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Abstract: Vasculogenic mimicry (VM) describes the process utilized by highly aggressive 

cancer cells to generate vascular-like structures without the presence of endothelial cells. VM 

has been vividly described in various tumors and participates in cancer progression dissemina-

tion and metastasis. Diverse molecular mechanisms and signaling pathways are involved in 

VM formation. Furthermore, the patterning characteristics of VM, detected with molecular 

imaging, are being investigated for use as a tool to aid clinical practice. This review explores 

the most recent studies investigating the role of VM in tumor induction. Indeed, the recognition 

of these advances will increasingly affect the development of novel therapeutic target strategies 

for VM in human cancer.

Keywords: vasculogenic mimicry, mechanisms, molecular imaging, clinical significance, 

target therapy

Introduction
Blood supply contributes to cancer progression, recurrence, and metastasis. With 

vascular channel structures, nutrients such as glucose could be supplied to tumor tis-

sues; meanwhile, metabolic wastes are evacuated. Previous research has shown that 

angiogenesis is not an exclusive method to nourish tumor tissues. It has been suggested 

that cancer stem cells transdifferentiate into endothelial-like cells that support the 

formation of the extracellular matrix (ECM), eventually inducing tumor-associated 

neovascularization – this process is called vascular mimicry (VM).1,2 VM represents 

a new channel that can mimic the embryonic vascular network pattern and provide 

sufficient blood supply to tumor tissues.3 VM has been depicted in numerous types 

of malignant tumors, such as glioblastoma, astrocytoma, non-functioning pituitary 

adenomas, head and neck cancer, lung cancer, breast cancer, esophageal carcinoma, 

gastric cancer, hepatocellular cancer, colorectal cancer, ovarian carcinoma, prostate 

cancer, gallbladder cancer, Ewing sarcoma, and osteosarcoma.2,4–11

Over the last few decades, several potential mechanisms of VM formation have 

been explored, such as epithelial–mesenchymal transition (EMT) and cancer stem cells 

(CSCs).12 The contribution of several protein factors, including epithelial cell kinase 

(ephrin type-A receptor 2 [EphA2]), focal adhesion kinase (FAK), hypoxia inducible fac-

tor 1-α (HIF-α), integrins laminin 5 (Ln-5) γ2 chain, matrix metalloproteinase (MMPs), 

phosphoinositide 3-kinase (PI3K), and vascular endothelial cadherin (VE-Cad), to VM 

formation have been investigated.3,13–16 Despite remarkable advances in identifying VM, 

the key explicit mechanisms of VM are not well characterized, and fully elucidating these 

Correspondence: Hong Ge
Department of Radiation Oncology, The 
Affiliated Cancer Hospital of Zhengzhou 
University, No. 127 Dongming Road, 
Zhengzhou 450008, Henan Province, 
People’s Republic of China
Tel +86 371 6558 7765
Fax +86 371 6558 7713
email gehong616@126.com

Journal name: Cancer Management and Research
Article Designation: Review
Year: 2018
Volume: 10
Running head verso: Ge and Luo
Running head recto: Advances of vasculogenic mimicry
DOI: http://dx.doi.org/10.2147/CMAR.S164675

C
an

ce
r 

M
an

ag
em

en
t a

nd
 R

es
ea

rc
h 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.dovepress.com/permissions.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
https://www.facebook.com/DoveMedicalPress/
https://www.linkedin.com/company/dove-medical-press
https://twitter.com/dovepress
https://www.youtube.com/user/dovepress


Cancer Management and Research 2018:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2430

Ge and Luo

mechanisms are of great importance. Lately, advancements in 

molecular imaging have facilitated the detection, diagnosis, 

and evaluation of cancer. Qualitative and quantitative inves-

tigations on the biological procedures of tumor tissue at the 

cellular and molecular level can be achieved.

Accordingly, significant features of VM in highly aggres-

sive malignant tumors have been explored widely by various 

invasive or noninvasive molecular imaging techniques.17 

Furthermore, VM formation is associated with unfavor-

able outcomes of malignant tumor.18 Currently, new drugs 

and therapeutic strategies targeting VM in cancer are still 

under development. This review focuses on the advances of 

concepts, mechanisms, molecular imaging techniques, and 

targeted therapy in VM that exist at present.

