
© 2018 Pan et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms. 
php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Cancer Management and Research 2018:10 2289–2301

Cancer Management and Research Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
2289

R E V I E W

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/CMAR.S170105

Development of small-molecule therapeutics  
and strategies for targeting RAF kinase in  
BRAF-mutant colorectal cancer

Jing-hua Pan1 
Hong Zhou2 
Sheng-bin Zhu1 
Jin-lian Huang1 
Xiao-xu Zhao1 
Hui Ding1 
Yun-long Pan1

1Department of General Surgery, 
The First Affiliated Hospital of Jinan 
University, Guangzhou 510632, China; 
2Department of Gynecology, The First 
Affiliated Hospital of Jinan University, 
Guangzhou 510632, China

Abstract: RAF kinase is crucially involved in cell proliferation and survival in colorectal cancer 

(CRC). Patients with metastatic CRC (mCRC) harboring BRAF mutations (BRAFms) not only 

experience a poor prognosis but also benefit less from therapeutics targeting ERK signaling. 

With advances in RAF inhibitors and second-generation inhibitors including encorafenib and 

vemurafenib, which have been approved for treating BRAF-V600E malignancies, the combi-

natorial therapeutic strategies of RAF inhibitors elicit remarkable responses in patients with 

BRAF-V600E mCRC. However, the therapeutic efficacy is restricted by resistance, which 

might be due to RAF dimerization and reactivation of the MAPK pathway. In addition, the 

next-generation RAF inhibitors, which are characterized by varying structural and biochemical 

properties, have achieved preclinical and clinical advances. Herein, we summarize the exist-

ing mechanism of RAF kinases in CRC, including MAPK feedback reactivation of resistance 

to RAF inhibitors. We additionally summarize the development of three generations of RAF 

inhibitors and different therapeutic strategies including the combination of EGFR, BRAF, and 

PI3K inhibitors for BRAFm CRC treatment.
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Introduction
Colorectal cancer (CRC) is one of the most common malignancies both in men and 

women globally.1 In recent decades, great achievements have been made in decreas-

ing both the incidence and mortality rates of CRC in developed countries through 

decreased exposure to risk factors (eg, reduced smoking and red meat consumption 

and enhanced uptake of aspirin) and the introduction and prevalence of screening 

examinations, as well as therapeutic progress.2 In addition, high-quality health care, as 

well as incentivization of healthier lifestyles, play a role in decreasing CRC incidence.3 

However, especially among patients older than 50 years, where CRC incidence rate 

rose by 22% from 2000 to 2013,4 the different clinical and biological features of CRC 

lead to different therapeutic responses and subsequent prognoses, suggesting distinct 

etiologic mechanisms in CRC.5

Oncogenic mutations in B-type RAF kinase (BRAF) occur in 8–12% of metastatic 

CRC (mCRC), and the most universal BRAF mutation (BRAFm) is the missense muta-

tion V600E, which is seen in ~90% of subjects.6 Additionally, these mutations are likely 

to be strongly associated with tumor aggressiveness and poor prognosis.7 The RAF 

kinase family (ARAF and BRAF, as well as CRAF [also known as RAF1]) consists 

of key components of the RAS–RAF–MEK–ERK signaling cascade (ERK signaling), 
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which mediates signals from cell surface receptors to the 

nuclei during the modulation of cell growth and differentia-

tion, as well as survival.8,9 As soon as the RAF kinases are 

activated, MEK1 and MEK2 are subsequently phosphorylated 

and activated, followed by the phosphorylation and activation 

of ERK1 and ERK2. Activated ERK enhances cell prolifera-

tion, as well as survival, via phosphorylation of numerous 

substrates both in the cytosol and the nucleus.10 The RAF 

family has been an important therapeutic target for CRC, 

and there have been great advances in the development of 

RAF inhibitors for clinical use.11

The RAS–RAF–MEK–ERK pathway is one of the most 

attractive pathways as the designed target of small-molecule 

drugs.12 Regarding RAF kinases, the first-generation inhibi-

tors have been used in the clinic but the first-generation 

inhibitor was limited for further use due to BRAFm.13 Addi-

tionally, clinical results show a short resistance time when 

using second-generation RAF inhibitors because of dimer 

formation and feedback reactivation of RAS.14,15 Moreover, 

the next-generation inhibitors are currently undergoing pre-

clinical and clinical trials, which focus on the inhibition of 

monomeric forms and dimeric forms of RAF but focus less 

on target toxicities.16 Therefore, to further understand the 

development of small-molecule therapeutics and strategies 

for targeting RAF kinase in CRC, we summarized the existing 

advancements in our understanding of RAF activation and 

the mechanisms of resistance to RAF inhibitors and aimed to 

propose a comprehensive understanding of the development 

of small-molecule drugs and future perspectives regarding 

BRAFm CRC.

The structure and mechanism of 
RAF kinase in BRAFm CRC
Structural insight into RAF activation and 
different types of RAF inhibitors
A deeper understanding of the three-dimensional structure of 

the RAF protein has played a very important role in the devel-

opment of small molecules for RAF inhibition. The inactive 

RAF protein exhibits a closed and monomeric conformation 

in the cytoplasm because of the intramolecular interaction 

between the carboxyl and amino terminal domains.17–19 The 

structure of RAF harbors the typical C-terminal lobe (C-lobe) 

and N-terminal lobe (N-lobe) connected by a flexible hinge. 

