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Background: Pancreatic cancer is the fourth leading cause of cancer-related death worldwide. 

The poor prognosis of this disease highlights the urgent need to develop more effective therapies. 

Activation of the STAT3 represents a potential drug target for pancreatic cancer therapy. Cur-

rently, clinically available small-molecule inhibitors targeting STAT3 are lacking. 

Methods: Through bioassay screening and molecular docking, we identified a small molecule 

L61H46 that can potently target constitutive STAT3 signaling and kill human pancreatic cancer 

cells in vitro and in vivo. 

Results: L61H46 effectively reduced colony formation and the viability of pancreatic cancer 

cells in a dose-dependent manner with half-maximal inhibitory concentration (IC
50

) values in 

the range between 0.86 and 2.83 µM. L61H46 significantly inhibited STAT3 phosphorylation 

(Tyr705) and the subsequent nucleus translocation but did not downregulate STAT1 phosphoryla-

tion. Moreover, L61H46 demonstrated a potent activity in suppressing pancreatic tumor growth 

in BXPC-3 xenograft model in vivo. Furthermore, L61H46 showed no signs of adverse effects 

on liver, heart, and kidney cells in vivo. 

Conclusion: Collectively, our results suggest that L61H46 could be further optimized into a 

highly potent STAT3 inhibitor for the treatment of pancreatic cancer.

Keywords: L61H46, STAT3, cancer therapy, interleukin-6, pancreatic cancer

Introduction
Pancreatic cancer is the fourth leading cause of cancer-related death worldwide with 

a 5-year survival rate of ~5% and a median survival of 6 months.1,2 Only 5–10% of 

the diagnosed patients have localized tumors suitable for operation, of whom only 

10–20% of the patients survive for >5 years afterwards.3 A number of conventional 

therapies for pancreatic cancer include gemcitabine, cisplatin, fluoropyrimidine, irino-

tecan, and taxanes.4 However, these treatments develop inevitable drug resistance and 

cause serious side effects such as leukopenia, thrombocytopenia, and gastrointestinal 

 irritation.5,6 Therefore, an urgent need arises for an effective and safer therapeutic 

approach to treat pancreatic cancer.7

STAT3 is a transcription factor and oncogenic driver, which can promote malignant 

tumors.8 Persistent activation of STAT3 has been detected in many human tumors, 

including pancreatic and colon cancer cells.6,9 In the cytoplasm, phosphorylated STAT3 

proteins form homodimers and translocate to the nucleus where they regulate the 

expression of various target genes involved in cell proliferation and survival.10 Consti-

tutive activation of STAT3 plays a vital role in regulating cell proliferation, apoptosis,  
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invasion, angiogenesis, and immune suppression.9,11 Stud-

ies show that STAT3 inhibition can promote the apoptosis 

of human pancreatic cancer cells.12–14 Evidence has been 

accumulated that STAT3 can serve as a viable therapeu-

tic target of the major oncogenic pathways activated in 

pancreatic cancer.13,14

Curcumin (Figure 1A), an active compound of a 

medicinal herb Curcuma longa L, has been found to have 

Figure 1 L61H46 shows superior stability than curcumin and effectively suppressed cell viability.
Notes: (A) Chemical structure of curcumin, L61H46, and napabucasin. UV–visible absorption spectrum of curcumin (B) and L61H46 (C) in phosphate buffer (pH 7.4). 
The effects of L61H46 on the proliferation of human pancreatic cancer cell lines PANC-1 (D) and BXPC-3 cells (E) were incubated with increasing doses of L61H46 and 
napabucasin (0.3–10 μM) for 48 h, respectively. Cell viability was determined by MTT assay. Data represent similar results from at least three independent experiments.
Abbreviations: IC50, half-maximal inhibitory concentration; MTT, methylthiazolyldiphenyl-tetrazolium bromide; OD, optical density; UV, ultraviolet.
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 anticarcinogenic effects with pharmacological safety both 

in vivo and in vitro.15 Recently, a report has reviewed the 

pharmacological properties of curcumin and shown evidence 

that curcumin is an unstable, reactive, and nonbioavailable 

compound.16 The compound has been tested safe even at 

high doses in animal and clinical trial studies but exhibits 

poor stability and bioavailability.17 To improve stability and 

bioavailability, curcumin derivatives were designed and syn-

thesized to improve their pharmacokinetics potency and bio-

availability, while retaining the same safety profile.18 Several 

curcumin analogs, namely FLLL31, FLLL32, FLLL62, and 

GO-030, have been shown to bind selectively to STAT3 SH2 

and inhibit STAT3 phosphorylation and dimerization.19–22 

These curcumin analogs selectively inhibited STAT3 phos-

phorylation without suppressing the expression of STAT1 

phosphorylation and induced apoptosis in various cancer 

cells both in vitro and in vivo.23,24 Previously, our laboratory 

designed and synthesized a series of mono-carbonyl analogs 

of curcumin (MACs) via deletion of β-diketone moiety. 

These MACs showed a significantly improved chemical 

stability in vitro and a good pharmacokinetic profile and 

bioavailability in vivo.18,25 We hypothesize that some of these 

MACs compounds could induce apoptosis in pancreatic cell 

lines by inhibiting the STAT3 pathway activation. Molecular 

docking screenings were carried out to predict possible MAC 

binders for the STAT3 SH2 domain using the AutoDock Vina 

program.26 By methylthiazolyldiphenyl-tetrazolium bromide 

(MTT) bioassay screening of the predicted MAC binders 

against human pancreatic cancer cells, we identified L61H46 

(Figure 1A)as a potent inhibitor of human pancreatic cancer 

cells. The underlying mechanisms were also examined.