Conceptual progress of vM
Until relatively recently, angiogenesis was considered the sole 

method of tumor vascularization. Common anti-angiogenesis 

drugs primarily target endothelial cells, through inducing 

endothelial cell apoptosis and reducing the proliferation 

to “starve” tumors. However, the antitumor effects of 

angiogenesis inhibitors are unsatisfactory. With advances 

in tumor vascularization, other patterns of blood supply 

have been detected. In 1999, Maniotis et al first described 

highly patterned vascular tubes that were formed by highly 

aggressive uveal melanoma cells without the presence of 

endothelial cells lining these vessel-like channels.1 Since 

then, the concept of VM has been solidified as an alterna-

tive vascularization method that nourishes tumor tissues.12,19 

Recently, choriocarcinoma was shown to utilize VM to 

increase nutrient retrieval from the blood. In this tumor type, 

the vessels were surrounded by neoplastic trophoblastic 

cells. In the marginal regions of tumor tissue, trophoblastic 

cells invaded host vessels and formed anastomoses.20 VM 

channels expressed high levels of tissue transglutaminase 

antigen 2 which enables tubular structure formation.21 CSCs 

can differentiate into other kinds of cell lineages. Cancer 

cells in VM express multipotent, stem cell-like phenotypes, 

including tumor and endothelial phenotypes.22 In melanoma 

stroma, both fibrovascular septa and VM are observed; VM is 

distinguished from fibrovascular septa by lamination, thick-

ness, and immunohistochemistry.23

Remarkably, there is indirect evidence suggesting there is 

circulation of plasma through VM patterns in various types 

of cancer. Frenkel et al described blood circulation within 

VM channels with laser scanning confocal angiography in 

a choroidal melanoma.24 In plastic EW7 Ewing sarcoma 

tumors in the athymic Tie2-GFP transgenic mouse model, 

both fluorescent blood vessels and non-fluorescent VM tubes 

could be observed by intravital microscopy; moreover, the 

hemodynamics in the cancer-cell-lined channels could be 

visualized.25 Microstructures of VM by transmission electron 

microscopy illustrated empty spaces in the central region of 

the tubes; there were no internal vacuoles with organelle-poor 

cytoplasm, and desmosomes contributed to the establishment 

of the junction between VM and endothelial-like cells.26

Additionally, other characteristics of VM have been 

recently described. In a heterotopic malignant mesothelioma 

xenograft model in BALB/C node mice, a small number of 

vessels consisting of mouse endothelial cells were observed; 

however, further immunohistochemical (IHC) analysis using 

the human-specific mitochondria antibody MAB1273B 

revealed VM channels containing erythrocytes at the periphery 

of the tumor tissue.27 In multiple myeloma, Nico et al showed 

that mast cells contribute to the formation of VM channels.28 

Co-culture of aggressive melanoma cell lines with mesenchy-

mal stromal cells were shown to acquire endothelial cell-like 

properties, eventually forming VM channels; however, such a 

phenomenon was not detected in poorly aggressive melanoma 

cell lines.29 These data suggest that VM is a novel method for 

providing blood and nutrition to aggressive tumor tissues.

The composition of tumor cells and a basement membrane 

made VM different from the classical concept of angiogenesis. 

To date, VM can be characterized in tumor samples with IHC 

using a positive staining pattern of both CD31 and periodic 

acid–Schiff (PAS) as markers. Two distinctive types of VM 

in aggressive malignant tumors have been identified. Type 1, 

known as the tubular type, is composed of non-endothelial 

cell-lined blood tubes, and cancer cells were found lining 

the surface of the channels.30 Type 2, known as the patterned 

matrix type, comprises a basement membrane rich in fibronec-

tin, collagens, and laminin, where the membrane is surrounded 

by tumor cells instead of endothelial cells.31

Furthermore, VM is used as a means to support tumor 

growth in the early stages of tumorigenesis. Both angio-

genesis and VM are coordinately used in tumor tissues.10 

In the VM–angiogenesis junction, VM serves as part of the 

functional microcirculation; cancer cells within the tumor-

lined vascular channels can easily transfer into endothelial-

lined blood vessels, thereby facilitating tumor invasion and 

metastasis.

Mechanisms of vM activating invasion  
and metastasis
VM plays an essential role in the process of tumor invasion 

and metastasis. After the initiation of VM, a mosaic vessel 
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made of tumor cells and endothelial cells gradually forms. 