There are three major active sites of RAF, including the nucle-

otide (ADP or ATP)-binding site, the magnesium-binding 

site (DFG [Asp–Phe–Gly] motif), and the phospho-acceptor 

site (activation segment [AS]) of the two lobes (Figure 1A).20
 

A closed conformation between the two lobes is necessary 

for the catalytic activity of the kinase domain.21 In inactive 

Figure 1 Insight on the structural characteristics of RAF activation.
Notes: (A) The inactive RAF is a monomer, and the kinase domain has the characteristic N-lobe and C-lobe linked by a hinge. The positioning of the αC helix of N-lobe 
maintains its “OUT” conformation, and the AS forms as a helical conformation (PDB ID: 4RZV). (B) After the RAF activation, the conformation of AS is extended, which 
induces the αC helix to move inward to the “IN” position. The active RAF displays a comprehensive static “closed” conformation (PDB ID: 4MNE). (C) The structural 
characteristics of typical RAF inhibitors (TKA632) bound to a BRAF dimer show that both αC helixes are in the IN position (PDB ID: 4KSP).
Abbreviations: AS, activation segment; PDB, Protein Data Bank.
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RAF, the AS exhibits a helical conformation, leading to the 

positioning of the αC helix in the “OUT” position (Figure 

1A). However, in active RAF, the AS is transformed to an 

extended conformation, enabling the αC helix of the N-lobe 

to flex to the “IN” position (Figure 1B). Additionally, the 

dimerization of RAF potentiates its independent activation 

and limits the response to conventional RAF inhibitors 

because the αC helix is in the OUT position. Excluding the 

RAF monomer, RAF dimerization will confer resistance 

against the RAF inhibitors. Based on the structural insight 

into RAF dimerization, next-generation RAF inhibitors, such 

as TAK632, can stabilize the αC helix in the IN (active) posi-

tion, which allows binding of a second TAK632 molecule to 

the second protomer (Figure 1C).22

The DFG motif is another important factor in BRAF 

activity. When the DFG motif maintains the IN position 

(Figure 2A), the Asp residue is adapted to provide a catalyti-

cally competent active conformation.23 Type II inhibitors can 

stabilize the DFG motif in the OUT position and enable the 

Asp residue to point away from the active site (Figure 2C). 

Based on the structural features of the αC helix and DFG in 

BRAF, there are four representative structural types of RAF 

inhibitors in current development for targeting BRAF: type 

I inhibitor (αC-IN/DFG-IN) (Figure 2A), type I
1/2

 inhibitor 

(αC-OUT/DFG-IN) (Figure 2B), type II inhibitor (αC-IN/

DFG-OUT) (Figure 2C), and type I
1/2

 inhibitor with R506-

OUT (Figure 2D).21

Despite numerous accessible crystal structures of wild-

type (WT) BRAF or BRAF-V600E, the mechanism by which 

BRAF-V600 mutants activate BRAF remains poorly under-

stood. Cell-based studies had shown that certain oncogenic 

BRAFm enhances spontaneous BRAF dimerization and 

activation by forming homodimers without RAS-GTP.24,25 

Additionally, several mutations had been detected in resi-

dues in the AS or in the glycine-rich loop, which interplays 

with the former.13 The diversity of oncogenic mutations in 

BRAF limits the development of specific inhibitors based 

on structure. Therefore, the specific structural mechanism 

of different BRAFms still needs further study.

Feedback reactivation of MAPK signaling 
following BRAF inhibition
The feedback reactivation of MAPK is another critical 

factor in BRAF inhibitor resistance. Several mechanisms 

of feedback reactivation of MAPK had been described by 

some researchers.26–28 First, the constitutive activation of 

BRAFm drives downstream MAPK signaling and enhances 

ERK activation (Figure 3A). The activation of ERK leads 

to ERK-dependent negative feedback on receptor tyrosine 

kinase (RTK) activation and reduces RAS activity. However, 

Figure 2 The crystal structure of different types of RAF inhibitors binding to BRAF kinase.
Notes: (A) The DFG motif (magnesium-binding site) is located at the N-lobe base of the AS, and the type I inhibitor (GDC0879) binding to BRAF displays the DFG motif 
of BRAF maintaining the “IN” position, as well as the αC helix (PDB ID: 4MMF). (B) The type I1/2 inhibitor (dabrafenib) binds to BRAF and stabilizes the αC helix in the 
“OUT” position, and the position of the DFG motif remains in the IN position (PDB ID: 4XV2). (C) The structure of a type II inhibitor (LY3009120)-binding BRAF shows 
the different DFG motif positions, and the DFG motif shows the OUT motion compared with the BRAF crystal structure binding with type I or I1/2 RAF inhibitors (PDB ID: 
5C9C). (D) The IN position of the residue R506 of the αC helix associates with the interaction of RAF with RAS-GTP. PLX7940 is a type I1/2 RAF inhibitor, and except the 
αC helix OUT and DFG motif IN positions of BRAF, the residue R506 in the αC helix displays an outward movement upon binding of the type I1/2 RAF inhibitor, which 
reduces the paradoxical activation of ERK signaling.
Abbreviations: AS, activation segment; PDB, Protein Data Bank.
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Figure 3 The mechanism of feedback reactivation following BRAF inhibition and current combinatorial therapeutic targets.
Notes: (A) The activation of BRAF drives downstream MAPK signaling, and the activation of ERK leads to negative feedback on RTK activation and reduces RAS activity. 
When BRAF is suppressed by inhibitors, the ERK feedback is reduced and the activation of RAS is enhanced. RAS activates CRAF, inducing reactivation of the MAPK signaling. 
However, BRAF with the V600E mutant can drive high levels of ERK signaling output independently. Type II inhibitors can inhibit not only BRAF and CRAF but also BRAF with 
V600E mutant. (B) Outline of current combinatorial therapeutic targets based on the MAPK, PI3K/AKT, and Wnt/β-catenin pathways. These pathways have been identified 
as a mechanism of resistance to BRAF inhibitors.
Abbreviation: RTK, receptor tyrosine kinase.
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when BRAF is suppressed by inhibitors, the ERK-dependent 