Our results demonstrate that L61H46 could effectively 

induce apoptosis in pancreatic cancer cells via inhibiting the 

STAT3 pathway and downregulating the downstream target 

genes. The blockade of the STAT3 signaling inhibited cell 

proliferation, migration, and colony formation. L61H46 

also exhibited potent anticancer effects in a mouse xeno-

graft model in vivo. These data suggest that lead compound 

L61H46 could be further developed into a promising candi-

date for the treatment of pancreatic cancer.

Materials and methods
Chemistry
Napabucasin (BBI608) was purchased from Sigma-Aldrich 

Co. (St Louis, MO, USA). Erlotinib was purchased from Sell-

eck Chemicals (Houston, TX, USA). L61H46 (Figure 1A), 

a MAC, was synthesized in our laboratory. The synthesis 

procedure was the same as our previous reports.25 The com-

pound L61H46 was recrystallized from CH
2
Cl

2
/CH

3
CH

2
OH, 

with a purity of 98.85% as determined by high performance 

liquid chromatography.

Cell culture
Human pancreatic cancer cell lines (BXPC-3 and PANC-1)  

human umbilical vein endothelial cells (HUVEC), and 

normal human bronchial epithelium cells (BEAS-2B), were 

obtained from Shanghai Institute of Biosciences and Cell 

Resources Center (Chinese Academy of Sciences, Shanghai, 

China). PANC-1 cells were maintained in Dulbecco’s Modi-

fied Eagle’s Medium (DMEM; Thermo Fisher Scientific, 

Waltham, MA, USA). BXPC-3, HUVEC, and BEAS-2B cells 

were routinely cultured in Roswell Park Memorial Institute 

(RPMI)-1640 media (Thermo Fisher Scientific). The culture 

medium was a mixture of RPMI-1640 or DMEM, 10% heat-

inactivated fetal bovine serum (FBS; Thermo Fisher Scien-

tific), 100 U/mL penicillin, and 100 mg/mL streptomycin. 

Cells were cultured in a humidified cell incubator with an 

atmosphere of 5% CO
2
 at 37°C.

Antibodies and reagents
Antibodies for anticleaved poly(ADP-ribose) polymerase 

(PARP), anti-BCL-2, anti-Caspase 3, anticleaved Caspase 

3, and secondary antibodies goat antimouse IgG-horseradish 

peroxidase and donkey antirabbit IgG-horseradish peroxidase 

were purchased from Santa Cruz Biotechnology Inc. (Dallas, 

TX, USA). Antibodies including anti-p-STAT3, anti-STAT3, 

anti-p-STAT1, and anti-STAT1 were purchased from Cell 

Signal Technology (Danvers, MA, USA). MTT and dimethyl 

sulfoxide (DMSO) were purchased from Sigma-Aldrich Co. 

Fluorescein isothiocyanate Annexin V Apoptosis Detection 

Kit, propidium iodide (PI), and basement membrane Matrigel 

were obtained from BD (Franklin Lakes, NJ, USA). Crys-

tal violet staining solution was purchased from Beyotime 

Institute of Biotechnology (Shanghai, China). L61H46 was 

dissolved in DMSO before being used in experiments.

Docking of L61H46 and napabucasin to 
the STAT3 SH2
The STAT3 SH2 crystal structure was obtained from the Pro-

tein Data Bank (protein data bank code: 1BG1) and used as the 

protein target for docking simulation.27 AutoDockTools (ADT) 

1.5.6 was employed for the preparation of input PDBQT files 

of ligands and protein receptor STAT3 SH2 as described in 

the instruction.28 Docking simulations were performed using 

AutoDock Vina 1.0.2.26 The docking grid was a 3D 24 Å 

¥16 Å ¥24 Å box, which encompassed the entire binding 

region. The Vina docking parameters were as follows: a recep-

tor binding center of x=103, y=72.5, and z=64.1, an energy 
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range of 5 kcal/mol, an exhaustiveness of 25, and an output 

number of five  binding modes ranked by highest binding 

affinity. The binding modes were viewed and analyzed using 

the ADT tool, and the top binding modes with best binding 

affinity (most negative binding energy) were selected.

Stability evaluation of L61H46 and 
curcumin in phosphate buffer
Absorbance readings were taken from 250 to 600 nm using a 

spectrum Max M5 (Molecular Devices LLC, Sunnyvale, CA, 

USA). A stock solution of 1 mM curcumin or  L61H46 was 

prepared and diluted by phosphate buffer (pH 7.4) to a final 

concentration of 20 µM. In the experiments where degrada-

tion of curcumin was recorded, the absorption spectra were 

collected for >25 min at 5 min intervals. The ultraviolet–vis-

ible absorbance spectrum was measured at 25°C at varying 

time intervals in a 1 cm path-length quartz cuvette.

Cell viability assay
The cytotoxicity of L61H46 against pancreatic cancer cells 

was determined by the MTT assay. BXPC-3 and PANC-1 cell 

lines were incubated at 3×103 cells/well in 96-well plates with 

RPMI-1640 or DMEM and treated with a dose escalation of 

L61H46 (0.3125-10 µM) for 48 h. An MTT solution was added 

at 20 µL/well and incubated for 4 h at 37°C. The crystals were 

dissolved with DMSO at 150 µL/well, and the absorbance of 

each well was measured at 490 nm using microplate reader. 

The cell viability was calculated according to the following 

formula: viability = (average optical density values of treat-

ment wells/average optical density values of vehicle control 

wells) ×100%. And, half-maximal inhibitory concentration 

(IC
50

) values were determined by GraphPad Pro Prism 5.0.

