expression, respectively. The results showed that MNPs-Fe
3
O

4
 dramati-

cally enhanced GA-induced cytotoxicity and apoptosis in K562 cells. The typical morphological 

features of apoptosis treated with GA and MNPs-Fe
3
O

4
 were observed under an optical micro-

scope and a fluorescence microscope, respectively. The transcription of caspase-3 and bax gene 

in the group treated with GA and MNPs-Fe
3
O

4
 was higher than that in the GA-alone group or 

MNPs-Fe
3
O

4
-alone group, but the transcription of bcl-2, nuclear factor-κB, and survivin degraded 

as did the expression of corresponding proteins in K562 cells. Our data suggests a potential 

clinical application of a combination of GA and MNPs-Fe
3
O

4
 in leukemia therapy.

Keywords: gambogic acid, magnetic nanoparticles of Fe
3
O

4
, traditional Chinese medicine, 

K562 leukemia cells, apoptosis

Introduction
A major problem of cancer therapy is the side effects of chemotherapy. Minimizing side 

effects and maximizing efficacy is a major goal in the development of tumor treatment.1 

Gambogic acid (GA), a naturally occurring brownish orange resin called gamboge,2 

possesses diverse biological effects such as anti-inflammatory and antioxidant actions.3 

Recent studies showed that GA could inhibit the growth of a wide variety of tumor 

cells, including hepatoma, pulmonary carcinoma, gastric cancer, and breast cancer 

cells.4–14 How GA mediates the growth of these tumor cells is not fully understood, 

but GA has been shown to induce apoptosis, arrest cell cycles, and downregulate bcl-2 

and telomerase activity.14,15 Preclinical research revealed that a therapeutic dose of GA 

did not inhibit the proliferation of bone marrow, peripheral blood leucocyte count, or 

phagocytotic function of macrophage in tumor-bearing mice.16 Because of its broad 

spectrum anticancer actions, satisfactory therapeutic effect, and good tolerance, GA 

is a promising candidate in anticancer drugs.

Another key problem for tumor treatment is the reducing sensitivity of tumor cells 

to cytotoxic drugs. Thus, many polymer nanospheres and nanoparticles have been 

introduced as drug-delivery systems to enhance the efficiency of anticancer drug 
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delivery based on the ability to target specific locations in the 

body.17 The most promising materials are magnetic nanopar-

ticles. Magnetic nanoparticles of Fe
3
O

4
 (MNPs-Fe

3
O

4
), 

a biocompatible and superparamagnetic nanomaterial with 

satisfactory chemical stability and low toxicity, are widely 

used for targeted-drug carriers with target-orientation and 

sustained-release properties.18

Our study aims to evaluate the potential benefit of com-

bination therapy with GA and MNPs-Fe
3
O

4
 for leukemia and 

whether MNPs-Fe
3
O

4
 could promote the apoptosis induced 

by GA. To elucidate the mechanisms possibly involved, we also 

measured the expression of apoptosis-related genes and pro-

teins, including caspase-3, bax, bcl-2, NF-κB, and survivin.

Materials and methods
Main reagents
GA (Kanion Pharmaceutical Co., Ltd, Jiangsu, China) was 

dissolved in dimethyl sulfoxide (DMSO; Sigma Aldrich, St. 

Louis, MO), stored at -20 °C, and then diluted as needed 

in RPMI 1640 medium (Gibco/BRL, Carlsbad, CA). MTT 

was purchased from Sigma Aldrich. Monoclonal antibodies 

including caspase-3, bax, bcl-2, NF-κB, survivin, and β-actin 

were purchased from Santa Cruz Biotechnology (Santa 

Cruz, CA). MNPs-Fe
3
O

4
 (State Key Lab of Bioelectronics, 

Nanjing, China) were well distributed in RPMI 1640 medium 

containing 10% (v/v) heat-inactivated new-born calf serum 

(Sijiqing, Hangzhou, China) by using ultrasound treatment 

in order to obtain MNPs-Fe
3
O

4
 colloidal suspension. GA 

conjugated with MNPs-Fe
3
O

4
 was prepared by mechanical 

absorption polymerization at 4 °C for 48 hours.

Cell lines and culture conditions
K562 cells, derived from human leukemic cells from a 

chronic myeloid leukemia patient in blastic crisis and con-

stantly preserved in our laboratory, were cultured in RPMI 

1640 medium containing 10% (v/v) heat-inactivated fetal calf 

serum, 100 U/mL penicillin, and 100 µg/mL streptomycin at 

37 °C in a humidified 5% CO
2
 incubator.