negative feedback is reduced, allowing enhanced activation 

of RTKs, as well as downstream RAS. Under these condi-

tions, RAS activates CRAF, inducing reactivation of the 

MAPK signaling. Moreover, BRAF-V600 mutants are not 

affected by upstream feedback and they drive high levels of 

ERK signaling output, which profoundly inhibit intracel-

lular RAS activity (Figure 3A). Therefore, BRAF-V600E 

predominantly exists as a drug-sensitive monomer and RAF 

inhibitors rapidly inhibit ERK signaling in BRAF-V600E 

cancer.26 It attenuates the feedback suppression of RAS, 

subsequently resulting in the induction of both WT BRAF 

and BRAF-V600E dimers. Additionally, RAF dimerization 

is able to effectively prevent RAF inhibition by current clini-

cal αC-OUT RAF inhibitors, which is attributed to negative 

allostery. Because current RAF inhibitors selectively inhibit 

BRAF monomers and are much less potent inhibitors of RAF 

dimers, a rebound in ERK signaling ensues and attenuates 

the antitumor effects of these inhibitors.27 BRAF-V600E 

CRC is not sensitive to monotherapy with RAF inhibitors, 

and the ERK rebound after inhibition by RAF inhibitors 

is much greater than that observed in melanoma.28 Based 

on the mechanisms described earlier, several studies have 

reported that a combination of MEK and BRAF suppression 

reduces the rebound and is more effective than BRAF inhibi-

tion alone.29,30 Therefore, combinatorial strategies are being 

evaluated in clinical trials and might improve the response 

in BRAFm CRC (Figure 3B).

BRAFm as a prognostic factor in clinical 
studies of treatment of mCRC
Because BRAFm had been detected in mCRC samples, 

studies have suggested that BRAFm is a strong negative 

prognostic factor in mCRC. BRAFm is more commonly 

seen in subjects of an older age at diagnosis and in females, 

in terms of epidemiological characteristics.31 Regarding 

pathological characteristics, BRAFm is associated with larger 

tumor size, microsatellite instability (MSI), and mucinous 

histology, as well as poor differentiation, and BRAFm is 

more often detected in proximal colon cancers.32,33 BRAFm 

mCRCs are sensitive to none of the existing chemotherapies, 

and patients with stage II and III colon cancer accompanied 

by BRAF-V600E exhibit worse prognoses regardless of 

stage or therapy.34 In addition, there is a correlation between 

BRAF-V600E mutation in microsatellite-stable (MSS) stages 

II–IV colon cancer, while the prognosis of MSI cancers is 

not affected by the aforementioned mutation.35 BRAFm is 

commonly correlated with MSI cancers (regarded as a good 

 prognostic factor at the early stage). The studies reporting 

BRAFm as a negative prognostic indicator in MSI included 

up to 15% of mCRC subjects, whereas research demonstrat-

ing no effect in the MSI subset included exclusively early-

stage CRC.36,37 The pooled analysis of three large randomized 

trials (COIN, PICCOLO, and FOCUS)38 enrolled 231 mCRC 

subjects with BRAFm. The results demonstrated lower over-

all survival (OS) but strikingly similar progression-free sur-

vival (PFS) and disease control rate in the BRAFm population 

compared to that in the BRAF WT population. Therefore, it is 

gradually accepted that BRAF is a potential target to improve 

prognosis in the treatment of BRAFm mCRC.38

Development of RAF small-
molecule inhibitors and application 
in CRC
The first-generation RAF inhibitors
When RAF was first introduced as a target for cancer treat-

ment, before the discovery of BRAFm, the first-generation 

inhibitors of RAF were small-molecule ATP-competitive 

inhibitors, which were explored to target CRAF in cancer.
39

 

ZM336372 was screened as the first compound-suppressing 

BRAF, as well as CRAF, in vitro, and the feedback loop for 

RAF appeared to suppress its own activation.
39 Sorafenib 

(Nexavar®, BAY43-9006) is the only first-generation RAF 

inhibitor that has gained approval from the US FDA; how-

ever, sorafenib exhibits weak antitumor activity in cells with 

BRAF-V600E and its clinical efficacy in the abovementioned 

cancers with WT BRAF might be attributed to its multiki-

nase profile. No PFS benefit was detected from the addition 

of sorafenib to first-line mFOLFOX6 for mCRC in the 

RESPECT trial.40 Additionally, the combination of sorafenib 

and irinotecan41 or cetuximab42 had been evaluated in a trial 

for KRAS-mutated CRC; however, low or no objective 

responses were observed. Other first-generation RAF inhibi-

tors, such as SB-590885,43 GDC-0879,44 GW5074,45 and 

L779450,46 were not applied in clinical practice (Figure 4).