Cell apoptosis analysis
BXPC-3 and PANC-1 cells were seeded on six-well plates 

overnight and then treated with L61H46 (5 and 10 µM) or 

napabucasin (10 µM) for 24 h. Cells were then harvested, 

washed with phosphate-buffered saline (PBS), and stained 

with Annexin V for 10 min. Afterward, PI was added to 

stained cells for 5 min. Flow cytometric analysis was per-

formed to evaluate the apoptosis using FACSCalibur (BD).

Western blot analysis
Cells or tissues were homogenized in protein lysate buffer, 

with sample loading buffer denatured with boiling water bath 

added. Thereafter, protein samples were electrophoresed by 10 

or 12% sodium dodecyl sulfate polyacrylamide gel electro-

phoresis (SDS-PAGE) and then transferred to polyvinylidene 

fluoride (PVDF) membrane. The membranes were blocked 

with fresh 5% nonfat milk for 1.5 h at room temperature in 

Tris-buffered saline and Tween 20 (TBST) and then incubated 

with specific primary antibody in TBST at 4°C overnight. 

After washing with TBST for three times, the membranes were 

incubated with secondary antibodies for 1 h. The bands were 

visualized using enhanced chemiluminescence detection kit 

(Bio-Rad Laboratories Inc., Hercules, CA, USA). The density 

of all immunoreactive bands was analyzed using the ImageJ 

software (National Institute of Health, Bethesda, MD, USA). 

Cartograms of them are listed in the Supplementary materials.

Cell transfections for gene 
overexpression
The human STAT3 transcript expression vector coding 

STAT3 protein was obtained from Sino Biological Inc (Cata-

log: HG10034-CF; Beijing, China). The STAT3 plasmid was 

transfected into pancreatic cancer cell line (PANC-1) using 

the Lipofectamine 2000 reagent (Thermo Fisher Scientific) 

according to the manufacturer’s instruction. After 48 h 

post-transfection, STAT3 expression in PANC-1 cells was 

confirmed by Western blotting.

Immunohistochemistry (IHC) staining 
and hematoxylin and eosin (H&E) staining
Tumor tissues were fixed in 10% paraformaldehyde at room 

temperature and embedded in paraffin. Paraffin-embedded 

tissues were sectioned (5 µm thick). Then, the specimens were 

incubated with indicated antibodies overnight at 4°C. The 

signal was detected by corresponding secondary antibodies. 

Thereafter, these slides were stained with diaminobenzidine 

and counterstained with hematoxylin. Quantity assay of the 

immunochemistry data was assessed by Image-Pro Plus 6.0 

(Media Cybernetics, Bethesda, MD, USA). For histological 

analysis, the heart, kidney, and liver tissues of the control 

group and the L61H46 group were fixed in 4% formaldehyde 

and embedded in paraffin. The paraffin tumor tissue sections 

(5 µM) were deparaffinized and rehydrated and then stained 

with eosin and hematoxylin. The images were captured using 

a light microscope (200× amplification, Eclipse Ti; Nikon 

Corporation, Tokyo, Japan).

Immunofluorescent staining
Cells were plated on sterilized coverslips in a six-well plate and 

allowed to grow overnight. For nuclear translocation experi-

ment, BXPC-3 cells were grown in serum-free RPMI-1640 

overnight. After that, cells were treated with L61H46 (2.5 µM) 

for 12 h, followed with the stimulation of interleukin-6 (IL-6) or 
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interferon (IFN)-γ (50 ng/mL) for 30 min. After the treatments, 

the cells were washed with ice-cold PBS buffer and fixed with 

4% paraformaldehyde for 15 min. The cells were then washed 

with PBS for twice, permeabilized with 0.3% Triton X-100, 

and blocked with 5% bovine serum albumin (BSA) for 1 h at 

room temperature. All cell samples were incubated with the 

primary  antibodies anti-p-STAT3 (1:200 dilution) overnight 

at 4°C and, then, the cells were incubated with polyethylene-

conjugated goat antirabbit secondary antibody (1:400 dilution) 

for 1 h at room temperature. Afterward, 2-(4-Amidinophenyl)-

6-indolecarbamidine dihydrochloride (DAPI) was used to stain 

the nuclei. Pictures were captured by confocal microscopy 

(800× amplification, Eclipse Ti).

Clonogenic assay
The BXPC-3 and PANC-1 cells were seeded at 1000 cells/

well on six-well plates. Cells were treated with L61H46 (1 

and 2.5 µM) or napabucasin (2.5 µM) for 24 h. After being 

replaced with fresh RPMI-1640 medium, cells were allowed 

to grow for 18 days until the colonies were visible. Colonies 

were stained with crystal violet staining solution and photo-

graphed after 7 days.

Hoechst 33258 staining
After treated with L61H46 (5 or 10 µM) or napabucasin 

(10 µM) for 24 h, cells were fixed with 4% formaldehyde solu-

tion, washed twice with PBS, and stained with Hoechst 33258 

staining kit according to the manufacturer’s instructions (Beyo-

time Institute of Biotechnology). Apoptotic features of cell 

death were determined by the morphology of cell nuclei using 

the fluorescence microscope (Nikon Corporation) with 400× 

amplification. Five microscopic fields were randomly selected 

to observe in each group. The apoptotic cells were defined as 

those with nuclei brighter and smaller than normal cells.