Cell viability assay
Cytotoxicity was determined by the MTT assay. K562 cells 

(8 × 103/mL) were incubated into 96-well flat-bottomed 

plates (Costar, Charlotte, NC). Different concentrations 

of GA were added into these cells and cultured at 37 °C 

for 24, 48, and 72 hours, respectively. To determine the 

optimum synergistic effect of MNPs-Fe
3
O

4
, different 

concentrations of MNPs-Fe
3
O

4
 were used symphysially 

with or without GA in graded concentrations. Briefly, 20 µL 

MTT (5 mg/mL) was added to each well and incubated 

at 37 °C for 4 hours. The formazan was dissolved with 

150 µL dimethyl sulfoxide (Sigma Aldrich) and the reduc-

tion of MTT was quantified by absorbance at 570 nm using 

a plate reader (Model 550; Bio-Rad Laboratories, Tokyo, 

Japan). The inhibition ratio (IR) of cells was determined 

as follows: (1-A
treated group

/A
control group

) × 100%. The 50% 

inhibiting concentration (IC
50

) was defined as the concentra-

tion required for 50% inhibition of cell growth.

Apoptosis assay by flow cytometer
Quantification of apoptotic cells was performed using an 

Annexin-V-FITC Apoptosis Detection Kit (KenGen, Nanjing, 

China) according to the manufacturer’s instructions. After 

incubation in a medium containing different drugs at 37 °C for 

48 hours, the cells were collected and suspended in 500 µL of 

binding buffer, and 5 µL Annexin-V-fluorescein isothiocyanate 

(FITC) and 5 µL propidium iodide (PI) were added at room 

temperature in the dark for 15 minutes. Analyses were 

performed by FACScan flow cytometer (Becton Dickinson, 

Sunnyvale, CA). The cells in the FITC-positive and PI-negative 

fraction were regarded as apoptotic cells.

Cell morphological assessment
After being cultured in RPMI-1640 containing 6 mg/L GA, 

0.6 mg/L GA conjugated with 10 mg/L MNPs-Fe
3
O

4
 or 

without GA at 37 °C for 48 hours, K562 cells were collected 

and smeared. Some films were stained with Wright’s stain 

to observe the morphological changes of apoptosis cells by 

optical microscope; others were fixed with methanol for 

15 minutes, stained with fluorochrome dye DAPI (Santa Cruz 

Biotechnologies), and then observed under a fluorescence 

microscope (IX51; Olympus, Tokyo, Japan) with a peak 

excitation wave length of 340 nm.

Quantitative real-time PCR  
(QPCR) analysis
As described before, K562 cells (8 × 103/mL) were treated, 

harvested, and then total RNA was isolated using Trizol 

reagent (Invitrogen Life Technologies, Carlsbad, CA) 

according to the manufacturer’s protocol. The reverse tran-

scription reactions were performed using SuperScript™ 

II reverse transcriptase (Invitrogen Life Technologies) and 

the newly synthetic cDNA was amplified within target 

and control sequences (primer sequences for caspase-3 

(270 bp) forward, 5′-GCTATTGTGAGGCGGTTGT-3′ 
and reverse, 5′-TGTTTCCCTGAGGTTTGC-3′; Bax 

(114 bp) forward, 5′-TTTTGCTTCAGGGTTTCATC-3′ 
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and reverse, 5′-GACACTCGCTCAGCTTCTTG-3′; Bcl-2 

(452 bp) forward, 5′-GGGAGAACAGGGTACGATAA-3′ 
and reverse, 5′-CCACCGAACTCAAAGAAGG-3′; NF-κB 

(227 bp) forward, 5′-TCGTTTCCGTT ATGTATGT-3′ and 

reverse, 5′-CCTTGGGTCCAGCAGTTA-3′; Survivin 

(255 bp) forward, 5′-CAAGGACCACCGCATCTC-3′ 
and reverse, 5′-CCAAGGGTTAATTCTTCAAACT-3′; 
GAPDH (205 bp) forward, 5′-CGGATTTGGTCGTATTG-3′ 
and reverse, 5′-GAAGATGGTGATGGGATT-3′). QPCR 

was performed by monitoring in real-time the increase of 

fluorescence of SYBR green I dye (Takara, Shiga, Japan) 

with Rotor-Gene 3000 (Corbett Research, Sydney, Australia). 