The second-generation RAF inhibitors
After BRAFm was detected in 2002, and in consideration 

of BRAF (V600E) as the most prevalent oncogenic protein 

kinase mutation at present, multiple studies focus on evalu-

ating second-generation compounds to selectively inhibit 

BRAF-V600E. PLX4720 was the first selective BRAF 

(V600E) inhibitor identified in 2008,47 and PLX4032 (vemu-

rafenib) was developed by Plexxikon via a structure-guided 

discovery approach.48 As a αC-OUT/DFG-IN inhibitor, 

vemurafenib exhibited significantly prolonged OS and PFS in 
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melanoma subjects with BRAF-V600E and was subsequently 

approved by US Food and Drug Administration (FDA) in 

2011.49 Dabrafenib, another selective inhibitor for BRAFm,50 

gained approval from the FDA in 2013 for treating BRAF 

(V600)-mutant metastatic melanoma.51 In 2015, the selec-

tive inhibitor for BRAFm was applied for treating BRAFm 

CRC. Vemurafenib monotherapy was insufficiently active in 

subjects with BRAF-V600-mutant CRC,52 while an antitu-

mor effect was observed upon treatment with an anti-EGFR 

antibody (cetuximab) and vemurafenib.53 A combination of 

dabrafenib and trametinib, a selective MEK inhibitor, yielded 

a partial response (PR) or an improved response in 12% 

patients.54 Preliminary results suggested that the concurrent 

administration of selective BRAF (V600E) inhibitors as part 

of combinatorial therapeutic strategies may be required for 

meaningful clinical benefit.

Encorafenib, a second-generation RAF inhibitor, exhibits 

a pharmacologic profile that is distinct from that of other 

clinically active BRAF inhibitors.55 Preclinical evidence sug-

gests that concomitant BRAF and EGFR inhibition triggers 

a continuous suppression of the MAPK pathway, as well as 

suppresses tumor growth in BRAF-V600E CRC models. 

Dual (encorafenib plus cetuximab) and triple (encorafenib 

plus cetuximab and alpelisib) combination treatments are 

tolerable and exhibit promising clinical efficacy in BRAFm 

mCRC patients.56 In addition, encorafenib shows longer resi-

dence time compared to vemurafenib or dabrafenib, which 

may prolong target inhibition and lead to positive effect.56 

Phases I–IV clinical trials are ongoing to evaluate combinato-

rial therapeutic strategies for BRAF-V600E mCRC, which 

may promote further treatment with RAF inhibitors in CRC. 

However, RAF dimerization limits the response of second-

generation RAF inhibitors in the treatment of BRAFm CRC.

The third-generation RAF inhibitors
Based on the discovery of RAF dimerization and the distinct 

allosteric mechanisms of RAF, third-generation RAF inhibi-

tors are under development in current studies.26 One type of 

third-generation RAF inhibitor focuses on compounds to 

find effective and equipotent inhibitors of dimeric forms, as 

well as monomeric forms, of RAF and is anticipated to battle 

resistance resulting from RAF dimerization. The other type of 

third-generation RAF inhibitor uses “paradox breakers” by not 

inducing RAF paradoxical activation (referred to as pan-RAF 

inhibitors) and is derived from αC-OUT RAF inhibitors with 

diverse terminal sulfonamide, as well as sulfamide, substitu-

tions.57 αC-OUT RAF inhibitors are anticipated to maintain 

broad therapeutic profiles and overcome on-target toxicities 

attributed to paradoxical ERK activation in nontumor cells.

Several third-generation RAF inhibitors have exhibited 

breakthrough effects in preclinical studies. The 7-cyano 

derivative 8B (TAK632) and MLN2480 (TAK580) are pan-

RAF inhibitors whose binding patterns with BRAF were 

verified through co-crystal structures. Crystallographic data 

of TAK632 bound to BRAF show similar affinity for both 

protomers in RAF dimers based on the type II conformation.58 

TAK632 persistently binds to both protomers of RAF dimers, 

consequently suppressing the kinase activity of the RAF 

dimer, and presents equipotent suppression of dimeric RAF 

and monomeric RAF in cells. TAK632 is anticipated to be 

Figure 4 Summary of the chronological development and development phase of the three generations of RAF inhibitors.

First generation Second generation Third generation
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effective in vemurafenib-resistant BRAF-V600E CRC cells.59 

TAK580, a type II RAF inhibitor that serves as an equipotent 

antagonist of BRAF-V600E, demonstrates therapeutic effects 

in BRAF-mutant pediatric astrocytomas.60 LY3009120 (Eli 

Lilly and Company, Indianapolis, IN, USA), another pan-RAF 

inhibitor with minimal paradoxical activation, is currently 

being assessed in Phase I clinical trials. LY3009120 shows 

preclinical activity as a pan-RAF inhibitor for the BRAFm 

and KRAS-mutant CRC population.61 Moreover, LY3009120 

represents a potential therapeutic choice for subjects burdened 

with malignancies with BRAF deletions or other BRAFms 

where BRAF acts as a dimer.62 LSN3074753, an analog of 

LY3009120 and a pan-RAF inhibitor, was combined with 

cetuximab in BRAF-CRC patient-derived xenograft (PDX) 

