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Introduction: Hepatocellular carcinoma (HCC) has a close relationship with lipid metabolism. 

Peroxisome proliferator-activated receptor α (PPARα) plays a crucial role in the regulation of 

fatty acid oxidation in the liver. However, the role of PPARα in HCC remains unclear.

Methods: A total of 804 HCC specimens were collected to construct a tissue microarray and 

for immunohistochemical analysis. The relationship between PPARα expression and clinical 

features of HCC patients was analyzed. Kaplan–Meier analysis was conducted to assess the 

prognostic value of PPARα expression levels.

Results: The expression of PPARα in HCC was noticeably decreased in HCC tissues. HCC 

patients with high levels of PPARα expression in cytoplasm had smaller tumors (P=0.027), 

less vascular invasion (P=0.049), and a higher proportion of complete involucrum (P=0.038). 

Kaplan–Meier analysis showed that HCC patients with low PPARα expression in the cytoplasm 

had significantly worse outcomes in terms of overall survival (P<0.001), disease-free survival 

(P=0.024), and the probability of recurrence (P=0.037). Similarly, overall survival was sig-

nificantly shorter in HCC patients with negative PPARα expression in the nucleus (P=0.034). 

Multivariate Cox analyses indicated that tumor size (P=0.001), TNM stage (P<0.001), vascular 

invasion (P<0.001), and PPARα expression in the cytoplasm (P<0.001) were found to be inde-

pendent prognostic variables for overall survival.

Conclusion: Our data revealed that PPARα expression was decreased in HCC samples. High 

PPARα expression was correlated with longer survival times in HCC patients, and served as 

an independent factor for better outcomes. Our study therefore provides a promising biomarker 

for prognostic prediction and a potential therapeutic target for HCC.

Keywords: peroxisome proliferator-activated receptors α, lipid metabolism, hepatocellular 

carcinoma, prognostic biomarker

Introduction
Hepatocellular carcinoma (HCC) is the third most frequent cause of cancer death world-

wide.1 Due to the extensive heterogeneity in clinical presentation and tumor biology, 

the classification for HCC therapy is complicated.2,3 One of the heterogeneities of HCC 

is tumor metabolic reprogramming. Although most tumors share common metabolic 

transformations like aerobic glycolysis,4 the metabolic phenotypes of cancer cells are 

highly diverse because of the tumor microenvironment. For example, primary ovarian 

cancer cells have highly activated lipogenesis in order to supply the lipid required for 

uncontrolled cell proliferation. However, when ovarian cancer metastasizes to omental 

fat that contains a microenvironment abundant in adipocytes, the cancer cells are meta-

bolically reprogrammed to favor more lipid oxidation using  adipocyte-derived fatty 
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acids.5 In HCC, due to the high rate of nutrient consumption 

and lack of vasculature, HCC cells frequently experience a 

stressful metabolic microenvironment, which is character-

ized by oxygen and nutrient deficiency.6 There may therefore 

be adaptive metabolic reprogramming that develops within 

HCC cells that allows them to cope with the stressful meta-

bolic microenvironment. A study conducted by Wang et al 

revealed that HCC cells display distinct lipid levels, which 

are positively correlated with HCC cell survival in stressful 

metabolic microenvironments.7 In addition, acetyl-coenzyme 

A carboxylase alpha plays an important role in HCC cells 

by promoting fatty acid synthesis and thereby increasing the 

lipid content of these cells.

Another important approach to increasing the lipid 

content in HCC cells, in addition to increasing fatty acid 

synthesis, is to inhibit fatty acid oxidation. Previous stud-

ies have confirmed that peroxisome proliferator-activated 

receptors (PPARs) play a crucial role in regulating fatty acid 

oxidation and the upstream rate-limiting enzyme of fatty 

acid oxidation, carnitine palmitoyltransferase 1.8 Despite 

similar structures, the three PPAR isotypes α, β, and γ vary 

greatly in their tissue distribution, pharmacology, type of 

endogenous ligand, and biological effects. Especially in the 

liver, PPARα acts as a master regulator of liver metabolism. 

