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Abstract: After introducing the new molecules for the treatment of patients with tumoral pathol-

ogy, the therapeutical decision will be taken depending on the molecular profile performed upon 

the harvested tissues. This major modification makes the molecular and morphological analysis 

an essential part in the clinical management of patients and the pathologist plays an important 

role in this process. The quality and reproducibility of the results are imperative today and they 

depend on both the reliability of the molecular techniques and the quality of the tissue we use 

in the process. Also, the genomics and proteomics techniques, used increasingly often, require 

high-quality tissues, and pathology laboratories play a very significant role in the management of 

all phases of this process. In this paper the parameters which must be followed in order to obtain 

optimal results within the techniques which analyze nucleic acids and proteins were reviewed.
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Introduction
The recent progress made in the detection of molecular events with a key role in the 

development of tumors, as well as the advent of new drugs capable of blocking molecu-

lar targets, has led to the mandatory increase in standardization and quality control for 

the molecular biology techniques employed. The same applies to the tissue-processing 

stages that precede these assays.1–3 Nowadays, the detection of mutated or amplified 

genes such as HER2, KRAS, BRAF, and C-KIT makes personalized treatment possible, 

and in addition, the evaluation of estrogen (E) and progesterone (P) expression, for 

example, has led to the improvement of the clinical condition of patients.4–7 Further-

more, the genomics and proteomics techniques that are increasingly being used often 

require high-quality tissues; therefore, the pathology laboratories play a very significant 

role in the management of all phases of this process.8 In recent years, efforts made 

precisely in this regard have remarkably improved the techniques, the reagents, and 

the equipment in terms of standardization and quality control methods. Consequently, 

the errors that occurred during the analytical phase have been reduced by ~10 times. 

Therefore, it could be argued that these methods have reached an acceptable level of 

reliability.9 In addition, attention is now being paid to the preanalytical phase, as it 

was somewhat overlooked in the past; however, it is becoming more important with 

the advent of molecular diagnostics and targeted therapies.10

The preanalytical phase includes all procedures performed upon a tissue frag-

ment, from harvesting to the molecular analysis. The main departments involved in 

this process are surgery and especially pathology.11 The reception of tissues, their 
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fixation, freezing or embedding in paraffin, the diagnostic, 

and the evaluation of tissue quality are all essential stages of 

the preanalytical phase and are the exclusive domains of the 

pathologist.12 The archives of the pathology departments are, 

at present, an important source of tissues where molecular 

biology techniques can be applied in order to identify new 

markers, which link to the evolution of patients and their 

response to the treatment. Both classic techniques, such as 

immunohistochemistry (IHC), and the recent ones need the 

standardization of the preanalytical stages. In this paper we 

focused on parameters which can be followed in order to 

obtain high-quality tissues for molecular testing and also the 

limitations of applying the new techniques on formalin-fixed 

paraffin-embedded tissues (FFPE) (Figure 1).

Protein evaluation
At present, a series of molecular biomarkers are used in 

the clinical management of patients, and they need to be 

precisely assessed. This is why each pathology laboratory 

that assesses these biomarkers must provide accurate and 

reproducible results. This requires a standardization of the 

methods employed in tissue processing.13

IHC
Generally, fixation must be made within a timeframe of up 

to 12 hours. During this period, the storage of tissues at 4°C 

or at room temperature does not influence the quality of the 

immunomarking. The effects seen after >12 hours seem to 

be antigen specific.14–16

Figure 1 Overview of the general responsibilities of surgical, pathology, and molecular medicine departments in the tissue analysis flow.
Note: The pathology departments are at the core of tissue analysis, thus ensuring the quality control for tissue processing in all of the departments involved in biomedical 
research and in state-of-the-art molecular analyses.
Abbreviations: CGH, chorionic gonadotrophin; FFPE, formalin-fixed paraffin-embedded; MALDI TOF, mass spectrometry; PCR, polymerase chain reaction; qPCR, 
quantitative PCR.
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The fixative solution on the other hand is influenced by the 

concentration, the pH, and the presence of the buffer as these 

factors contribute toward optimal immunomarking. The best 

formula is the 10% neutral-buffered formalin (NBF) with a 

pH between 5 and 7, although it may differ from one antigen 

to another. The ratio between the volume of the tissue and that 

of the fixative solution may vary considerably. It is generally 

accepted that the optimum ratio for a good fixation is 1:10; 