models, which suggested a synergistic antitumor activity.63 

BAL3833, a pan RAF/SRC kinase inhibitor, blocks BRAF 

and CRAF and inhibits the SRC kinase family and is currently 

being explored as a daily oral administration in a Phase I dose-

escalation clinical trial in adult subjects harboring advanced 

solid tumors.64 BGB659, a type II RAF inhibitor, functions 

as an ATP competitive inhibitor, binds to RAF dimers, and 

sufficiently suppresses tumor growth triggered by all RAF 

mutants in mice.25 In addition, BGB283, a relevant compound 

that functioned as a dual RAF and EGFR inhibitor in a Phase 

I clinical trial, has been shown to inhibit EGFR reactivation 

in BRAF-V600E CRC.25 Because drug resistance is gener-

ally modulated by pathway reactivation via RTK/SRC-family 

kinase (SFK) signaling or mutant NRAS, CCT196969 and 

CCT241161 were discovered as dual pan-RAF and SRC 

kinase inhibitors. Additionally, inhibitory effects on RAS-

mutant melanomas, the CRC and PDX models of melanomas, 

were shown by treatment with CCT196969 and CCT241161.65 

LXH254, an orally administered inhibitor of all members of 

the serine/threonine protein kinase RAF family, is undergo-

ing a Phase I trial by Novartis in subjects harboring advanced 

solid tumors. Finally, RAF709, a kinase-selective and cellular 

potent inhibitor, was soluble, kinase selective, and  efficacious 

in a KRAS-mutant xenograft model.66 To completely inhibit 

and suppress paradoxical activation in cancer cells with 

mutant RAS, it is critical for RAF inhibitors to exhibit a valid 

inhibitory efficacy against RAF isoforms. INU152 suppresses 

all RAF isoforms, as well as MAPK pathways, in BRAFm 

cells and exhibits minimal paradoxical pathway activation in 

melanoma cells with mutant RAS (Figure 4).67

The other type of third-generation RAF inhibitors showed 

“paradox breakers” without inducing RAF paradoxical acti-

vation to reduce on-target toxicities of second-site cancers 

attributed to paradoxical ERK activation in normal cells. 

PLX7904 and PLX8394 were initially reported as “paradox 

breakers” that had no effect on MAPK pathway activation 

when suppressing mutant BRAF cells57 and PLX8394 also 

exhibited precise suppression of BRAF-V600 mutation 

without paradoxically enhancing the MAPK pathway in 

CRC.68 Although Phases I and II trials of PLX8394 were 

ongoing for BRAFm tumors and unresectable solid tumors, 

acquired PLX8394-resistant cells eventually occurred in 

melanoma, as with other targeted therapies; the potential 

mechanism may include not only the enhancement of AKT 

activity and upregulation of platelet-derived growth factor 

receptors (PDGFRs) but also other drivers of resistance in 

these cells.69 Finally, BI 882370 is a highly selective and 

effective RAF inhibitor that acts via binding to the DFG-OUT 

(inactive) conformation of BRAF kinase; it has been proved 

to be effective via oral administration in numerous mouse 

models of BRAFm CRC, as well as in melanomas. Despite 

tumor regression induced by BI 882370 in tumor-bearing 

mice, drug resistance gradually occurred within 3 weeks. 

A combination of BI 882370 and trametinib led to a higher 

degree of tumor regression, and no resistance was detected 

over a 5-week second-line therapy.70

Other inhibitors, such as HM95573 (Hanmi Pharmaceuti-

cal, South Korea; Genentech, USA) and CEP32496 (RXDX-

105; Ambit Biosciences/Ignyta, USA), are also in clinical trials 

for solid cancers bearing mutant NRAS, KRAS, or BRAF genes; 

however, these inhibitors cannot be classified due to the lack 

of structural data.71 These two inhibitors are under assessment 

in Phase I clinical studies for solid tumors and advanced or 

metastatic tumors. The development of RAF inhibitors expands 

the therapeutic window and reduces the on-target toxicities and 

resistance due to RAF dimerization. However, it is virtually 

impossible to demonstrate single-agent clinical activity in 

BRAF-mutant CRC patients and combinatorial approaches are 

being developed to maximize antitumor efficacy and minimize 

the development of drug resistance.72

The strategies of RAF inhibitors in 
BRAFm CRC
According to the current understanding of BRAFm CRC, the 

mechanism underlying the feedback reactivation of MAPK 

signaling and other relevant mechanisms were discovered to 

be involved in the resistance to BRAF inhibition in BRAFm 

CRC. We summarize the results of current combinatorial 

therapeutic strategies utilizing RAF inhibitors (Table 1) and 

future combinatorial therapeutic strategies in Figure 5.
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Doublet combinatorial therapeutic 
strategies
Despite successful outcomes of BRAF inhibitors in BRAFm 

melanoma, there have been disappointing results showing that 

monotherapy with an RAF inhibitor did not demonstrate any 

valuable clinical efficacy in CRC patients harboring BRAF-

V600E, with the response rate (RR) ranging from 0 to 5%.52,53,73 

However, a low response was observed when combined with 

an EGFR inhibitor (cetuximab) in BRAF-V600-mutated 

CRC.53 Therefore, combinatorial strategies are currently being 

evaluated for BRAF-V600-mutated CRC. BRAF with EGFR 

inhibition is one of the combinatorial therapeutic strategies. 