Matrigel invasion assay
Matrigel invasion assay was performed to evaluate the inva-

sion abilities of tumor cells in transwell insert chambers 

(8.0 µm; Corning Incorporated, Corning, NY, USA) accord-

ing to the manufacturer’s instructions. A total of 500 µL 

of culture medium containing 10% FBS was added to the 

lower chamber, and then, cells together with L61H46 (1 and 

2.5 µM) or napabucasin (2.5 µM) were seeded on the upper 

chamber (precoated with diluted matrigel) at 10,000 cells/

well in 200 µL of serum-free medium. After incubation for 

24 h at 37°C, the cells on the lower surface of chamber were 

fixed and stained with crystal violet, while the cells on the 

upper chamber were removed completely with a cotton swab. 

The migration cells were captured with light microscopy 

(Nikon Corporation) with 200× amplification.

Wound-healing assay
BXPC-3 cells’ migration was determined using the wound-

healing assay. When cells grew into 100% confluent in 

six-well plate, the monolayer cells were scratched in same 

width using yellow pipette tip and washed twice with PBS 

to remove nonadherent cells. After washing, cells were 

treated with L61H46 (5 and 10 µM), napabucasin (10 µM) or 

DMSO. After 12 h, growth medium was replaced with a fresh 

complete RPMI-1640 medium with 10% FBS. Cells were 

allowed to grow for 24–36 h, and the images were captured 

with a light microscopy (100× amplification). The percent-

age of migration was calculated by the following formula: 

100%− (final gap area/initial gap area ×100%).

In vivo antitumor study
All animal experiments were followed according to the 

Wenzhou Medical University’s Policy on the Care and Use 

of Laboratory Animals. Operations for animal experiments 

were approved by the Wenzhou Medical University Animal 

Policy and Welfare Committee. For analysis of tumorigenicity, 

BXPC-3 cells (5×106 cells/mice) were mixed with 100 µL of 

PBS and were injected subcutaneously into the flank of 6-week-

old athymic nude mice (18–22 g). Animals were housed under 

barrier conditions and fed with a standard rodent diet and water. 

After 1 week, tumor volume reached 50 mm3 and mice were 

randomly divided into three treatment groups (n=6): 1) PBS 

as vehicle control, 2) 10 mg/kg of L61H46 (dissolved in 10% 

castor oil and 90% PBS), and 3) 10 mg/kg of erlotinib (dis-

solved in 10% castor oil and 90% PBS). Vehicle and L61H46 

were administered via intraperitoneal injection every other day 

for 36 days. The tumor volumes were determined by measur-

ing length (l) and width (w) with a caliper. And, tumor volume 

was calculated according to the following formula: volume = 

(π/6) ¥ L ¥ W2. At the end of treatment, tumors were removed 

from euthanized mice, snap-frozen in liquid nitrogen, and 

stored at −80°C. A portion of tumor tissues was fixed with 

formalin and embedded in paraffin for IHC staining. Tumor 

tissue homogenates were lysed and separated by SDS-PAGE 

to examine the expression of p-STAT3, BCL-2, and cleaved 

Caspase 3. BCL-2 was also examined by IHC staining.

Statistical analysis
All of the data were assayed in triplicate (n=3). Data are 

expressed as mean ± standard error of mean. All statistical 

analyses were performed using GraphPad Pro. Prism 5.0 
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(GraphPad Software, Inc., La Jolla, CA, USA). Student’s 

t-test and one-way analysis of variance were used to analyze 

the differences between sets of data. A P-value of <0.05 was 

considered statistically significant.

Results
L61H46 shows superior stability than 
curcumin and effectively suppressed cell 
viability
The structure of curcumin and L61H46 is shown in 

 Figure 1A. We first study the stability of L61H46 in PBS by 

ultraviolet–visible absorption spectrum. The result showed 

that the absorption intensity of curcumin spectra declined 

significantly in phosphate buffer (pH 7.4) with time. The 

intensity of curcumin dropped to ~40% after incubation 

in the phosphate buffer for 25 min, while L61H46 showed 

no degradation under equal condition (Figure 1B and C). 

To evaluate the antitumor activity of the lead compound 

L61H46, we performed MTT assays to examine the effects 

of L61H46 on the cell viability of human pancreatic cancer 

cell lines, PANC-1 and BXPC-3. Napabucasin (BBI608, 

Figure 1A), an orally potent inhibitor of STAT3 pathway 

in cancer stemness, was used as a reference control.29 As 

shown in Figure 1D and E, L61H46 significantly induced 

cell death in a dose-dependent manner in both human pan-

creatic cancer cell lines, with IC
50

 values 0.86 and 2.83 µM 

respectively. For comparison, the IC
50

 values of napabucasin 

in these two cell lines were 1.19 and 2.16 µM, respectively. 

L61H46 showed a similar anticancer potency in human 

pancreatic cancer cell lines, comparing with the reported 

STAT3 inhibitor napabucasin.

L61H46 induced apoptosis and decreased 
colony formation
We also examined the apoptosis-inducing effects of L61H46 

using Annexin V/PI staining assay. Both pancreatic cancer 

cell lines had a dose-dependent apoptosis after the treatment 

with L61H46 for 24 h (Figure 2A and B). L61H46 at 10 µM 

induced significant apoptosis, while napabucasin (10 µM) 

at the same concentration induced less apoptosis. We fur-

ther determined the expression levels of apoptosis-related 

proteins in BXPC-3 cells treated with L61H46. Consistent 

with the results obtained by Annexin V/PI staining assay, we 

found that treatment with L61H46 for 24 h dose-dependently 

increased the level of cleaved PARP and decreased the 

levels of pro-Caspase 3 and BCL-2 (Figures 2C and S1A). 