PPARα-regulated processes are thought to be involved in 

all liver diseases.9 Owing to the importance of PPARα in 

metabolism, many studies have examined the role of PPARα 

in tumorigenesis, with some studies implicating it in the 

promotion and development of cancer, with others presenting 

evidence for an anti-tumorigenic role.10 PPARα activation 

increases proliferation in breast cancer cell lines and in a 

renal cell carcinoma cell line,11,12 and its persistent activation 

causes liver cancer in rodents, whereas PPARα null mice 

have been shown to be resistant to the hepatocarcinogenic 

effects of PPARα  agonists.13 Despite these findings, the role 

of PPARα as either a tumor suppressor or inducer in HCC 

remains unclear, and may differ in different species.

In this study, we investigated the role of PPARα in human 

HCC. We showed that PPARα expression was positively 

correlated with overall survival in patients with HCC, and 

therefore it provides a promising biomarker for prognostic 

prediction and is a potential therapeutic target for the clinical 

management of HCC.

Subjects and methods
Subjects
A total of 804 paraffin-embedded HCC specimens collected 

between January 2000 and December 2010 were obtained 

from the archives of the Department of Pathology of Sun Yat-

sen University Cancer Center. None of the patients received 

any chemotherapy or radiotherapy prior to surgery. The 

follow-up period was defined as the interval from the date of 

surgery to the date of death or the last follow-up. This study 

was approved by the Institute Research Medical Ethics Com-

mittee of Sun Yat-sen University Cancer Center. All tissues 

were anonymous and the requirement of obtaining informed 

consent was waived by the Institute Research Medical Ethics 

Committee of Sun Yat-sen University Cancer Center.

Tissue microarray (TMA) construction 
and immunohistochemistry (IHC)
The TMA slides included 804 HCC tissues along with their 

adjacent normal tissues. Using a tissue array instrument 

(Minicore; Excilone, Elancourt, France), each tissue core 

was punched (diameter: 0.6 mm) from the marked areas and 

re-embedded. All specimens were fixed in 4% paraformalde-

hyde in 0.1 M phosphate buffer for 24 hours and embedded 

in paraffin wax. Following this, the paraffin-embedded HCC 

sections were sliced into 4-μm slices and mounted onto glass 

slides. After dewaxing, the slides were treated with 3% hydro-

gen peroxide in methanol and blocked using a biotin blocking 

kit (Dako Denmark A/S, Glostrup, Denmark). After blocking, 

the slides were incubated with a PPARα antibody (ab8934, 

1:1000; Abcam, Cambridge, UK) overnight in a moist cham-

ber at 4°C. After washing three times in PBS, the slides were 

incubated with biotinylated goat anti-mouse antibodies for 

1 hour. The slides were then stained with 3,3′-diaminobenzi-

dine tetrahydrochloride. Finally, the slides were counterstained 

with Mayer’s hematoxylin and observed under a microscope.

The level of PPARα protein expression was determined 

by semiquantitative IHC detection. Intensity was scored 

according to the standard: “0” (negative staining); “1” (weak 

staining); “2” (moderate staining); and “3” (strong staining). 

The final score was calculated by multiplying the percentage 

of positive expression by the intensity score. The scores were 

independently determined by two pathologists. The median 

IHC score was chosen as the cut off value for defining high 

and low expression.

Statistical analysis
Statistical analysis was performed using SPSS (version 16.0; 

SPSS Inc, Chicago, IL, USA). Student’s t-test and Pearson’s 

c2 test, or Fisher’s exact test, were chosen for examining 

the correlations between PPARα expression level and the 

clinical and pathological variables. Survival curves were 

constructed using the Kaplan–Meier method (log-rank test). 
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A  multivariate Cox proportional hazards regression model 

was used to evaluate the independence of PPARα in predict-

ing outcomes. Differences were defined as significant for 

P-values <0.05.

Results
Expression of PPARα in HCC TMA 
tissues 
First, paraffin-embedded HCC tissues were collected to detect 

PPARα expression (n=804). PPARα was mainly expressed 

in the cytoplasm of HCC liver cancer cells, with only a 

small fraction of cells showing expression in the nucleus. 