however, the ratio has been reported to vary from 1:10 to 1:20.17

Differences may also occur between various areas of 

the tissue sample, such as between the periphery and center 

of a sample as this affects the intensity and the number of 

positive cells. The penetration of tissues takes place at dif-

ferent speeds, depending on its depth; in order to double the 

depth, the time must be increased by four times.18 Of note is 

the fact that formalin ensures the fast penetration of tissues 

but remains slow in terms of fixation. For a better quality 

of the tissues used for immunochemistry purposes, fixa-

tion is more important than penetration time. Experiments 

performed on mouse liver showed a plateau after ~24 hours. 

The temperature at which fixation takes place is also very 

important, as it is faster at 37°C than at 25°C. The pH also 

influences fixation time, which is shorter at 7.0 than at 4.0. 

The rinsing of tissues fixed for a long period of time shows 

that fixation is a reversible process.19

The extended ischemia due to late fixation may decrease 

the expression of estrogen receptor (ER) and progesterone 

receptor (PR) in breast cancer. The ER expression begins to 

drop 2 hours after sampling, and the PR expression drops 

after 1 hour. After 8 hours, the expression becomes com-

pletely negative. Therefore, fixation should be made within a 

maximum of 1 hour.20 A minimum fixation time of 6–8 hours 

is required for the optimal expression of receptors, while the 

maximum fixation time that may be reached without a change 

in the ER, PR, or HER2 expression is 72 hours.21–23

In order to show the importance of standardizing the 

immunohistochemical expression of ER and PR in breast 

cancer, a Guideline Recommendation was published at the 

initiative of the American Society of Clinical Oncology and 

the College of American Pathologists. In these guidelines, 

it was noted that ~20% of the IHC determinations are inac-

curate, mostly due to a “variation in preanalytic variables”. 

According to these guidelines, the requirement for optimal 

tissue handling is that the time between the reception of the 

tissue and fixation should be as short as possible. The tis-

sue fragments must be cut into slices that are ~5 mm thick, 

fixed only in 10% NBF, in quantities suitable for a good 

penetration of the tissue (10-fold greater than the volume 

of the specimen). A higher or lower concentration of NBF 

will not be accepted.24 The fixation time should be between 

6 and 72 hours. Also, the cold ischemia time, the type of 

fixator, and the fixating time should be recorded. Each frag-

ment should be accompanied by a sheet indicating the warm 

and cold ischemia times (the surgeon’s duty) and also the 

fixation time, the type of fixator, and the fixation duration 

(the pathologist’s duty). The time between tumor harvesting 

and fixation should be kept at <1 hour. The pathologist must 

keep track of these parameters and notify them to the team 

performing the study.

With respect to the expression of HER-2, slides must be 

stored for no more than 6 weeks prior to the evaluation. Just 

like in the case of the receptors, the time until fixation should 

be as short as possible. The fixation time should be longer 

than 6 hours; however, it should not exceed 48 hours. Fixa-

tion should be made in a sufficient volume of 10% NBF.25

In proteomics, certain signal transduction pathway phos-

phoproteins, known sensitive indicators of tissue state, may 

suffer changes in expression levels that mask the levels at 

the time of excision, depending on tissue handling and cold 

ischemia delay. Due to factors such as postexcision hypoxia 

and stress-response signals, certain kinase proteins may suffer 

expression level alterations during the cold ischemia delay. 