The relative gene copy number was calculated by the 

concentration-CT standard curve method and normalized 

using the average expression of GAPDH.

Western blot analysis
In order to examine the expression of caspase-3, bax, 

bcl-2, NF-κB, and survivin, we next performed Western 

blot analysis on whole cell protein extracted from cells 

treated for 48 hours as described previously. In brief, 

total protein was isolated on ice and subjected to 10% 

sodium dodecylsulfate polyacrylamide gel electrophoresis 

(SDS-PAGE) gels using modified radio immunoprecipitation 

assay buffer, and transferred to a polyvinylidene difluoride 

membrane (Bio-Rad). Western blotting was performed with 

a 1:1000–1200 dilutions of monoclonal antibodies against 

either anti-human caspase-3, bax, bcl-2, NF-κB, surviving, 

or β-actin anti-body in 5% nonfat dry milk, and then with 

horseradish peroxidase-conjugated goat anti-rabbit (1:5000) 

as a secondary antibody. The band was detected by using an 

enhanced chemiluminescence detection system (Amersham, 

Buckinghamshire, UK).

statistical analysis
All data were presented as means ± standard deviation in 

triplicate and analyzed using SPSS software (v. 15.0; SPSS 

Inc., Chicago, IL). The difference among various groups was 

analyzed by ANOVA test, and P values of less than 0.05 

were considered significant.

Result
synergistic effect on cytotoxicity 
of K562 cells
The MTT assay revealed that GA inhibited the survival of K562 

cells in a dose- and time-dependent manner and the IC
50

 was 

1.13 mg/L (Figure 1). Furthermore, it was observed that the 

addition of MNPs-Fe
3
O

4
 did enchance the inhibition of GA to 

K562 cells, and 10 mg/L MNPs-Fe
3
O

4
 reduced the IC

50
 value of 

GA to 0.72 mg/L (P  0.05) (Figure 2), suggesting MNPs-Fe
3
O

4
 

with GA have a synergistic effect on K562 cells.

synergistic effect on apoptosis 
of K562 cells
Only (7.1% ± 3.23%) apoptosis of K562 cells were observed 

under 10 mg/L MNPs-Fe
3
O

4
, there was no significant changes 

compared to the control group (6.1% ± 1.67%) (P  0.05). 

The apoptosis of K562 cells induced by 0.6 mg/L GA for 

48 hours was (35.2% ± 3.37%) (P  0.05), while com-

bination of  GA with 10 mg/L MNPs-Fe
3
O

4
 increased to 

(48.7% ± 1.47%) (P  0.05) (Figure 3), which indicated 

that MNPs-Fe
3
O

4
 could enhance GA-induced apoptosis.

Morphological changes of K562 Cells
The morphological changes of K562 cells by optical micro-

scope were shown in Figure 4. K562 cells in control group 

displayed normal, healthy shape demonstrated by the clear 

skeletons (Figure 4A); After treatment with 0.6 mg/L GA and 

10 mg/L MNPs-Fe
3
O

4
 for 48 hours, typical cytomorphologi-

cal features of apoptosis in K562 cells were evident, such 

as cell shrinkage, chromatin condensation, margination, and 

presence of apoptotic bodies (Figure 4B); While large dose 

of GA led K562 cells to necrosis (Figure 4C).

Under the fluorescence microscope, the nucleolus changes 

of K562 cells were observed (Figure 5). K562 cells in control 

group were stained equably blue fluorescence, indicating that 

the chromatin equably distributed in nucleolus (Figure 5A), 

but 0.6 mg/L GA led a few K562 cells to display chromatin 

condensation and nucleolus pyknosis (Figure 5B). After 

incubated with 0.6 mg/L GA and 10 mg/L MNPs-Fe
3
O

4
 for 

Figure 1 effect of the different concentrations of gambogic acid (gA) on growth 
inhibition ratio of K562 cells by MTT assay.
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48 hours, the cells emitting bright fluorescence increased 

and displayed the typical phenomena of apoptosis including 

chromatin condensation, nucleolus pyknosis, and nuclear 

fragmentation (Figure 5C).