The PPARα IHC score for HCC tissue was 0.74±0.61, being 

significantly lower than normal liver tissue which had a score 

of 1.22±0.65 (P<0.001, Figure 1). 

Association of cytoplasmic PPARα with 
HCC clinical features
To determine the potential clinical significance of PPARα 

in HCC, the relationship between PPARα and the clinical 

features of HCC patients was evaluated. Using the median 

IHC score in the tumor tissue (IHC score 0.9), a high level 

of PPARα expression was found in 15.3% (123/804) of 

cases. HCC patients with high levels of PPARα expression 

had smaller tumor sizes (P=0.027), less vascular invasion 

(P=0.049), and a higher proportion of complete involucrum 

(P=0.038), as shown in Table 1. Since HCC is a male-

dominant liver disease, we also compared the expression of 

PPARα in male and female. However, we did not observe 

a significant difference of PPARα expression between male 

and female (0.75±0.62 vs 0.69±0.56, P=0.42).

Association of PPARα expression in the 
nucleus and clinical features in HCC
There were only 24 tissues among the 804 samples that 

showed positive PPARα expression in the nucleus. Accord-

ingly, we also compared tissues with negative and positive 

PPARα expression in the nucleus. As shown in Table 2, data 

showed that HCC patients with negative PPARα expression 

in the nucleus often had larger tumors (P=0.014). Among the 

HCC patients with positive PPARα expression in the nucleus, 

a significantly lower proportion had poor undifferentiated 

tumors (P<0.001), were TNM stage III–IV (P=0.036) and had 

an incomplete involucrum (P=0.004). We also compared the 

Figure 1 PPARα is mainly expressed in the cytoplasm with only a few tissues showing nuclear expression. 
Notes: Representative images of PPARα (cytoplasm) expression in HCC tissues with strong (A), moderate (B), weak (C), and negative (D) expression are shown. 
Representative images of PPARα expression in a nontumor sample are also shown (E) (left panel: magnification ×100; right panel: magnification ×400). PPARα expression is 
decreased in HCC tissues compared with the corresponding nontumor tissue as assessed by IHC (**P<0.001) (F).
Abbreviations: PPARα, peroxisome proliferator-activated receptor α; HCC, hepatocellular carcinoma; IHC, immunohistochemistry.
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PPARα between virus-induced HCC and non-virus-induced 

HCC. We found no difference of PPARα expression between 

them either in the cytoplasm (0.71±0.55 vs 0.75±0.63, 

P=0.47) or in the nuclei (0.01±0.08 vs 0.01±0.07, P=0.53).

Association of PPARα expression with 
clinical outcomes in HCC patients
To determine the prognostic impact of PPARα expression 

on HCC patients, we conducted a Kaplan–Meier survival 

analysis using data from the 804 HCC patients enrolled in 

the study. In HCC patients with low PPARα expression in 

the cytoplasm, the Kaplan–Meier analysis revealed that 

the patients had significantly worse outcomes in terms of 

overall survival (P<0.001). Similar trends were observed 

for disease-free survival and the probability of recurrence, 

which showed that HCC patients with low PPARα expression 

in the cytoplasm had significantly worse outcomes than those 

with high PPARα expression in the cytoplasm, with worse 

disease-free survival (P=0.024), and a higher probability of 

recurrence (P=0.037), as shown in Figure 2.

Table 1 Association between PPARα expression in the cytoplasm 
and the clinical features of hepatocellular carcinoma

Variable PPARa in cytoplasm P-value

High  
expression

Low  
expression

Sample size 123 681
Age, years 50.60±11.76 48.56±11.94 0.081
Gender 0.498

Male 111 (13.8%) 600 (74.6%)
Female 12 (1.5%) 81 (10.1%)

HBsAg 0.693
Positive 104 (12.9%) 566 (70.4%)
Negative 19 (2.4%) 115 (14.3%)

AFP, ng/mL 0.394
<20 31 (3.9%) 148 (18.4%)

≥20 92 (11.4%) 533 (66.3%)
Cirrhosis 0.619

Yes 102 (12.7%) 551 (68.6%)
No 21 (2.6%) 129 (16.1%)

Tumor size, cm 0.027
<5 40 (4.9%) 158 (19.7%)