In addition, cell morphological changes were examined 

to determine cell apoptosis using DAPI staining assay in 

BXPC-3 cells. It was found that L61H46 dose-dependently 

increased the number of apoptotic cells (Figures 2D and 

S1B). L61H46 displayed more intense apoptotic effects 

than the known STAT3 inhibitor napabucasin. Furthermore, 

L61H46 remarkably inhibited the colony formation capacity 

in both PANC-1 and BXPC-3 pancreatic cancer cell lines 

(Figure 2E).

L61H46 inhibited cell invasion and 
migration
The invasion and migration ability is critical for cancer 

progression.30 We performed the migration transwell assay 

and wound-scratch assay to evaluate the inhibitory effects 

of L61H46 on cell invasion and migration in BXPC-3 cells. 

Our results showed that treatment with L61H46 resulted in a 

dose-dependent decrease in cell invasion ability (Figure 3A 

and B). Similar results were obtained in wound-scratch 

assays (Figure 3C and D). The inhibitory rate of migra-

tion was ~66 and 81% at concentrations of 5 and 10 µM, 

respectively (Figure 3C).

L61H46 effectively inhibited constitutive 
STAT3 phosphorylation in human 
pancreatic cancer cells
We tested the inhibiting ability of napabucasin on STAT3 

Tyr705 phosphorylation (p-STAT3 at Y705) in pancreatic 

cancer cells. The results showed that napabucasin inhibited 

STAT3 phosphorylation dose-dependently (Figure S2A). 

To confirm whether L61H46 could also suppress STAT3 

Tyr705 phosphorylation, PANC-1 cells were treated with 

L61H46 for a series of time periods. The Western blotting 

results showed that L61H46 time-dependently inhibited the 

persistent STAT3 phosphorylation. The phosphorylation of 

STAT3 at Tyr705 was reduced significantly at ~24 h after the 

treatment (Figure 4A). We also found that L61H46 induced 

a dose-dependent reduction of STAT3 phosphorylation in 

both PANC-1 (Figure 4B) and BXPC-3 (Figure 4C) cell 

lines. These results show that L61H46 is a potent inhibitor 

of STAT3 phosphorylation (p-STAT3) at a low concentration 

in multiple pancreatic cancer cell lines.

To further explore the relationship between inhibition 

on STAT3 phosphorylation and cell viability inhibition, we 

tested L61H46 in two normal cells. The results showed that 

L61H46 significantly inhibited HUVEC cells with IC
50

 values 

1.23 µM, while the IC
50

 values of the compound in BEAS-2B 

cells were >10 µM (Figure S2B and C). We next detected the 

STAT3 phosphorylation levels of two pancreatic cancer cells 

and two normal cells. Western blotting analysis indicated that 
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Figure 2 L61H46 induced apoptosis and decreased colony formation.
Notes: (A) Induction of apoptosis in human pancreatic cancer cells was determined by flow cytometry after treatment with L61H46 (5 or 10 μM) and napabucasin (10 μM) for 
24 h. (B) The percentage of apoptotic cells in the treatment groups was calculated. (C) BXPC-3 cells were treated with L61H46 (5 or 10 μM) or napabucasin (10 μM) for 24 h. 
Western blotting was employed to assess the expression of cell apoptosis-related proteins. GAPDH was used as an internal control. (D) The L61H46 treatment induced increased 
apoptotic morphology in BXPC-3 cells compared with napabucasin. BXPC-3 cells were treated with L61H46 (5 or 10 μM) or napabucasin (10 μM) for 24 h. Cell morphology was 
observed by an inverted microscope after Hoechst 33258 staining. The magnification is 400×. (E) Representative images of colony-formation assay with L61H46 (1 or 2.5 μM) 
or napabucasin (2.5 μM). All images are representative of three independent experiments. Data are mean ± standard error of mean of three independent experiments. *P<0.05, 
**P<0.01, ***P<0.001.
Abbreviations: DMSO, dimethyl sulfoxide; FITC, fluorescein isothiocyanate; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; Napa, napabucasin; PARP, poly(ADP-
ribose) polymerase; PI, propidium iodide.
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BEAS-2B cells lacked STAT3 phosphorylation, while other 

three cells express high levels of STAT3  phosphorylation 

(Figure S2D). This may explain huge difference on IC
50

 

values between HUVEC and BEAS-2B cells.

We further determined whether overexpression of STAT3 

would dampen the cytotoxic effect of L61H46. We performed 

transfections to increase STAT3 expression in PANC-1 cells 

(Figure S2E). Overexpression of STAT3 reduced L61H46-

induced inhibition of growth (Figure S2F). These findings 

indicate that the anticancer activity of L61H46 is, at least 

partly, mediated by targeting STAT3.

Molecular docking of L61H46 to the 
binding hot spots of STAT3 SH2
To predict the binding modes and affinity of compound 