Vessels connect and merge with host vessels, and cancer cells 

could obtain oxygen and nutriment via VM – consequently 

inducing cancer growth (Figure 1).32 Moreover, VM con-

tributes to portal vein invasion in hepatocellular carcinoma 

through the expression of several proteins, including Notch1, 

MMP-2, and MMP-9.33 In head and neck squamous cell 

cancer, tumor cells express both VM and endothelial-specific 

markers and respond to vascular endothelial growth factor 

(VEGF) and endostatin. These features can be enhanced 

by transforming growth factor-β1, facilitating the acquisi-

tion of an endothelial cell type in a subpopulation of cells. 

Additionally, tumor cell mobility and invasiveness were 

heightened.34 In non–small cell lung cancer, Dickkopf-1 

significantly induces VM formation and promotes cancer 

cell growth, migration, and metastasis via overexpression of 

EMT- and CSC-associated proteins.35 Maspin has a positive 

correlation with VM; deregulated maspin facilitates tumor 

cell invasion and metastasis in non–small cell lung cancer.36 

In melanoma cells, hypoxia induces the release of mitochon-

drial reactive oxygen species and promotes activation of the 

Met proto-oncogene, thereby enhancing VM formation and 

resulting in tumor cell spread, increased motility, invasion, 

and metastasis.37 In the hypoxic microenvironment, HIF-1α 

induces VM formation via the upregulation of lysyl oxidases, 

such as in hepatocellular cancer, and promotes tumor cell 

metastasis and progression.38 Overexpression of miRNA-124 

represses VM formation via inhibition of MMP-2, MMP-9, 

and VEGF; further analysis indicated that miRNA-124 is 

important in preventing tumor cell migration.39 Witkiewicz 

et al demonstrated that VM resembled lymphatic vessels 

or veins in morphology; moreover, endothelial cells were 

replaced by fibroblasts, thereby facilitating tumor metasta-

sis.40 In esophageal squamous cell carcinoma, researchers 

used RNA silencing, and observed a positive correlation 

between VM channels and N-cadherin expression.41 Genes 

involved in metastatic and invasive behavior could be influ-

enced by the tumor microenvironment. On being exposed 

Magnified cross-section of tumor

Cluster of tumor cells
covered by laminin

Tumor-cell-lined

Melanoma
tumor cells

?

?

Endothelium-lined
vasculature

PAS- and laminin-positive
networks ?

fluid-conducting ECM
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Figure 1 The melanoma fluid-conducting extracellular matrix.
Notes: In mice with aggressive melanoma (blue cells). The endothelium-lined vessels (pink) are closely opposed to the fluid-conducting meshwork formed by tumor cells. Tumor 
cells can remodel the vasculature, which becomes leaky and leads to the extravascular accumulation of erythrocytes and plasma (red). Reprinted by permission from Springer 
Nature,  Nature Reviews Cancer, Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma, Hendrix MJ, Seftor EA, Hess AR, Seftor RE, COPYRIGHT 2003.77 
?, he specific mechanism of VM are still under investigation.
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to a laminin-rich niche, highly invasive uveal melanoma 

cells can form VM channels; however, a downregulation of 

genes including CD44, thrombospondin 1, and cyclin E2 

were observed, thereby reducing melanoma cell invasion.42

Research of vM using molecular imaging
The development of noninvasive imaging is essential for 

cancer detection and diagnosis during the early stages of 

the disease. Molecular imaging provides a better way to 

understand the biologic processes governing VM at a cel-

lular and molecular level in living organisms. This use of 

this technique has become more applicable for cancer in the 

past few decades. VM can develop vascular anastomosis with 

microcirculation in the tumor tissues. Theoretically, contrast-

ing agents can easily enter the VM tube, thereby enabling 

visualization of imaging patterns. This technique brings hope 

to a variety of imaging techniques, especially the molecular 

imaging technology.