≥5 83 (10.3%) 523 (65.1%)
Tumor multiplicity 0.927

Single 81 (10.1%) 451 (56.1%)
Multiple 42 (5.2%) 230 (28.6%)

Differentiation 0.390
Well-moderate 13 (1.6%) 56 (6.9%)
Poor-undifferentiated 110 (13.7%) 625 (77.8%)

TNM stage 0.790
I–II 50 (6.2%) 286 (35.6%)
III–IV 73 (9.1%) 395 (49.1%)

Vascular invasion 0.049
Yes 108 (13.5%) 546 (67.9%)
No 15 (1.9%) 134 (16.7%)

Involucrum 0.038
Complete 62 (7.7%) 274 (34.2%)
Incomplete 61 (7.6%) 405 (50.5%)

Lymph node metastasis 0.097
Positive 3 (0.4%) 42 (5.2%)
Negative 120 (14.9%) 638 (79.5%)

Distant metastasis 0.050
Positive 6 (0.8%) 72 (9.0%)
Negative 116 (14.5%) 604 (75.7%)

Abbreviations: PPARα, peroxisome proliferator-activated receptor α; HBsAg, 
hepatitis B virus surface antigen; AFP, α-fetoprotein.

Table 2 Association between PPARα expression in the nucleus 
and the clinical features of hepatocellular carcinoma

Variable PPARa in nucleus P-value

Positive  
expression

Negative  
expression

Sample size 24 780
Age, years 51.17±11.54 48.80±11.93 0.340
Gender 0.250

Male 23 (2.9%) 688 (85.6%)
Female 1 (1.1%) 92 (11.4%)

HBsAg 0.578
Positive 19 (2.4%) 651 (80.9%)
Negative 5 (0.6%) 129 (16.1%)

AFP, ng/mL 0.744
<20 6 (0.8%) 607 (75.5%)

≥20 18 (2.2%) 173 (21.5%)
Cirrhosis 0.420

Yes 18 (2.2%) 635 (79.0%)
No 6 (0.8%) 144 (18.0%)

Tumor size, cm 0.014
<5 11 (1.4%) 187 (23.2%)

≥5 13 (1.6%) 593 (73.8%)
Tumor multiplicity 0.071

Single 20 (2.5%) 512 (63.7%)
Multiple 4 (0.5%) 268 (33.3%)

Differentiation <0.001
Well-moderate 7 (0.9%) 62 (7.7%)
Poor-undifferentiated 17 (2.1%) 718 (89.3%)

TNM stage 0.036
I–II 15 (1.9%) 320 (39.8%)
III–IV 9 (1.1%) 460 (57.2%)

Vascular invasion 0.066
Yes 1 (0.1%) 148 (18.4%)
No 23 (2.9%) 631 (78.6%)

Involucrum 0.004
Complete 17 (2.1%) 319 (39.8%)
Incomplete 7 (0.9%) 459 (57.2%)

Lymph node metastasis 0.226
Positive 0 (0%) 45 (5.6%)
Negative 24 (3.0%) 734 (91.4%)

Distant metastasis 0.102
Positive 0 (0%) 78 (9.8%)
Negative 24 (3.0%) 696 (87.2%)

Abbreviations: PPARα, peroxisome proliferator-activated receptor α; HBsAg, 
hepatitis B virus surface antigen; AFP, α-fetoprotein.
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We also conducted a Kaplan–Meier survival analysis to 

explore the differences in prognosis for HCC patients with 

both positive and negative PPARα expression in the nucleus. 

The data indicated that HCC patients with negative PPARα 

expression in the nucleus always had poorer outcomes, as 

shown in Figure 3. The overall survival was significantly 

shorter in HCC patients with negative PPARα expression in 

the nucleus (P=0.034). However, we did not find a prognostic 

impact of PPARα expression in the nucleus in HCC patients 

with respect to disease-free survival and the probability of 

recurrence (data not shown).

Univariate and multivariate analyses of 
prognostic variables in HCC
To evaluate whether PPARα expression was an independent 

risk factor for outcomes in HCC, both univariate and multi-

variate analyses were conducted. Age, serum α-fetoprotein 

level, tumor size, tumor multiplicity, tumor differentiation, 

TNM stage, vascular invasion, involucrum, and PPARα 

expression in the cytoplasm and nucleus were all shown to 

be prognostic variables for overall survival in HCC patients. 