L61H46 to the binding hot spots of STAT3 SH2 domain, 

we performed molecular docking simulations of L61H46 to 

the STAT3 SH2. Figure 4D shows the predicted top binding 

Figure 3 L61H46 inhibited cell invasion and migration.
Notes: (A) BXPC-3 cells (10,000/well) and L61H46 (1 or 2.5 μM) or napabucasin (2.5 μM) were added at the same time to the upper chamber. After incubation for 24 h 
at 37°C, invasive cells stuck to the lower chamber were fixed and stained with crystal violet and their number was quantified with microscopy. The magnification is 200×. 
(B) The invasive cells on the surface of the lower chamber were calculated and represented as the percent of control. (C) The inhibition of cell migration was assessed by 
the ImageJ software. (D) Wound healing assay was conducted for migration in BXPC-3 cells treated with L61H46 (5 or 10 μM) or napabucasin (10 μM). After 12 h, growth 
medium was replaced with a fresh complete RPMI-1640 medium with 10% FBS. The magnification is 100×. All images are representative of three independent experiments. 
Data are mean ± standard error of mean of three independent experiments. ***P<0.001, ****P<0.0001.
Abbreviations: DMSO, dimethyl sulfoxide; FBS, fetal bovine serum; Napa, napabucasin; RPMI, Roswell Park Memorial Institute.
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Figure 4 L61H46 inhibited constitutive phosphorylation of STAT3 in pancreatic cancer cells.
Notes: (A) L61H46 (5 μM) time dependently (0, 4, 8, 12, and 24 h) inhibited STAT3 phosphorylation in PANC-1 cells. L61H46 dose dependently (1.0, 2.5, and 5 μM) inhibited 
STAT3 phosphorylation in PANC-1 (B) and BXPC-3 (C) human pancreatic cancer cells for 24 h; napabucasin is 5 μM. The column figure was the normalized optical density 
as a percentage of the relevant total STAT3 protein. (D) The docking modeling of L61H46 to the binding hot spots of STAT3 SH2 (protein code: 1BG1). STAT3 SH2 is 
in electrostatic potential surface representation. L61H46 is rendered in a gray stick-ball, and napabucasin is rendered in a blue stick-ball. L61H46 (gray stick-ball) occupied 
the main pTyr705 hot spot and the side pocket with a binding energy of −6.5 kcal/mol, which could effectively disrupt the native pTyr705 binding to prevent STAT3 SH2 
dimerization. As a comparison, the known inhibitor napabucasin (blue stick-ball) had similar binding modes and energy, binding to the pTyr705 site and partially to the side 
pocket with a binding energy of −6.1 kcal/mol. Data represent similar results from at least three independent experiments. *P<0.05, ****P<0.0001. 
Abbreviations: GAPDH, glyceraldehyde-3-phosphate dehydrogenase; Napa, napabucasin.
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mode of L61H46 to the STAT3 SH2 domain (protein code: 

1BG1). L61H46 (gray stick-ball), with a binding energy ΔE 

of −6.5 kcal/mol, occupied both the main pTyr705 hot spot 

and the side pocket, which could effectively disrupt the native 

pTyr peptide (pYLK) binding to prevent STAT3 SH2 activa-

tion and dimerization. Interestingly, the docking simulations 

show that the known STAT3 inhibitor napabucasin (blue 

color) bound similarly to the pTyr705 binding sub-pocket 

and partially to the side pocket with a binding energy ΔE 

of −6.1 kcal/mol.

L61H46 inhibited IL-6-induced STAT3 
phosphorylation and STAT3 nuclear 
translocation
IL-6 is known to stimulate STAT3 phosphorylation on Tyr705 

in many cancer cells.31 Our results showed that L61H46 

inhibited the STAT3 phosphorylation (p-STAT3) induced 

by IL-6 in a dose-dependent manner. No significant changes 

were observed in the total amount of STAT3 (Figure 5A). To 

examine if L61H46 selectively inhibits the phosphorylation 

of STAT3 (p-STAT3), not STAT1 (p-STAT1), we further 

investigated whether L61H46 could inhibit STAT1 phos-

phorylation mediated by IFN-γ. We found that L61H46 had 

no obvious effect on p-STAT1 level (Figure 5B). The data 

showed that the lead compound suppressed the IL-6 induced 

STAT3 phosphorylation but not the IFN-γ stimulated STAT1 

phosphorylation.

We next detected that once STAT3 was activated by IL-6, 

the phosphorylated STAT3 (p-STAT3) would translocate into 

the nucleus of BXPC-3 cancer cells. We examined whether 

L61H46 could suppress the nuclear translocation of STAT3 

induced by IL-6. The result indicated that L61H46 blocked 

the IL-6 induced STAT3 phosphorylation (p-STAT3) and the 

subsequent nucleus translocation (Figure 5C and D). Interest-

ingly, once phosphorylated p-STAT3 consistently localized 

in the nucleus even without IL-6 treatment. Hence, L61H46 

prevented the nucleus translocation most likely through 

inhibition of p-STAT3.

L61H46 suppressed tumor growth of 
pancreatic cancer cells in vivo
To examine the in vivo antitumor effects of L61H46 on 

BXPC-3 pancreatic cancer cells, we used a nude mice 

xenograft model. Erlotinib, the epidermal growth factor 

receptor-targeted therapy drug for pancreatic cancer, was 

used as a positive control.32 As shown in Figure 6A–C, 

treatment with L61H46 at 10 mg/kg for 36 days resulted 

in significant reduction in both tumor volume and weight 

in BXPC-3-xenografted mice (P<0.05) as compared to the 

vehicle-treated controls and erlotinib-treated positive con-

trols. In addition, no significant difference was found in body 

weight between the vehicle group and the L61H46-treated 

group, suggesting that L61H46 showed no significant toxicity 

on nude mice within the 36 days treatment (Figure 6D). We 

further measured the expressions of various cancer-related 

genes in tumor tissues by Western blotting. The result showed 

that L61H46 inhibited STAT3 phosphorylation, increased 

the level of cleaved Caspase 3, and decreased the level of 

BCL-2 (Figures 6E and S3). L61H46 also inhibited the level 

of Bcl-2 as shown by IHC staining (Figure 6F). The toxicity 

of L61H46 was further evaluated by H&E staining analysis 

in mouse kidneys, livers, and hearts. No noticeable difference 

was found in morphology between the vehicle group and the 

L61H46-treated group (Figure 6G), indicating no signs of 

adverse effects on liver, heart, and kidney cells in vivo. These 

results showed that L61H46 had a potent antitumor efficacy 

in vivo using human pancreatic cancer xenograft model.