Interestingly, evidence of VM has been reported in human 

tumors by using novel molecular imaging technologies. In 

a study that included 18 patients diagnosed with choroidal 

melanomas, patients were injected with indocyanine green 

as a contrasting agent prior to being imaged with a confocal 

scanning laser ophthalmoscope. The results demonstrated 

microvasculature patterns within the tumor; the tubular struc-

tures correlated well with the histopathological appearance 

of VM.43 Frenkel et al conducted indocyanine green laser 

scanning confocal angiography on patients with posterior 

choroidal melanoma. They found that fluid enters VM by 

leakage instead of through endothelial cell-lined vessels; fur-

thermore, fluid accumulated in VM was never characterized 

as a stagnant pool.24 Polylactic acid – a nanoparticle agent 

– is showing promising advantages for targeted ultrasound 

imaging. This nanoparticle could be conjugated to the anti-

human epidermal growth factor receptor 2 (HER2) antibody, 

thereby allowing for HER-positive breast tumor cells to be 

specifically bound.44 In accordance with this finding, imaging 

of VM channels by high-resolution ultrasound using targeted 

nanoparticles may be explored. With the development of 

intravascular macromolecular contrasting agents for mag-

netic resonance imaging (MRI), the diagnosis of VM tubes 

by techniques such as time-course dynamic micro-magnetic 

resonance angiography analysis could be achieved. Shirakawa 

et al used this technology to investigate the hemodynamics of 

VM in a newly established human inflammatory breast cancer 

xenograft in BALA/c nude mice. The results revealed that 

tumor center exhibited a signal that gradually increased in 

intensity, which is consistent with histological features of VM 

in the same area. The group also observed the presence of a 

VM-angiogenesis junction by transmission electron micros-

copy and IHC.45 Similar results were observed in Kobayashi 

et al’s study, and the data also suggested VM is involved in 

tumor tissue perfusion.46 Yamamoto et al described the radio-

logical features of VM in malignant gliomas using the newly 

developed MRI. Anaplastic oligodendroglioma illustrating 

hyperintensity on fluid-attenuated inversion recovery images 

as well as histological diagnosis proved these were VM.17 

Thus, due to remarkable progress made in this endeavor, 

imaging features of VM should be further explored as a tool 

for clinical application.

Significance of VM expression in  
clinical practice
Identification of VM formation is of paramount importance 

to daily clinical practice. Previous studies have attempted 

to measure microvascular density to quantify the degree of 

angiogenesis and its relationship to prognosis; however, the 

results are rather controversial.47,48 Part of the rationale is that 

the tumor microcirculation is lined not only by endothelial 

cells but also with tumor cells; VM contributes to the intratu-

mor heterogeneity in aggressive cancer. Moreover, standard 

VM assessment is based on the quantification of positive PAS 

and negative CD31 staining of vessel-like structures; this is 

different from the commonly used tumoral microvascular 

density assessment. In human gliomas, VM formation is 

highly aggressive and acts as a complementary strategy for 

providing tumor tissues with blood supply in poorly vascular-

ized areas.49 In prostatic cancer, the correlation between VM 

and histologic grading was insignificant, and the correlation 

between VM and perineurial invasion was rather weak. This 

observation may be due to the composition of prostatic tis-

sue, which contains an abundance of smooth muscle fibers, 

as well as the staining methods used.50

VM has been demonstrated as an unfavorable survival 

factor and a marker of poor prognosis in various cancers. In 

colorectal carcinoma, VM was shown to be a strong, inde-

pendent, prognostic factor of survival.7 A meta-analysis by 

Cao et al comprising 15 types of malignant tumors revealed 

that patients with VM-positive cancer showed a less favor-

able 5-year overall survival than patients with VM-negative 

cancer, especially in advanced-stage cancer.18 In patients 

with non–small cell lung cancer, CD133 expression and VM 

formation were significantly high and associated with tumor 

differentiation, lymph node metastasis, clinical stage as well 

as prognosis; therefore, VM could be used as a prognostic 

marker in clinical practice.51 Indeed, VM could also be used 
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as a prognostic marker in ovarian cancer, inflammatory breast 