As a solution to this unwanted variance, Espina et al26 have 

developed guidelines based on studies regarding postexcision 

phosphoprotein expression fluctuations in different organs. To 

further compensate for rapid enzyme function alteration, pro-

cedures such as thermal or pressure inactivation of enzymes 

involved in cell signaling (protein kinases, phosphatases, or 

even RNAses) have been developed.27 However, such meth-

ods lead to the loss of tissue morphology preservation. In 

any case, protein phosphorylation changes significantly after 

10–15 minutes of cold ischemia. For example, it has been 

noted that phosphorylated mTOR levels greatly increase after 

45 minutes.28 Based on a range of evidence, the TuBaFrost 

consortium has suggested a maximum time of 30 minutes 

to flash-freezing, based on mass spectrometry-based evi-

dence.29 As general recommendations for the reduction of 

preanalytical variability, Espina et al26 indicate that elapsed 

time between tissue extraction and stabilization should not 

reach 20 minutes and that additional variables, such as sample 

excision and collection time, elapsed time to preservation or 

stabilization, and length of fixation time, should be recorded 

to provide a measure of sample quality. Additional proteome 

integrity assays should be performed, and these include 

Western blot (WB) for the evaluation of marker protein 

proteolysis, effects of preservation, and posttranslational 
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modifications; evaluation of proteolysis of abundant proteins 

over time by 2-dimensional (2D)-gel electrophoresis (GE), 

and evaluation of tissue morphology and immunoreactivity 

through microscopic evaluation.30

After samples have been received in the pathology labo-

ratory, tissues may undergo formalin fixation, which leads 

to protein–protein cross-linking and requires digestion with 

proteinases. This may affect protein assay results, as shown 

in studies comparing some commonly used preservation 

methods, including formalin fixation. A first study noticed 

that, in contrast to fresh frozen samples, FFPE tissues failed to 

yield identifiable target proteins through 2D GE, and another 

team subsequently reported similar results through the use 

of chromatographic methods,31,32 supposedly because of the 

protein mesh that forms after protein cross-linking. These 

difficulties were later resolved by the use of new protocols.33 

However, other studies reported minimal modification of 

proteins after formalin fixation.34 To circumvent possible 

formalin-induced protein modifications, some studies have 

suggested the use of alternative fixatives, such as FineFix, 

RCL2, and HOPE.35,36

In order to optimize protein extraction from FFPE tissues, 

Shi et al have used a method widely applied in IHC. FFPE 

were boiled in an antigen retrieval solution of Tris-HCL (2% 

sodium dodecyl sulfate [SDS]), followed by incubation. Fresh 

tissue from the same sample was processed to compare the 

efficiency of protein extraction. Evaluation of the extraction 

quality done by GE and mass spectrometry showed better 

results for high temperature-heated FFPE tissues.33

In the process of tissue protein separation for gel-based 

assays, enzymatic digestion and application of increased 

detergent concentrations such as SDS can produce peptides, 

which can be further modified by tissue formalin increasing 

the risk of interference with mass spectrometric analysis 

methods.37,38 Protein extraction methods may use different 

homogenization techniques, which may damage proteins by 

exposure to tissue proteases that can cause protein degrada-

tion, especially in frozen tissues. Consequently, some studies 

recommend the use of quick, low-temperature protein extrac-

tion methods and the use of protease enzymatic inhibitors.39 

To avoid the risk of protease-mediated protein degrada-

tion altogether, other more integrated proteomic-inclined 

approaches may employ heat, instead of freezing stabilization 

methods, as they have been shown to have superior results 

when compared to a combination of flash-freezing and enzy-

matic inhibitors.40 Protein extraction yield as well as quality 

measured by WB assays has also been shown to be enhanced 

through the use of an established (EBX) and commercial 

buffer (EBX Plus) when used on a variety of cancerous and 

noncancerous tissues that have undergone formalin fixation 

even for extended periods of time (144 hours).41

Recently, FFPE tissues have been regarded as a possible 

source of material for WB assays. Results from a study on 

renal cancer showed that, compared to frozen tissue extracts, 

FFPE tissues lead to similar results through WB, although 

membrane protein expression was reported to have a greater 

variability.42 In addition, RP protein array analysis showed 

similar results in the level of intact protein extraction rate, 

with a greater sensitivity attributed to the RP protein array 

method, in contrast to WB assays (Figure 2).43

Nucleic acids
The various procedures that tissues undergo either in surgery 

or in the pathology laboratory have different effects in terms 

of biomolecule stability. Among the most sensitive of mol-

ecules, RNA expression may vary even with little exposure 

to the environment. For instance, warm ischemia has been 

Figure 2 The steps of the preanalytical phase and their matching with the times of 
warm/cold ischemia.
Note: Most steps are possible during cold ischemia, thus reducing as much as 
possible processing time and ensuring a good tissue quality for molecular testing.
Abbreviation: FFPE, formalin-fixed paraffin-embedded.
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proven to affect RNA quality and level detection, the degra-