Transcription of caspase-3, bax, bcl-2, 
NF-κB and survivin by QPCR
10 mg/L MNPs-Fe

3
O

4
 could not influence the expression 

of caspase-3, bax, bcl-2, NF-κB, and survivin mRNA, but 

the synergia of 0.6 mg/L GA and 10 mg/L MNPs-Fe
3
O

4
 for 

48 hours could dramatically upregulate the transcription 

of caspase-3 and bax mRNA in K562 cells (P  0.05), 

surpassing the effects of 0.6 mg/L GA alone (Figure 6C) 

(P  0.05). Meanwhile, the co-treatment of agents men-

tioned above for 48 hours seemed to induce degradation 

of bcl-2, NF-κB, and survivin mRNA on K562 cells 

(P  0.05), also surpassing the effects of GA (0.6 mg/L) 

alone (P  0.05).

expression of caspase-3, bax, bcl-2, NF-κB, 
and survivin protein by Western blot
Based on computer-assisted image analysis, it seems that 

caspase-3, bax, bcl-2, NF-κB, and survivin proteins in K562 

cells treated with 10 mg/L MNPs-Fe
3
O

4
 had no significant 

changes when compared to control group (P  0.05). How-

ever, the level of caspase-3 and bax proteins in K562 cells 

treated with 0.6 mg/L GA dramatically elevated, compared to 

control group (P  0.05) (Figure 7). Furthermore, these two 

kinds of proteins, whose genes were upregulated in 0.6 mg/L 

GA and 10 mg/L MNPs-Fe
3
O

4
 group in K562 cells (Fig-

ure 6),were more than those of 0.6 mg/L GA alone (P  0.05). 

Reversely, compared with the control group, the level of 

other three proteins in cells after co-treatment as described 

previously was lower than those of 0.6 mg/L GA alone 

(P  0.05) (Figure 7).

Discussion
Although many chemotherapy drugs are used clinically, 

the overall survival of leukemia patients is still unsatis-

factory. The majority of chemotherapy medicines have 

serious adverse effects in addition to their clinical effects. 

Patients find these side effects hard to tolerate, which 

often causes chemotherapy failure. GA differs from other 

anticancer drugs as it is an apoptotic inducer from tradi-

tional Chinese medicine. It can induce tumor cell death 

selectively without toxicity to normal tissue, which offers 
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Figure 2 growth inhibition ratio of gA with or without MNPs-Fe3O4-treated K562 cells for 48 hours.
Abbreviations: MNPs-Fe3O4, magnetic nanoparticles of Fe3O4; gA, gambogic acid.
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a unique prospect in the development of new antitumor 

medicine.4,19 Apoptosis is an important metabolic step in 

regulating the number of cells and their growth. If apop-

tosis is blocked, the metabolism will become disordered 

and tumors will develop and grow.20 Most anticancer 

agents exert their anticancer effects by inducing apopto-

sis.21 Recently, MNPs-Fe
3
O

4
 are widely used for targeted-

drug carriers to enhance the eff iciency of anticancer 

drug delivery based on the ability of target-orientation 

and sustained-release properties.18 Our previous studies 

have demonstrated the synergistic effect of MNPs-Fe
3
O

4
 

with anticancer drug on the intracellular accumulation in 

leukemia cells.22–28 Thus, in the present study, we wanted 

to demonstrate the potential synergistic effects of MNPs-

Fe
3
O

4
 and GA on apoptosis in leukemia cells.

Data from our cytotoxicity assay showed that MNPs-Fe
3
O

4
 

enhanced the toxicity of GA in K562 cells and the addition 

of MNPs-Fe
3
O

4
 decreased the IC

50
 of GA in K562 cells. 

This phenomenon is consistent with our previous studies 

that reported that less than 20 mg/L of MNPs-Fe
3
O

4
 did 

not influence the multiplication of K562 cells.26 We also 

investigated the synergistic effects of GA with MNPs-Fe
3
O

4
 

on the apoptosis of K562 cells. The addition of 10 mg/L 

MNPs-Fe
3
O

4
 caused the apoptotic percentage of K562 cells 

induced by 0.6 mg/L GA for 48 hours to increase by 14.4%. 

Our outcomes clearly indicate that a MNPs-Fe
3
O

4
-drug 

delivery system can decrease the IC
50

 of GA and enhance 

apoptosis in leukemia cells.