In the multivariate analysis, only tumor size (P=0.001), TNM 

stage (P<0.001), vascular invasion (P<0.001), and PPARα 

expression in the cytoplasm (P<0.001) were found to be inde-

pendent prognostic variables for overall survival (Table 3).

Subgroup analyses of prognostic value of 
PPARα expression in the cytoplasm in 
HCC
A stratified survival analysis was also conducted to further 

reveal the prognostic significance of PPARα expression in the 

cytoplasm among HCC patients. The Kaplan–Meier survival 

analysis showed that PPARα expression in the cytoplasm was 

associated with overall survival in both single and multiple 

HCCs (single HCCs: P=0.001, multiple HCCs: P=0.003), 

in complete and incomplete involucrum HCCs (complete 

involucrum HCCs: P=0.027, incomplete involucrum HCCs: 

P<0.001), and in TNM stage I–II HCCs and III–IV HCCs 

(TNM stage I–II HCCs: P=0.021, TNM stage III–IV HCCs: 

P<0.001), as shown in Figure 4.

Discussion
HCC is an end-stage liver disease with chronic viral infec-

tion accounting for most of the HCC etiology worldwide, 

especially in Asia.14–16 Recently, the rate of nutrient-associated 

HCC such as non-alcohol fatty liver disease-induced HCC 

has been found to be increasing.17,18 In addition, the repro-

gramming of energy metabolism is one of the hallmarks of 

cancer.19 Increasing evidence suggests that solid tumors might 

be also reliant on non-glucose carbon sources.19 Cancer cells 

show increased expression of enzymes involved in de novo 

fatty acid synthesis, which is very important for cellular 

biosynthesis such as in cell membranes.20 The more lipid 

Figure 2 Low PPARα (cytoplasm) expression is correlated with an unfavorable prognosis in 804 HCC patients. 
Notes: Kaplan–Meier analysis shows significant differences in overall survival between postoperative HCC patients with high and low PPARα (cytoplasm) expression (A). 
A similar trend was observed in HCC patients with high and low PPARα (cytoplasm) expression comparing disease-free survival (B) and the probability of recurrence (C). 
Abbreviations: PPARα, peroxisome proliferator-activated receptor α; HCC, hepatocellular carcinoma.
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content in tumor cells, the higher the invasiveness.21 However, 

to increase lipid content for cellular biosynthesis, inhibition 

of lipid oxidation is a potential approach besides increasing 

de novo lipogenesis. PPARα plays the central role in the lipid 

oxidation pathway in hepatocytes. Hence, we evaluated the 

expression of PPARα in HCC and explored the relationship 

of PPARα with HCC prognosis.

The PPAR family belongs to the nuclear hormone receptor 

superfamily. Like other nuclear hormone receptors, PPARs 

have four functional domains: amino-terminal domain, DNA 

binding domain, transcriptional activity regulation domains, 

and ligand binding domains.22,23 PPAR is located in the 

cytoplasm and when activated by ligands, it transforms into 

a heterodimer with retinoic X receptors (RXRs) or glucocor-

ticoid receptor and then enters the nucleus and binds to the 

peroxisome proliferator response element to activate target 

gene transcription.22,24,25 Peroxisome proliferator response 

element is a specific DNA sequence located upstream of 

PPAR target genes. PPARα is a member of the PPAR family, 

which contains three members: PPARα, PPARδ, and PPARγ. 