dation of which may be lowered through tissue cooling.44 On 

the other hand, some studies have shown that cold ischemia 

duration decreases RNA integrity levels only to a modest 

degree, affecting both RNA integrity number and yielded 

quantity levels,45,46 while in other studies such effects of cold 

ischemia were not observed.47,48 The American Society of 

Clinical Oncology and College of American Pathologists have 

produced guidelines regarding the cold ischemia interval, 

which should remain below 2 hours.25 Others propose a gold 

standard of 30 minutes, although some evidence exists that 

even with such a small delay, effects on tissues such as gene 

expression may be significant.49,50 Concurrent measurement 

of the reduction of housekeeping gene expression levels may 

provide information regarding the levels of RNA quality 

degradation.51 The fixation process has great influence on 

RNA quality because it causes strand breakage and cross-

linking with other biomolecules. RNA from FFPE samples 

was found to be heavily degraded and fragmented so that 

only short sequences, ~100–200 nucleotides long, could be 

recognized and amplified through polymerase chain reaction 

(PCR).52,15 Small tissue fragments and short fixation times 

– 8 hours in formalin – should provide the best nucleic acid 

conservation and best tissue morphology preservation.53 The 

quality of these parameters may also be preserved through 

a variant of the formaldehyde fixation process, which low-

ers the process temperature at 4°C.54 As the level of RNA 

integrity conservation in FFPE specimens is low, alternative 

solutions, such as RNAlater tissue freezing, may be employed 

with significant results. Frozen tissues are known to provide 

a greater quantity of high-quality RNA and DNA than FFPE 

tissues for assays involving nucleic acids.55,45 By causing 

precipitation of tissue RNA-ses, it has been shown that 

RNAlater increases both RNA integrity number values and 

also can cause a threefold increase in RNA-yielded quantity 

results that are similar to or even greater than those obtained 

through the flash freeze technique.56 Other studies, however, 

suggest that freezing still may be preferred over RNAlater. 

Consequently, The Tumor Analysis Best Practices Group, a 

group of investigators employing a commercial microarray 

platform widely used in clinical trials, has the following 

recommendations: all tissue samples should be flash frozen 

within minutes of surgery and stored at ≤–80°C. Samples 

should also be kept in small, airtight containers and kept 

from drying out during frozen storage by placing fragments 

of ice in with the sample.57

In addition to mRNA, the recently discovered microRNA 

is a potential biomarker for many diseases that impose 

 surgical treatment.58 Unlike the former, however, microRNA 

seems to have greater postexcision stability than mRNA, 

possibly because of its stable association with proteins in 

the Argonaute 2 complex.59 Many studies have shown that 

expression profiles of microRNAs generally remain com-

parable to those derived from frozen tissues, independently 

of the use of widely used fixatives or storage time or even 

the employed microRNA profile assay method.60 Also, 

microRNA expression might not be influenced by the use of 

methods such as formalin fixation methods or immunocyto-

chemical methods.61 Finally, studies that assess the effect of 

warm or cold ischemia time intervals on microRNA profiles 

are still missing.

As we have mentioned, nucleic acids are more suscep-

tible to degradation through the use of fixation techniques. 