Additionally, vemurafenib and panitumumab were evaluated 

for BRAF-V600E-mutant CRC, aiming to reduce rebound 

in ERK signaling; the study revealed less cutaneous toxicity 

and modest clinical efficacy in highly aggressive and chemo-

resistant subgroups of CRC.15 A full dose of dabrafenib and 

panitumumab was associated with significant dermatologic 

Table 1 The efficacy and toxicities of combinatorial therapeutic strategies of RAF inhibitors in BRAFm CRC patients

Strategies Drugs N BRAF-
V600E  
(%)

Efficacy  Toxicities (%)

ORR 
(%)

mPFS (months) 
(95% CI)

mOS (months) 
(95% CI)

Fatigue Diarrhea Vomiting/ 
nausea

Rash Lipase 
increase

Dry 
skin

Dermatitis 
acneiform

Abdominal 
pain

Arthralgia

Doublet
BRAF + EGFR Cetuximab + vemurafenib53 27 89 4 3.7 (1.8–5.1) 7.1 (4.4–NR) 52 44 26 74 22 – – – 44

Vemurafenib + panitumumab15 15 100 13 3.2 (1.6–5.3) 7.6 (2.1–NR) 34 7 14 53 – 27 – 7 26

Dabrafenib + panitumumab76 20 100 10 3.5 (NA) 13.2 (NA) 50 45 50 60 – 40 60 – –

Encorafenib + cetuximab (Phase I)56 26 96 19 3.7 (2.8–12) NA 50 19 46 19 – 19 11 31 4

Encorafenib + cetuximab (Phase II)75 50 NA 22 4.2 (3.4–5.4) NR 50 21 46 17 18 12 – 42 –

BRAF + MEK Dabrafenib + trametinib54 43 100 12 3.5 (3.4–4) NA 53 35 63 – – – – – –
Triplet
BRAF + MEK + EGFR Dabrafenib + trametinib + panitumumab76 91 100 21 4.2 (4.1–5.6) 9.1 (7.6–20) 49 65 56 36 – 54 59 – –

BRAF + MEK + PI3K Encorafenib + cetuximab + alpelisib (Phase I)56 28 96 18 4.2 (4.1–5.4) NA 43 54 50 36 – 32 29 25 –

Encorafenib + cetuximab + alpelisib (Phase II)75 52 NA 27 5.4 (4.1–7.2) 15.2 (NA) 46 54 56 27 8 20 – 40 –

BRAF + EGFR + irinotecan Vemurafenib + cetuximab + irinotecan (Phase I)80 19 100 35 7.7 (3.1–NR) NA 89 84 79 74 – – – – 42

Vemurafenib + cetuximab + irinotecan (Phase II)81 54 100 16 4.4 (3.6–5.7) NA 15a 22a – – – – – – –

Note: aGrade 3/4 adverse events.
Abbreviations: BRAFm, BRAF mutation; CI, confidence interval; CRC, colorectal cancer; mPFS, median progression-free survival; mOS, median overall survival;  
NA, not available; NR, not reached; ORR, objective response rate.

Figure 5 A flowchart of current and future combination treatment strategies for BRAF-mutant CRC.
Abbreviation: CRC, colorectal cancer.
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toxicity, and the RR was only 10% in lower dose cohorts.74 

Encorafenib, a selective RAF kinase inhibitor, combined with 

cetuximab demonstrated promising clinical efficacy and toler-

ability in mCRC patients with BRAFm; the overall RR was 

19%, the median duration of response was 46 weeks in these 

subjects, and the overall safety profile was acceptable.56 A 

Phase II trial of encorafenib and cetuximab in mCRC revealed 

a 22% overall RR and 58% grade 3/4 adverse events.75

BRAF and MEK inhibitions represent another com-

binatorial therapeutic strategy. In 43 patients harboring 

 BRAF-V600-mutant mCRC who received dabrafenib (150 mg 

twice daily) and trametinib (2 mg daily), the RR was 12% 

(consisting of one complete response [CR] and four PR), 24 

(56%) patients achieved stable disease (SD), and 10 (23%) 

patients maintained the therapeutic regimens for >6 months. 

The MAPK pathway was suppressed in all assessed patients 

but was far from the impressive results in melanoma.54 The 

most common toxicities included pyrexia and diarrhea, as 

well as in patients undergoing combination therapy. Therefore, 

the MAPK signaling is confirmed to be a therapeutic target 

in BRAFm mCRC and it is potentially effective to target this 

pathway in clinical practice. Because of the suboptimal effects 

of doublet combinatorial therapies, more effective therapeutic 

strategies that inhibit the MAPK signaling pathway are worthy 

of further research in BRAFm CRC patients.

Triplet combinatorial therapeutic 
strategies
Due to EGFR overactivation induced by BRAF inhibition, 

targeting BRAF, MEK, and EGFR were the first triplet 

combinatorial therapeutic strategies against BRAFm mCRC. 