In order to check whether the effects of MNPs-Fe
3
O

4
 

combining with a small dose of chemotherapeutic agent was 

Figure 3 effect of MNPs-Fe3O4 on gA-induced apoptosis in K562 cells for 48 hours. A) Control; B) Incubated with 10 mg/L MNPs-Fe3O4; C) Incubated with 0.6 mg/L gA; 
D) Incubated with 0.6 mg/L gA and 10 mg/L MNPs-Fe3O4.
Abbreviations: MNPs-Fe3O4, magnetic nanoparticles of Fe3O4; gA, gambogic acid.
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Figure 4 Morphological features of K562 cells after treatment for 48 hours by optical microscope (1000x, Wright staining). A) Control; B) Incubated with 0.6 mg/L gA and 
10 mg/L MNPs-Fe3O4; C) Incubated with 6 mg/L gA.
Abbreviations: MNPs-Fe3O4, magnetic nanoparticles of Fe3O4; gA, gambogic acid.
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different from the effects of a large dose of chemotherapeutic 

agent on K562 cells,28 we demonstrated that the K562 

cells in 0.6 mg/L GA and 10 mg/L MNPs-Fe
3
O

4
 group 

for 48 hours showed a typical morphological features of 

apoptosis under the optical microscope, while 6 mg/L GA led 

cells to necrosis. This effect supports our previous assump-

tion. Meanwhile, the cells incubated with 0.6 mg/L GA 

and 10 mg/L MNPs-Fe
3
O

4
 displayed the typical apoptosis 

under the fluorescence microscope, compared with that of 

0.6 mg/L alone. These results suggest that a combination of 

MNPs-Fe
3
O

4
 and GA could be a feasible candidate in the 

development of anticancer drugs.

Apoptosis is the consequence of a series of precisely 

regulated events that are frequently altered in tumor cells. In 

general, the sequence of events has been broadly categorized 

into two pathways: the extrinsic pathway, which involves 

the activation of the tumor necrosis factor (TNF)/Fas death 

receptor family and the intrinsic pathway, which involves the 

mitochondria. In both pathways, an apoptotic death stimulus 

results in the activation of caspases, the major execution-

ers of this process, either directly or via activation of the 

mitochondrial death program.10,29–31 It is well known that 

caspase-3 is the most characterized effector caspase, and its 

activation leads to the final stages of cellular death by pro-

teolytic dismantling of a large variety of cellular components 

on one hand, and activation of proapoptotic factors on the 

other hand.29–31 Our study showed that GA combined with 

MNPs-Fe
3
O

4
 dramatically upregulated the transcription and 

expression of caspase-3 in K562 cells. This result supports 

the promotion of GA-induced apoptosis by MNPs-Fe
3
O

4
 was 

related to the level of genes and proteins expression.

In tumor cells, apoptosis can be induced either by acti-

vation of molecules upstream of apoptosis signaling or 

by inhibition of antiapoptotic factors. Survivin, a member 

of the inhibitor of apoptosis protein (IAP) family, is 

overexpressed in virtually every human cancer. In several 

tumor cell lines, the presence of survivin correlates with 

resistance to apoptosis and is associated with increased 

malignancy.14,32,33 Previous in vitro studies showed that 

inhibition of survivin restored or enhanced the cytotoxicity 

of chemoreagents,34,35 and animal studies showed a superb 

efficacy against xenografts using an adenoviral strategy 

targeted to survivin.36,37 At present, survivin is validated as 

a cancer therapeutic target.38 Our data showed that the expres-

sion of antiapoptotic genes such as bcl-2, survivin of K562 

Figure 5 Nucleolus morphological changes of K562 cells after different treatment for 48 hours under fluorescence microscope (400x, DAPI staining). A) Control; B) Incubated 
with 0.6 mg/L gA; C) Incubated with 0.6 mg/L gA and 10 mg/L MNPs-Fe3O4.
Abbreviations: MNPs-Fe3O4, magnetic nanoparticles of Fe3O4; gA, gambogic acid.
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results showed, GA combined with MNPs-Fe
3
O

4
 induced 

the degradation of NF-κB genes and proteins in K562 cells. 