Discussion
The crucial role of STAT3 in the cancer signaling makes it a 

promising therapeutic target for cancer treatments.6,19 Here, 

we identified a small molecule L61H46 as a novel STAT3 

inhibitor using bioassay screening and molecular docking. We 

found that L61H46 could significantly reduce the viability of 

pancreatic cancer cells in a dose-dependent manner with IC
50

 

values in the range between 0.86 and 2.83 µM. Moreover, 

our results confirmed that L61H46 can potently suppress 

pancreatic tumor growth in BXPC-3 xenograft model in 

vivo (Figure 6).

In addition to its proapoptotic function, L61H46 showed 

antiproliferation and antimigration activities (Figures 2 

and 3). Our data further confirmed that L61H46 inhibited 

the STAT3 pathway at very low concentration (2.5 µM) in 

PANC-1 and BXPC-3 cancer cell lines (Figure 4B and C). 

L61H46 blocked the IL-6-induced STAT3 phosphorylation 

in a dose-dependent manner but had no noticeable effect on 

the STAT1 phosphorylation in BXPC-3 cells, suggesting 

that it selectively inhibits STAT3 phosphorylation (Figure 5). 

L61H46 was slightly more potent in downregulating STAT3 

phosphorylation in BXPC-3 cells than the reported STAT3 

inhibitor napabucasin, an orphan drug that targets STAT3 

in the treatment of pancreatic cancer and gastric cancer. 

The binding hot spots of STAT3 SH2 consist of the follow-

ing three sub-pockets: the main pTyr705 site, a Pro704 side 

pocket, and a Leu706 site.33 These binding sites are critical for 

STAT3 dimerization and biological activity. Previous dock-
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Figure 5 L61H46 inhibited STAT3 phosphorylation and p-STAT3 nuclear translocation induced by IL-6.
Notes: (A) L61H46 (2.5–5 μM) inhibited STAT3 phosphorylation induced by IL-6 in BXPC-3 human pancreatic cancer cells. After treating with L61H46 (2.5–5 μM) for 
24 h, cells were stimulated by IL-6 (50 ng/mL) or (B) IFN-γ (50 ng/mL) for 30 min; napabucasin is 5 μM. The cells were harvested and analyzed for STAT3 and STAT1 
phosphorylation by Western blotting as described in the “Western blot analysis” section. The density of p-STAT3 and p-STAT1 was analyzed by the ImageJ software. (C) 
After a serum-free overnight, BXPC-3 pancreatic cancer cells were pretreated with L61H46 (2.5 μM) for 24 h, followed by IL-6 (50 ng/mL) for 30 min, and then detected 
for STAT3 nuclear translocation by immunofluorescence staining. (D) The percentage of positive cells per field in each group was calculated. All images are representative 
of three independent experiments. The level of significance is indicated by *P<0.05, **P<0.01, and ***P<0.001.
Abbreviations: DAPI, 2-(4-Amidinophenyl)-6-indolecarbamidine dihydrochloride; DMSO, dimethyl sulfoxide; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; IFN, 
interferon; IL, interleukin; Napa, napabucasin.

15

10

R
el

at
iv

e 
p-

S
TA

T3

5

0 0

10

20

30

GAPDH

STAT1

p-STAT1

IFN-�

GAPDH

STAT3

p-STAT3

A

C D

B

IL-6 –

DMSO IL-6

+ +
L61H46
2.5 μM

+ +
L61H46

5 μM
Napa
5 μM

L61H46
2.5 μM

L61H46
5 μM

Napa
5 μM

L61H46
2.5 μM

L61H46
5 μM

Napa
5 μM

–

DMSOIFN-γ

+ +
L61H46
2.5 μM

+ +
L61H46

5 μM
Napa
5 μM

R
el

at
iv

e 
p-

S
TA

T1

***
** ** ** **

DMSO

DMSO

DAPI p-STAT3 Merge

0

DMSO

IL-
6

IL-
6 +

 L6
1H

46

5

10

15 ** *

P
os

iti
ve

 c
el

l n
um

be
rs

BXPC-3

IL-6

IL-6

IL-6 + L61H46

DMSO IFN-�

ing simulations have shown that the majority of the reported 

direct STAT3 inhibitors bind to the main pTyr705-binding 

site and the side pocket of STAT SH2.34,35 Our results of 

docking simulation showed that L61H46 (gray stick-ball in 

Figure 4D) occupied the main pTyr705-binding site and the 

side pocket (ΔE: −6.5/kcal/mol). The results agree with the 

binding modes of the previously reported STAT3 inhibitors.

In our study, we compared the antitumor effect of L61H46 

with napabucasin, an orphan drug that targets STAT3. The 

results showed that L61H46 could significantly reduce 
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Figure 6 L61H46 suppressed tumor growth of pancreatic cancer cells in vivo.
Notes: Tumor volume (A and B) and tumor weight (C) in BXPC-3 human pancreatic cancer xenografts in nude mice. (D) Body weight of mice. (E) L61H46 inhibited STAT3 
phosphorylation, increased the level of cleaved Caspase 3, and decreased BCl-2 in mouse xenografts in vivo. (F) L61H46 decreased the expression of BCL-2 as shown by IHC 
staining. (G) No histological abnormalities were observed in kidneys, livers, and hearts in the L61H46 group. Hearts, kidneys, and livers from two groups were sectioned at 
5 μm, and the slides were stained with H&E (n=5 in each group). All images were obtained by microscope with 200× magnification. All images are representative of three 
independent experiments. Data are mean ± standard error of mean of three independent experiments. The level of significance is indicated by **P<0.01, ***P<0.001, and 
****P<0.0001.
Abbreviations: GAPDH, glyceraldehyde-3-phosphate dehydrogenase; H&E, hematoxylin and eosin; IHC, immunohistochemistry.
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the viability of pancreatic cancer cells with a similar IC
50

 

value compared to napabucasin. At the same concentration 

of 10 µM, L61H46 promoted more cells’ apoptosis than 

napabucasin, consistent with the result of apoptosis-related 

proteins. The inhibitory rate of cell invasion of L61H46 was 

slightly weaker than napabucasin, while L61H46 inhibited 

cell migration more effectively than the positive control drug. 