Dabrafenib (D), trametinib (T), and panitumumab (P) were 

combined to be used in 35 BRAFm mCRC patients. Of them, 

24 patients were administered with the full dose (P 6 mg/kg 

every 2 weeks, D 150 mg bid, and T 2 mg od). The confirmed 

RR was 26%, including one CR, suggesting encouraging 

clinical efficacy with acceptable tolerability for the triplet 

BRAF + MEK + EGFR in BRAFm mCRC. A later trial 

enrolling 83 BRAFm mCRC patients who received DTP 

treatment showed that the verified (CR)/PR and SD were 18 

and 67%, as well as exhibiting acceptable tolerability and 

activity in BRAFm mCRC.76

Moreover, activation of the PI3K/AKT pathway has been 

identified as a mechanism of resistance to BRAF inhibitors 

in BRAFm CRC cell lines;77 therefore, targeting BRAF 

+ MEK + PI3K has been suggested to improve outcomes 

in patients with BRAFm mCRC (Figure 3B). To this end, 

encorafenib and cetuximab with a PI3K inhibitor (alpelisib) 

were compared with doublet combinatorial cetuximab and 

encorafenib. The confirmed overall RR of BRAF + MEK + 

PI3K was 17.9%, while that of BRAF + MEK was 19.2%, 

demonstrating that dual and triple combination treatments 

were tolerable and provided promising clinical efficacy in 

the difficult-to-treat patients with BRAFm mCRC.56 In a 

Phase II trial, 52 patients were enrolled in the triple therapy 

(encorafenib with cetuximab and alpelisib) and the planned 

interim analysis showed a median PFS of 5.4 months (primary 

endpoint). There was no statistical significance between the 

two therapeutic strategies. The overall RR of the doublet 

therapy was 27% (16–41%). The toxicity appeared to rise in 

Table 1 The efficacy and toxicities of combinatorial therapeutic strategies of RAF inhibitors in BRAFm CRC patients

Strategies Drugs N BRAF-
V600E  
(%)

Efficacy  Toxicities (%)

ORR 
(%)

mPFS (months) 
(95% CI)

mOS (months) 
(95% CI)

Fatigue Diarrhea Vomiting/ 
nausea

Rash Lipase 
increase

Dry 
skin

Dermatitis 
acneiform

Abdominal 
pain

Arthralgia

Doublet
BRAF + EGFR Cetuximab + vemurafenib53 27 89 4 3.7 (1.8–5.1) 7.1 (4.4–NR) 52 44 26 74 22 – – – 44

Vemurafenib + panitumumab15 15 100 13 3.2 (1.6–5.3) 7.6 (2.1–NR) 34 7 14 53 – 27 – 7 26

Dabrafenib + panitumumab76 20 100 10 3.5 (NA) 13.2 (NA) 50 45 50 60 – 40 60 – –

Encorafenib + cetuximab (Phase I)56 26 96 19 3.7 (2.8–12) NA 50 19 46 19 – 19 11 31 4

Encorafenib + cetuximab (Phase II)75 50 NA 22 4.2 (3.4–5.4) NR 50 21 46 17 18 12 – 42 –

BRAF + MEK Dabrafenib + trametinib54 43 100 12 3.5 (3.4–4) NA 53 35 63 – – – – – –
Triplet
BRAF + MEK + EGFR Dabrafenib + trametinib + panitumumab76 91 100 21 4.2 (4.1–5.6) 9.1 (7.6–20) 49 65 56 36 – 54 59 – –

BRAF + MEK + PI3K Encorafenib + cetuximab + alpelisib (Phase I)56 28 96 18 4.2 (4.1–5.4) NA 43 54 50 36 – 32 29 25 –

Encorafenib + cetuximab + alpelisib (Phase II)75 52 NA 27 5.4 (4.1–7.2) 15.2 (NA) 46 54 56 27 8 20 – 40 –

BRAF + EGFR + irinotecan Vemurafenib + cetuximab + irinotecan (Phase I)80 19 100 35 7.7 (3.1–NR) NA 89 84 79 74 – – – – 42

Vemurafenib + cetuximab + irinotecan (Phase II)81 54 100 16 4.4 (3.6–5.7) NA 15a 22a – – – – – – –

Note: aGrade 3/4 adverse events.
Abbreviations: BRAFm, BRAF mutation; CI, confidence interval; CRC, colorectal cancer; mPFS, median progression-free survival; mOS, median overall survival;  
NA, not available; NR, not reached; ORR, objective response rate.
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the triple combination (79 vs 58% of adverse events).75 There-

fore, the addition of alpelisib did not appear to improve RRs 

as predicted from preclinical studies, indicating that PI3K 

may be limited in driving associated resistant mechanisms.

A combination of EGFR suppression and vemurafenib, a 

BRAF inhibitor, leads to synergistic cytotoxicity. A combined 

therapy of irinotecan and cetuximab has gained approval for 

mCRC subjects with WT RAS.78 PDX models from BRAF-

V600E CRC indicated improved RRs, as well as longer 

survival, in animals receiving vemurafenib, irinotecan, and 

cetuximab than in those receiving irinotecan and cetuximab 

or vemurafenib and cetuximab.79 In addition, six of the 17 

(35%) assessed patients who were treated with vemurafenib 

in combination with irinotecan and cetuximab acquired a 

radiographic response, according to the Response Evaluation 

Criteria.80 In a Phase II randomized trial of irinotecan and 

cetuximab with or without vemurafenib in BRAF-V600E 

mCRC patients, the RR was 16% compared with 4% and 

the disease control rate was 67% compared with 22%. The 

results demonstrate the clinical benefits of the triplet BRAF + 

EGFR + irinotecan in BRAF-V600E mCRC and support this 

strategy as a potential new treatment option in this molecu-

lar subset.81 The efficacy and major toxicities of published 

clinical trials, including doublet and triplet combinatorial 

therapeutic strategies, are summarized in Table 1.