Figure 4 Low PPARα (cytoplasm) expression is associated with unfavorable outcomes in subgroups of HCC patients. 
Notes: A stratified survival analysis was conducted for PPARα (cytoplasm) expression and unfavorable outcomes in single (A) and multinodular HCC (D), in HCCs with 
complete (B) and incomplete involucrum (E), in HCCs with TNM stage I–II (C) and stage III–IV (F). 
Abbreviations: PPARα, peroxisome proliferator-activated receptor α; HCC, hepatocellular carcinoma.
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Table 3 Univariate and multivariate analyses of prognostic variables for overall survival

Variables Univariate analysis Multivariate analysis

HR 95% CI P HR 95% CI P

Age, years 0.991 0.985–0.997 0.004
Gender 0.872 0.684–1.112 0.268
HBsAg 1.177 0.957–1.447 0.123
AFP 1.252 1.046–1.499 0.014
Cirrhosis 0.974 0.799–1.187 0.794
Tumor size, cm 1.641 1.368–1.969 <0.001 1.382 1.146–1.666 0.001
Tumor multiplicity 1.634 1.395–1.915 <0.001
Differentiation 1.625 1.238–2.134 <0.001
TNM 2.074 1.771–2.429 <0.001 1.774 1.497–2.193 <0.001
Vascular invasion 2.594 2.146–3.136 <0.001 1.785 1.453–2.193 <0.001
Involucrum 1.373 1.176–1.603 <0.001 1.189 1.013–1.395 0.034

PPARα (cytoplasm) 1.593 1.276–1.989 <0.001 1.595 1.274–1.997 <0.001
PPARα (nucleus) 1.612 1.033–2.517 0.036

Abbreviations: HR, hazard ratio; PPARα, peroxisome proliferator-activated receptor α; HBsAg, hepatitis B virus surface antigen; AFP, α-fetoprotein.
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As the first protein identified in the PPAR family, PPARα is 

mostly expressed in the liver and brown adipose tissue, fol-

lowed by heart, kidney, and skeletal muscle, where it plays 

an important role in lipid metabolism. Previous reports have 

shown that PPARα plays an important role in regulating cell 

proliferation and maintaining the metabolic balance in cells, 

regulating tumorigenesis, as well as other cell biology pro-

cesses.23 However, there are controversial data surrounding 

the role of PPARα in tumorigenesis. 

In colon cancer, it is well-established that sustained 

chronic colon inflammation can promote the occurrence 

of colon cancer. One study reported that increased PPARα 

expression could inhibit the expression of pro-inflammatory 

cytokines such as interleukin-17 and interferons γ, which 

implies an anti-tumorigenic effect of PPARα in colon 

cancer.26 In breast cancer, one study found lack of PPARα 

expression in patients with basal-like breast cancer.27 In 

human breast cancer (MCF-7) and human cervical cancer 

(A2780) cell lines, PPARα reduces the expression of VEGF 

by promoting the ubiquitination of hypoxia inducible factor 

alpha.28 On the other hand, studies have also revealed the 

tumorigenic impact of PPARα in breast cancer. PPARα 

can be activated by leukotrienes produced by regulatory B 

cells and in this way promote cancer metastasis.29 Activating 

PPARα can also lead to the upregulation of the expression of 

cyclin E and the promotion of breast cancer proliferation.30 

The role of PPARα in cancer is still unknown and requires 

further exploration. It is possible that PPARα activation 

could reduce or promote tumorigenesis, depending on the 

type of tissue and different PPARα ligands. Especially in 

HCC, since PPARα is primarily expressed in liver tissue, 

the role of PPARα in HCC tumorigenesis is still unknown. 

Activation of PPARα has effects on fatty acid catabolism, 

hepatocyte proliferation, hepatomegaly, and is closely related 

to the occurrence of HCC.31 However, fenofibrate, an oral 

agonist of PPARα, can inhibit the proliferation of Huh7 

cells, an HCC cell line, by inhibiting the Akt pathway.32 It is 

also well-known that sustained activation of PPARα induces 

HCC in rodents.33 

In this study, we found that the expression of PPARα 

in HCC tissue was significantly lower than in normal 

liver tissue. Interestingly, we found that PPARα is mainly 

expressed in the cytoplasm of liver cancer cells, with only 

a small fraction of cancer cells expressing PPARα in the 

nucleus. In the cytoplasm, following activation by ligands 

such as fatty acids, PPARα forms a heterodimer after which 

it translocates from the cytoplasm to the nucleus,34 where 

the heterodimer acts as a transcription factor by binding to 

peroxisome proliferator response elements located upstream 

of target genes, thus activating target gene transcription. In 

this way, PPARα regulates lipid oxidation, inflammation, and 

immune-related gene expression.34 Based on the results of our 

study, we believe that PPARα activation is inhibited in HCC 

cells. The mechanism underlying this may be that inhibition 

of PPARα activation will inhibit fatty acid oxidation, thereby 

increasing the intracellular lipid content, which can then be 

used to synthesize important cellular constituents such as 

cell membranes, or for use as an energy store to deal with 

metabolic stress, as has previously been reported.7 However, 

this hypothesis needs to be explored further.