cancer, and gastric adenocarcinoma.52–54 In hepatocellular 

carcinoma, VM promotes cancer progression after orthotopic 

liver explant.55 Data on laryngeal squamous cell carcinoma 

suggested VM was a poor prognostic factor of disease-spe-

cific and metastasis-free survival; further analysis revealed 

that VM contributed to tumor progression through promot-

ing lymph node metastasis.56 In uveal melanoma samples, 

Chromosome 3 aberrations played an important role in the 

formation of VM networks; identification of Chromosome 

3 with fine needle aspiration could be used in prognostic 

assessment.57 There is a strong correlation between increased 

expression of HER2 and the positive rate of VM in invasive 

breast cancer. Furthermore, VM was associated with a posi-

tive nodal status and advanced clinical stages.58 However, 

other studies suggested different outcomes. Massi et al indi-

cated that, in patients with pT3 and pT4 cutaneous melanoma, 

there is no evidence of VM as a prognostic factor.59

In some biopsy samples of malignant cancer or benign 

diseases, clinical evidence of VM is detected. VM tubes that 

contained red blood cells were found in malignant mesothe-

lioma, cerebral cavernous malformations, and anaplastic 

oligodendroglioma.17,27 In benign nevi, IHC analysis of VM 

was shown in a minority of cases as compared to that of 

melanomas and was associated with unfavorable survival.60 

In a patient diagnosed with multiple probable cerebral cavern-

ous malformations, a slightly enlarged hyperintense region 

on the right frontal lobe persisted after therapy. Postoperative 

histological diagnosis demonstrated an anaplastic oligoden-

droglioma and cerebral cavernous malformations with VM.17 

Therefore, early identification of radiological features of VM 

is essential for clinical decision making.

Blood supply plays an important role in tumor growth 

and metastasis; however, the therapeutic efficiency of drugs 

directed toward endothelial cells is unsatisfactory.61 The dis-

covery of VM in tumor blood supply provided new insights 

in cancer biology. In Merkel cell carcinoma, VM-rich regions 

are illustrated as resistant to conventional chemotherapeutic 

agents.62 VM channels decrease cancer latency and increase 

intratumoral cisplatin delivery but may also reduce drug 

efficacy.8 Therefore, VM may be considered a useful target 

for treating cancer.

Therapeutic targeting of vM
Present treatment strategies such as chemotherapy are inef-

ficient in aggressive cancer. Residual tumor cells may form 

VM channels, thereby providing oxygen and nutrients, 

which support cell proliferation and cancer progression. 

Thus, VM is a promising target for developing novel anti-

cancer therapeutics, and many drugs have been investigated. 

Angiogenesis inhibitors including anginex, TNP-470, and 

endostatin were delivered to both human melanoma cell lines 

and human endothelial cell lines in vitro; marked inhibition 

on the vascular cord and tube formation were observed in 

endothelial cells as compared to melanoma cells. Detailed 

analysis showed higher mRNA and protein levels for two 

putative endostatin receptors – α5 integrin and heparin 

sulfate proteoglycan 2 – in endothelial cells compared to 

melanoma cells.63 The Rho kinase inhibitor fasudil induces 

VM destruction in B 16 melanoma cell xenograft.64 Fasudil 

blocks the RhoA/ROCK signaling pathway and VM forma-

tion is inhibited.11 Nicotinamide can effectively inhibit the 

formation of VM channels as well as destroy preexisting 

channels by downregulating VE-Cad expression. VM for-

mation was suppressed for up to a month after exposure 

to nicotinamide. Although melanoma cell proliferation 

was significantly inhibited, it is worth noting the opposite 

effect of increased invasion capacity of the tumor cells by 

nicotinamide.65 When cultured on an aggressive tumor cell-

preconditioned three-dimensional matrix, VM formation was 

induced in poorly aggressive tumor cells. Chemically modi-

fied tetracycline has been reported to be capable of targeting 

the tumor microenvironment by inhibition of MMP activity. 

Generation of Laminin-5-γ2 (Ln-5γ2) chain promigratory 

fragments is suppressed, thereby blocking its gene expression 

of poorly aggressive melanoma cells; as a consequence, VM 

formation is inhibited.66 The inhibition of VM by verteporfin 

is due to the suppression of MMP-2 and VE-Cad in human 

pancreatic ductal adenocarcinoma cell lines.67 Nanostruc-

tured functional drug-loaded liposomes, modified with an 

HIV peptide lipid-derivative conjugate, containing epirubicin 

and celecoxib, DSPE-PEG2000-PTD
HIV-1

, downregulated 

VM expression via the inhibition of VE-Cad, FAK, EphA2, 

HIF-1α, and MMP-9 in invasive breast cancer xenografts 

in nude mice.68 Paclitaxel-loaded liposomes modified with 

tandem peptides were observed to induce the destruction of 

VM channels in glioma cells.69 Doxycycline downregulated 

the expression of VE-Cad and MMPs and inhibited VM in 

hepatocellular carcinoma.70 In clear-cell renal cell carcinoma, 

the tumor was efficiently targeted by sunitinib – both in vitro 

and in vivo; however, resistant tumor cells emerged with a 

more aggressive phenotype and high level of vascularization 

during maintenance treatment. VM formation, autonomous 

pro-tumoral gene expression, a stroma-rich variant, and a 

favorable tumor microenvironment are the main reasons for 

this change. Second-line therapy with everolimus enhanced 
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the inhibition of sunitinib-resistant tumors by suppressing 