We presumed that they inhibited the activation of NF-κB 

and worked through downregulated NF-κB-regulated gene 

products involved in antiapoptosis such as IAP1, IAP2, bcl-2, 

Bcl-xL, and TRAF1.2

Kasibhatla and colleagues10 reported an undiscovered link 

between transferrin receptor (TfR) and the rapid activation of 

apoptosis. GA binding to TfR induced a unique signal leading 

to rapid apoptosis of tumor cells. TfR, the molecular target 

for GA, was significantly overexpressed in different types of 

cancers. However, GA bound to the TfR independent of the 

transferring-binding site. Binding of GA to TfR activated 

the apoptosis cascade rapidly by using caspase-8 and the 

mitochondrial pathway. They also demonstrated that GA 

and transferrin bound to independent sites on the receptor 

and it appeared that GA was not competed by transferring. 

Yong Yang and colleagues19 proved that GA not only banded 

to transmembrane protein TfR, but also permeated the cell 

membrane and distributed in the cell matrix. Apart from 

the “extrinsic” pathway, they hypothesized that the intrinsic 

mitochondrial pathway for the activation of caspases might 

also be involved in GA-induced apoptosis. In our research, 

GA combined with MNPs-Fe
3
O

4
 induced apoptosis not only 

through influencing the regulatory factors in the intrinsic 

mitochondrial pathway such as bax and bcl-2, but also 

through regulating the transcription factor NF-κB involved 

in the extrinsic death receptor signaling pathway in apopto-

sis. We hypothesized that both pathways might be involved 

in apoptosis induced by the combination of MNPs-Fe
3
O

4
 

with GA. Besides, in our study, a significant change was 

observed in apoptosis of K562 cells after GA combined with 

MNPs-Fe
3
O

4
, which obviously surpassed the effects of GA 

alone. We supposed that in addition to binding to TfR and 

stimulating a unique signal of rapid apoptosis, GA loaded on 

MNPs-Fe
3
O

4
 also permeated the cell membrane through bind-

ing to the transferring-binding site of TfR and the endocytosis, 

which were potential routes into cells for MNPs-Fe
3
O

4
. Our 

assumption should be proven by future research.

In conclusion, our study demonstrates for the first time 

that MNPs-Fe
3
O

4
 can promote apoptosis induction of GA 

in vitro in leukemic cells, and the synergistic effect of that 

composite on apoptosis induction may owe to the regulation 

of various proliferative and antiapoptotic gene products, 

including caspase-3, bax, bcl-2, NF-κB, and survivin. Thus, 

it may be possible that a combination of MNPs-Fe
3
O

4
 and 

GA may be a sufficient and less toxic method in leukemia 

therapy.

β-actin

caspase-3

NF-κB

Survivin

bax

bcl-2

4321

Figure 7 expression of caspase-3, bax, bcl-2, NF-κB, and survivin protein in K562 
cells by western blot after treatment of gA and/or MNPs-Fe3O4 for 48 hours. Line 1: 
Control; Line 2: Incubated with 10 mg/L MNPs-Fe3O4; Line 3: Incubated with 0.6 mg/L 
gA; Line 4: Incubated with 0.6 mg/L gA and 10 mg/L MNPs-Fe3O4.
Abbreviations: MNPs-Fe3O4, magnetic nanoparticles of Fe3O4; gA, gambogic acid; 
NF-κB, nuclear factor-kappaB.

cells were significantly downregulated after co-treatment of 

GA with MNPs-Fe
3
O

4
, whereas the expression of bax was 

upregulated. Bax and bcl-2 both belong to the bcl-2 family.39 

Overexpression of Bax has been shown to accelerate cell 

death,40,41 while overexpression of antiapoptotic proteins such 

as bcl-2 represses the death function of bax.42 Thus, the ratio 

of bcl-2/bax might be a critical factor of a cell’s threshold 

for undergoing apoptosis.43 Although bcl-2 and survivin are 

both apoptosis inhibitors, they work through different path-

ways in the regulation of cell apoptosis. The antiapoptotic 

protein bcl-2 mainly inhibits the mitochondrial pathways,44,45 

while survivin directly blocks the processing and activation 

of effector caspase-3 and caspase-7, which commonly acts 

downstream of both apoptosis signaling pathways,46 which 

suggests that MNPs-Fe
3
O

4
 loaded with GA induced cell 

apoptosis through various pathways.

NF-κB is a transcription factor,47 which regulates the 

expression of several genes whose products are involved 

in tumorigenesis. Apoptosis and tumorigenesis are known 

to be regulated by NF-κB-regulated gene products.48 The 

transcription factor NF-κB involves the extrinsic death 

receptor signaling pathway of apoptosis. Suppression of 

NF-κB activation promotes TNF-induced apoptosis.49 As our 
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