Consequently, fresh-frozen tissue specimens are the preferred 

source for nucleic acid-based assays. However, because of 

the limited availability of such tissues, attention has been 

given to FFPE tissues as an alternative source of genetic 

material. After surgery, it is known that a longer prefixation 

time interval may cause DNA integrity level change.62 A pos-

sible solution is the use of commercial formulations capable 

of denaturing nucleases, such as the Whatman FTA paper, 

which even allows the storage of tissues at room temperature 

while preventing DNA damage and increasing DNA assay 

results after tissue processing shown to be excellent sources 

of DNA; FFPE tissues create additional problems in terms of 

material extraction and analysis.63–65 In addition, it has been 

observed that DNA isolated from FFPE tissue contains more 

PCR inhibitors than DNA isolated from nonfixed specimens.66 

However, new studies that compare modern DNA isolation 

methods may provide recommendations for the selection of 

protocols that yield optimal results with nucleic acid assays 

such as PCR.67 Other nucleic assays may be deemed imprac-

tical on FFPE tissues. Some sequencing studies have shown 

through sequencing methods that as much as one artificial 

mutation per 500 bases may result from the formalin fixation 

process.68 However, next-generation sequencing (NGS) has 

yielded excellent results even with single-nucleotide variant 

calls or interpretation of insertions and deletions, which are 

some of the issues arising when analyzing FFPE tissues.69 

Furthermore, a new study evaluating the lung cancer KRAS, 

BRAF, and EGFR gene mutations has compared both the 

NGS and real time-PCR assays and proved that while the 

results obtained by both methods were similar, NGS was 

able to detect both single-nucleotide and insertion-deletion 

variations. In addition, a new study by Wagle et al70 pro-

vides a method combining  hybridization-capture and deep 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Cancer Management and Research 2018:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

750

Susman et al

 sequencing, which maximize sequence yield and lower over-

all assay costs. Regarding a-chorionic gonadotrophin, early 

studies suggested that DNA samples obtained from FFPE 

tissues were uninterpretable because of various errors such 

as oversaturation and nonuniformity in replicates.71 Recent 

advances have surmounted these impediments and even 

compared these new methods to suggest optimal a-chorionic 

gonadotrophin platforms.72

If both the warm and hot ischemia times are optimal, 

fixation using paraformaldehyde does not produce any altera-

tions of the nucleic acids. Considering that formaldehyde acts 

mainly on the protein level by forming –CH3 chemical con-

nections, it has a lower effect on the quality and preservation 

of both DNA and RNA. Fragmentation of the nucleic acids is 

mainly found in paraffin-embedded tissues. Still, new assays 

for molecular analysis such as next-generation sequencing or 

methylation arrays are associated with limited fragmentation 

of the nucleic acids and the results of the analysis are not 

influenced by the degree of alteration in paraffin-embedded 

tissues. Thus, even if the experience of various pathology 

laboratories is limited in this regard, molecular analyses 

should use paraffin-embedded tissues that are not older than 

10 years, as according to the guidelines.73–75

In the case of protein decalcification, the process may 

influence molecular testing, considering that one of the most 

common types of biopsies that are decalcified are the bone 

marrow biopsies. Thus, the International Council for Stan-

dardization in Hematology (ICSH) has set up guidelines that 

aim to bring together the various protocols for tissue decalci-

fication and still maintain an optimum quality of the biopsy 

material for the IHC staining.76 The best protocol of decalci-

fication for IHC staining is ethylenediaminetetraacetic acid 

based, lasting between 16 and 24 hours, and the strong acids 

used have allowed the keeping of the various differentiation 

markers on the cell surface. Decalcification should be followed 

by a careful rinsing for about 10 minutes in order to properly 

remove the decalcification agent. Combining the protocols is 

not recommended, with heating and steering improving decal-

cification, and should always be considered.77 Even if protein 

degradation is quite different from the degradation of nucleic 

acids, current international pathology practice protocols 

require that the used protocols for tissue processing take into 

consideration DNA and/or RNA degradation. Thus, in order 

to also achieve a good tissue quality for molecular testing, the 

decalcification time is between 16 and 24 hours and the used 

substance is 14% ethylenediaminetetraacetic acid. Shorten-

ing this time is only acceptable for morphology assessment. 

In case the  laboratory also requires molecular, cytogenetic, 

or flow cytometry assays, a longer time is required, as shown 

in Figure 3A–D.

Conclusion
Molecular diagnostics have become a reality. In the coming 

years, they will account for an increasingly significant frac-

tion of the activity of pathology laboratories. In response 

to the new requirements, more and more laboratories will 

have to adapt their activities and implement, control, and 

standardize the procedures associated with the preanalyti-

cal phase. Each laboratory should create a dedicated unit, 

with specific equipment and specialist staff. The stages 

mentioned in the present article indicate that the pathologist 

is central in the processes required for molecular testing. 

The physicians working in pathology laboratories therefore 

will have to quickly familiarize themselves with the prin-

ciples and techniques of molecular biology, thus acquiring 

dual competences, as morphological and also molecular 

pathologists.
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