VM channels.71 In a malignant glioma tumor model, the 

bispecific immunotoxin VEGF165-ephrin A1-PE38KDEL 

was delivered by human mesenchymal stem cells. As a result, 

VM formation and tumor growth was effectively inhibited; 

this provided a novel strategy for treatment of malignant 

gliomas.72 In melanoma cells, cilengitide – an inhibitor of αν 

integrins – reduced VM formation by decreasing ECM inva-

sion as well as VEGF-A and MMP-9 secretion.73 Similarly, 

genistein was shown to inhibit VM by downregulation of 

VE-Cad in uveal melanoma cells.74 Thalidomide is efficient 

in inhibiting VM channels and induces tumor cell necrosis 

by regulation of the NF-κB signaling pathway.75 Antioxidants 

such as resveratrol can decrease the level of VEGF and cas-

pase-3 – thus, minimizing capillary formation.76

The effects of antiangiogenic compounds on VM forma-

tion were also assessed. The inhibitory effects of Endostar 

– a recombinant human endostatin – on VM formation of 

melanoma cells (Figure 2) and glioblastoma cells were shown 

to be insignificant.9,77 In an ovarian cancer model, short-term 

bevacizumab treatment demonstrated antitumor effects; how-

ever, it also contributed to cancer progression due to increased 

HIF-1α expression and VM formation.78 Apropos the above, 

angiogenesis inhibitors have failed to prevent progression 

and growth of malignant tumors, which also demonstrates 

that VM formation – as a form of microcirculation – plays 

an important role in tumor progression.

miRNAs are small non-coding RNA molecules, which 

contain approximately 22 nucleotides, that promote post-

transciptional gene silencing.79 Accordingly, miRNAs play 

a crucial role in modulating cancer cell migration, inva-

sion, and tumor angiogenesis. miRNA-9 is a tissue-specific 

miRNA localized in tissues of the central nervous system. 

In glioma cell lines, miRNA-9 inhibits VM formation and 

tumor growth by controlling Stathmin expression.80 A study 

by Wan et al revealed miRNA-124 inhibits VM formation of 

cervical cancer cells by targeting AmotL1 and suppressing 

the EMT process.39 As noted earlier, the VE-Cad complex 

is involved in tumor VM formation. miRNA-27b acts as 

an inhibitor of VM in ovarian cancer cells by suppressing 

VE-Cad expression.81 The full spectrum of mechanisms of 

miRNAs to tumor VM inhibition remains to be elucidated.

Over recent years, traditional Chinese medicines have been 

investigated in treating various cancers. Lycorine hydrochlo-

ride is effective against capillary-like tube formations in a 

melanoma cell line model by hindering VE-Cad expression.82 

Dehydroeffusol was found to significantly inhibit VM forma-

tion by downregulating MMP-2.83 Other drugs, including 

grape-seed proanthocyanidins, isoxanthohumol, ginsenoside 

Rg3, norcantharidin, paris polyphylla, and curcumin have been 

well characterized and possess antitumor effects (Table 1).84–89

Conclusion and future vision
Although initially described in aggressive uveal melanoma, 

VM has led to profound changes in our understanding of 

tumor nourishment in a variety of cancers. The phenomenon 

illustrates that tumor cells can transdifferentiate due to a 

multipotent, CSC-like phenotype and generate ECM-rich, 

negative CD31, and positive PAS vascular networks. These 

channels are distinct microvessels that differ from host ves-

sels and provide adequate blood supply which promotes 

tumor growth. As such, VM plays an essential role in facilitat-

ing tumor invasion and metastasis. Realizing its importance 

in tumorigenesis, researchers have been investigating VM 

with the aid of molecular imaging and, thus far, the results 

have been promising. Furthermore, VM was considered an 

independent, unfavorable, prognostic factor of clinical prac-

tice; VM is associated with aggressive behavior and easily 

metastasizes to distant sites. To date, anti-angiogenic thera-

pies focus primarily on tumor blood vessels that are formed 

by endothelial cells, VM formation is one of the reasons for 

the limited therapeutic effects of existing anticancer drugs; 

although enormous efforts have been made in an attempt 

to eliminate VM formation and some drugs demonstrate a 

promising result, research into treatment strategies to counter 

VM is still ongoing. Much remains to be learned to delineate 

the role of VM in tumor progression on the cellular level and 

to translate these findings into novel therapies that target VM 

in the treatment of cancer.
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