Furthermore, L61H46 inhibited the STAT3 pathway at very 

low concentration (2.5 µM) in PANC-1 and BXPC-3 cancer 

cell lines and blocked the IL-6-induced STAT3 phosphoryla-

tion in a dose-dependent manner. The inhibition effects of 

p-STAT3 on BXPC-3 cancer cell lines of these two drugs were 

very close. Finally, we performed the docking modeling of 

L61H46 and napabucasin to the binding hot spots of STAT3 

SH2. For a comparison, the known inhibitor napabucasin 

(blue stick-ball) had a similar binding mode and energy (ΔE: 

−6.1/kcal/mol), binding to the pTyr705 site and partially to 

the side pocket. Of note, L61H46 binding encompassed the 

entire side pocket, while napabucasin only covered part of 

the sub-pocket. A fully covered side pocket binding could 

favor L61H46’s specificity to inhibit the STAT3 activation 

and help effectively compete with the native pTyr705 binding 

to block STAT3 phosphorylation and dimerization.

Drug safety is a vital factor to consider in drug discov-

ery and development. Curcumin, a natural food spice, was 

reported to have anti-cancer activity. Despite the evidence 

of its excellent safety, no clinical trials of curcumin have 

been successful due to its instability and nonbioavailability.16 

L61H46 is an optimized MAC. Previous reports showed 

that the mono-carbonyl structure significantly improved the 

stability and bioavailability while retaining superior safety.25 

We also found that L61H46 has no signs of adverse effects 

on liver, heart, and kidney cells in vivo (Figure 6G). In the 

future, it is worth while to further evaluate the pharmacologi-

cal kinetics and bioavailability of L61H46.

Various chemotherapy drugs including gemcitabine, 

cisplatin, irinotecan, and taxanes have been used to treat 

pancreatic cancer.36 Gemcitabine and erlotinib have shown 

a survival benefit in the first-line setting in metastatic pan-

creatic cancers. Unfortunately, these anticancer agents have 

shown limited benefits because of drug resistance.37 Emerging 

evidence has shown that STAT3 activation is implicated in 

Figure 7 Schematic illustration of the underlying mechanism of L61H46’s anticancer activity.
Abbreviations: IFN, interferon; IL, interleukin.
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the treatment failure of targeted therapies or chemotherapy.6 

Zhang et al38 reported that certain doses of gemcitabine 

promoted the binding of the phosphorylated STAT3 to the 

promoter of Bmi1, Nanog, and Sox2 genes. Furthermore, 

inhibition of STAT3 partially reversed gemcitabine-induced 

sphere formation, migration, chemo-resistance, and tumor 

relapse. These findings suggest that STAT3 could be a 

potential target to sensitize pancreatic cancer cells to che-

motherapy. A clinical trial has been designed to examine the 

effects of napabucasin paired with paclitaxel on pancreatic 

cancer patients in comparison to the effects of a placebo 

paired with paclitaxel.39,40 Bao et al41 found that a natural 

product andrographolide caused apoptosis via inactivation 

of STAT3 and potentiated antitumor activity of gemcitabine 

in pancreatic cancer. In the future, we would investigate the 

synergistic effects of combination of L61H46 and chemo-

therapy drugs on pancreatic cancer.

Conclusion
Our data confirm that L61H46 is a selective STAT3 inhibitor 

and exhibits highly potent antitumor activity against pancre-

atic cancer cells both in vitro and in vivo (Figure 7). These 

results suggest that L61H46 could be further developed as 

a promising STAT3 inhibitor for the treatment of pancreatic 

cancer.
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Figure S1 (A) The relative intensity of various apoptosis-related proteins. (B) The number of apoptotic cells per field in each group was calculated.
Notes: Data represent similar results from at least three independent experiments. *P<0.05; **P<0.01; ****P<0.0001.
Abbreviations: DMSO, dimethyl sulfoxide; Napa, napabucasin; PARP, poly(ADP-ribose) polymerase.

2.5

A B

*

**
**

* *
*

****

**
**

DMSO
L61H46 5 μM
L61H46 10 μM
Napa 10 μM

2.0

1.5

1.0

0.5

0.0 0

5

10

15

A
po

pt
ot

ic
 c

el
l n

um
be

rs

20

Clea
ve

d P
ARP

Cas
pa

se
 3

BCL-2
DMSO

L6
1H

46
 5 
�M

L6
1H

46
 10

 �M

Nap
a 1

0 �
M

R
el

at
iv

e 
in

te
ns

ity

Figure S2 L61H46 inhibited constitutive phosphorylation of STAT3 in pancreatic cancer cells.
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Figure S3 The relative intensity of various proteins expressed in mouse xenografts in vivo was calculated.
Notes: Data represent similar results from at least three independent experiments. *P<0.05; **P<0.01; ***P<0.001.
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