Future perspectives
In the last 5 years, BRAFm CRC treatment has exhibited 

breakthrough progress, with increasing novel options mov-

ing directly from the bench to the bedside. Novel adaptive 

signaling mechanisms underlying resistance to BRAF 

inhibition in BRAFm CRC were discovered, such as the 

observation that the Wnt/β-catenin pathway82 and CDK4/683 

were co-regulated when using a BRAF inhibitor (Figure 3B); 

additionally, other strategies combining a BRAF inhibitor 

(LGX818) with a Wnt-pathway inhibitor (WNT974) or a 

CDK4/6 inhibitor (LEE011) were in Phase I or II trials. 

Additionally, various MEK mutations were identified that 

diminish sensitivity to both single-agent RAF inhibitors and 

combined BRAF and MEK inhibition.84 Moreover, BCL-2 

antiapoptotic complexes were overexpressed in some cases 

of BRAFm CRC.85 BCL-2 inhibitors such as ABT-737 and 

ABT-263 had shown synergistic effects when combined with 

MEK, MCL1, or mTOR inhibitors in BRAFm CRC.86–88 

However, the effect of combined use of BRAF and BCL-2 

inhibitors needs further evaluation in clinical trials. An ongo-

ing study has combined BRAF, EGFR, and BCL-2 inhibitors 

for solid tumors including BRAFm CRC (NCT01989585). 

Importantly, identifying the novel underlying mechanism and 

regulation of the adaptive response to RAF inhibitors would 

be useful to optimize combinatorial therapeutic strategies, as 

well as to enhance the RR of BRAFm CRC treatment. Based 

on the new underlying mechanism, new and more effective 

inhibitors can also be designed for co-targeting RAF and 

other adaptive response pathway targets.

The BRAF dimerization is still an obstacle for resistance 

to RAF inhibitors in CRC, and there is a pressing need to 

identify structural and biochemical regulations of BRAF 

dimerization. Although third-generation RAF inhibitors are 

more effective for RAF dimers, their selectivity for WT or 

mutant BRAF dimer is not superlative. To prevent negative 

allostery effect, further research will be conducted on allo-

steric inhibitors that effectively suppress the WT or mutant 

BRAF dimer and/or BRAF monomer, while not enhancing 

the RAF priming.20 In addition, the structure of the BRAF–

CRAF heterodimer in RAF oncogenic signaling is crucial 

for the development of strategies that block the formation 

of homodimers and heterodimers of BRAF–CRAF.89 More-

over, the interplay of the kinase domain and the N-terminal 

regulatory domain in either the inactive conformation or the 

active conformation is complicated. Other than the V600 

mutation, non-V600 BRAFms have been reported in ~2.2% 

of mCRC subjects and these mutations exhibit a distinct 

clinical subtype of CRC, as well as excellent prognosis.90 

Despite a previous description of >1000 unique BRAFms in 

patients with diverse malignant cancers,13 while non-V600 

BRAFms, as naturally occurring models of BRAF signaling 

regulation, are likely to evade the paradoxical ERK reactiva-

tion that inevitably occurs with exogenous BRAF inhibitors, 

non-V600 BRAFms with damaged kinase activity are still 

more capable of phosphorylating ERK than WT BRAF.91 

Therefore, a better understanding of the structures of non-

V600 BRAFms would provide a novel insight to develop 

tailored BRAF inhibitors.

For the application of BRAF inhibitors in CRC therapy, 

although the doublet and triplet combinatorial therapeutic strat-

egies have made remarkable progress, only second-generation 

RAF inhibitors have been reported on the market, including 

dabrafenib, encorafenib, and vemurafenib. These inhibitors 

exhibit no or very low effects as monotherapy for BRAF-

V600E mt-CRC; third-generation RAF inhibitors should pass 

the clinical trials and gain market approval in the future. More 

novel mechanisms for CRC response will be discovered, and 

more therapeutic strategic trials can be designed based on 

third-generation RAF inhibitors. In addition, BRAFm CRC 

is associated with MSI-H and programmed death-1 (PD-1) 
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inhibition has been shown to have a significant benefit and has 

been approved for treating MSI tumors, including mCRC.92 

Immune checkpoint inhibition should be a combination regi-

men, which may be a logical next step in the development of 

BRAFm/MSI-H CRC combinatorial therapeutic strategies. 

Finally, current clinical trial data have showed that anticancer 

drugs exhibit variable efficacy within patient populations 

based on the heterogeneity.93 Therefore, optimizing drug 

independence represents a novel orientation for BRAFm 

CRC treatment and combination strategies should be based 

on patient heterogeneity and optimizing drug independence. 

Accurate biomarkers that aim to predict the optimization of 

drug response and disease progression will make it possible to 

use fewer drugs for precision combination therapy.

Conclusion
The oncogene BRAF is a recognized therapeutic target in 

CRC. The development of small-molecule inhibitors of RAF 

and the novel strategy for drug combinations have prolonged 

the survival of CRC subjects harboring BRAFm. However, 

the effectiveness is limited by resistance attributed to BRAF-

V600 mutations and there are multiple unclarified underlying 

mechanisms of resistance. We have good understanding of 

the mechanisms of RAF kinases in BRAFm CRC, includ-

ing the MAPK feedback reactivation of resistance to RAF 

inhibitors and the development of three generations of RAF 

inhibitors and different therapeutic strategies of RAF inhibi-

tors in BRAF-V600E mCRC. In the future, more effective 

RAF inhibitor-based therapeutic strategies will progress and 

improve survival in BRAFm CRC patients.
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