Based on the results of our study, we found that a high 

level of PPARα expression in the cytoplasm was associ-

ated with smaller tumor sizes, less vascular invasion, and a 

higher proportion of complete involucrum. Similarly, positive 

PPARα expression in the nucleus was often accompanied 

with a smaller tumor size and a significantly lower propor-

tion of poor, undifferentiated tumors, tumors at TNM stage 

III–IV, and an incomplete involucrum. Previous studies have 

reported that activating PPARα can inhibit cancer cell growth 

and reduce vessel formation.28,35 In HCC, PPARα may play 

a similar role in reducing HCC cell proliferation and vessel 

formation, since our data indicated that high PPARα expres-

sion in the cytoplasm and positive PPARα expression in the 

nucleus are accompanied by smaller tumor sizes and less vas-

cular invasion. The specific role of PPARα in the development 

of HCC needs to be studied further to confirm this hypothesis. 

The prognostic implications of PPARα expression in 

HCC have not been previously reported. In our study, PPARα 

was identified as an independent factor for overall survival 

in a large cohort of 804 patients with HCC. Patients with 

high levels of PPARα expression usually survived for a 

longer period. These data suggest that PPARα expression 

has clinical implications in predicting outcomes in HCC 

patients. PPARα is a major regulator of lipid metabolism 

in the liver; the relationship between liver fat content and 

PPARα expression needs to be further explored. In addition, 

in our study, only PPARα expression in HCC cell cytoplasm 

was prognostic for disease-free survival and the probability of 

recurrence. To further confirm the prognostic effect of PPARα 

expression in the nucleus for disease-free survival and the 

probability of recurrence among HCC patients, further study 

will be required involving more patients positive for PPARα 

expression in the HCC cell nucleus.

Retinoids and their receptors have a close relationship 

with PPAR.36,37 RXRs and retinoic acid receptors (RAR) are 

two main nuclear receptors binding with retinoids. Retinoids 
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are a group of structural and functional analogs of vitamin 

A and play an important role in the regulation of cell pro-

liferation and differentiation.38,39 Both RXR and RAR are 

composed of three subtypes, α, β, and γ. RAR binds with 

9-cis retinoic acid and all-trans-retinoic acid while RXR only 

binds with 9-cis retinoic acid. A study reported that RXRα 

was decreased not only in HCC, but also in the early stage 

of liver carcinogenesis.40,41 In addition, studies have also 

revealed that hepatocarcinogenesis is accompanied by the 

accumulation of a phosphorylated form of RXRα, which 

is an inactive form of RXRα and abolishes its ability to 

form heterodimers with other nuclear receptors.42 Evidence 

focusing on the relationship between RAR and HCC is still 

limited. Studies show that RARb is a tumor suppressor gene.43 

Enhanced RARβ expression correlates with the growth 

inhibitory effect of cancer cells and the absence of RARβ 

expression is accompanied with tumor progression.44 In addi-

tion, overexpression RARβ by vector induce drug sensitivity 

of tumor cells and suppresses proliferation.45 However, the 

specific role of RXR subtypes and RAR subtypes in HCC 

still needs further exploration.

In summary, our data demonstrate a role for PPARα in 

the development of HCC. Data reveal that PPARα expression 

is decreased in HCC samples and, unlike PPARα in rodent 

liver, PPARα in human HCC may have an antitumor effect. 

Increases in PPARα expression were significantly correlated 

with improved tumor differentiation and less vascular inva-

sion. High PPARα expression was correlated with longer 

survival times in HCC patients and served as an independent 

factor for better outcomes. Collectively, our data suggest that 

PPARα is a promising biomarker for the prognosis of patients 

with HCC.
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