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Abstract: Breast cancer has a high incidence worldwide. The results of substantial studis reveal 

that inflammation plays an important role in the initiation, development, and aggressiveness 

of many malignancies. The use of celecoxib, a novel NSAID, is repetitively associated with 

the reduced risk of the occurrence and progression of a number of types of cancer, particularly 

breast cancer. This observation is also substantiated by various meta-analyses. Clinical trials 

have been implemented on integration treatment of celecoxib and shown encouraging results. 

Celecoxib could be treated as a potential candidate for antitumor agent. There are, nonetheless, 

some unaddressed questions concerning the precise mechanism underlying the anticancer effect 

of celecoxib as well as its activity against different types of cancer. In this review, we discuss 

different mechanisms of anticancer effect of celecoxib as well as preclinical/clinical results 

signifying this beneficial effect.
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Introduction
Breast cancer (BC) is the most frequent cancer in women, the second most common 

cancer worldwide, and the second primary cause of cancer-related deaths.1 One in eight 

women who live to age 85 years will develop BC over the course of their lifetime.2 Previ-

ous studies suggest that inflammation is associated with cancer, and a robust correlation 

exists between the manifestation of inflammation and the progress of precancerous 

lesions at a number of anatomic sites.3 On the other hand, cancer cells might exploit 

components of the inflammatory process to induce angiogenesis, inhibit apoptosis, 

and enhance proliferation, migration, and metastasis,4 such as NF-κB, cytokines or 

cytokine receptors, chemokines or chemokine receptors, fibroblast growth factor or 

receptor (FGF or FGFR), and vascular endothelial growth factor (VEGF). Increasing 

evidence demonstrates the key role of chronic inflammation markers in increased BC 

risk5; for example, a meta-analysis suggested a significant dose–response correlation 

for C-reactive protein (CRP) with BC risk.6 The pro-inflammatory cytokines, such as 

interleukin (IL)-6 and tumor necrosis factor (TNF)-α, induce BC cells to penetrate 

the blood vessels, contributing to metastasis.7

Owing to its significant pro-tumor effects, inflammation has become a promising 

target for cancer prevention and treatment. Among various inflammatory factors, 

cyclooxygenase 2 (COX-2) is the most commonly studied anti-inflammatory/anti-

cancer target.8,9 Unlike COX-1, COX-2 is undetectable in normal breast tissue, but 

in tumor tissue, it overexpresses by 40%,10 and in ductal carcinoma in situ (DCIS) it 
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overexpresses by approximately 80%.11 The overexpression of 

COX-2 has been reported in different tumor cells and neovas-

cular endothelial cells.12 The overexpressed COX-2 converts 

arachidonic acid (AA) into prostaglandin E2 (PGE2),13 which 

promotes BC progression through different mechanisms, for 

instance, suppression of antitumor immunity,14 promotion of 

invasiveness,15 migration,15 stem-like cell (SLC) formation,16 

angiogenesis,17 and lymphangiogenesis.18

Over 20 years ago, NSAIDs were reported to have 

anti-colon cancer effects.19 Abundant epidemiological and 

preclinical/clinical studies demonstrated that celecoxib, a 

specific COX-2 inhibitor, was related to suppression of cancer 

cell proliferation and decrease in cancer incidents. In this 

article, different mechanisms underlying anticancer effect 

of celecoxib as well as preclinical/clinical results signifying 

this beneficial effect are discussed.

Celecoxib and BC
Celecoxib is the international nonproprietary name of 

4-[5-(4-methylphenyl)–3-(trifluoromethyl)-1H-pyrazol-1-yl] 

benzenesulfonamide, a COX-2-selective NSAID. Its oral 

capsule form was initially approved by US Food and Drug 

Administration (FDA) and marketed by Pfizer, Inc. (New 

York, NY, USA) in 1999. As a selective COX-2 inhibitor, 

celecoxib is used as an analgesic, anti-inflammatory, and 

antipyretic drug. Numerous preclinical evidence suggests 

that celecoxib may provide a strong chemopreventive activ-

ity against BC. Celecoxib treatment (500–1,500 mg/kg diet) 

can significantly decrease incidence, multiplicity, and tumor 

volume in several animal models of BC.20,21 In addition, 

metastasis to the lung and brain could also be prevented.22,23 

Besides preclinical studies, clinical trials also showed posi-

tive results. Two case–control studies, including 32324 and 

18,36825 BC cases, respectively, illustrated that a standard 

dose intake of celecoxib (200 mg/day) for more than 12 

months was associated with significant reduced risk of BC. 

However, in these studies, OR was different,25 and this might 

be caused by a longer duration of drug intake in the former 

study (more than 2 years vs more than 1 year).

Mechanisms of celecoxib’s 
antitumor action
In spite of the encouraging efficacy mentioned earlier, the 

mechanisms of celecoxib’s antitumor action still need to be 

explored. COX-2 plays an important role in tumorigenesis 

and development. Thus, celecoxib, as a selective COX-2 

inhibitor, is believed to have several potential antitumor 

mechanisms, including inhibition of proliferation,  induction 

of apoptosis, immunoregulation, regulation of tumor micro-

environment, antiangiogenic effect, and resensitization of 

other antitumor drugs. Meanwhile, COX-2-independent 

pathways also contribute to the antitumor effect of celecoxib.

inhibition of proliferation
Celecoxib represses the proliferation of BC cells in vitro 

and also prevents the incidence of BC chemically induced 

by 7,12-dimethylben anthracene (DMBA) in rats. Thus, 

celecoxib shows an anticancer activity and seems to be 

effective in anticancer treatment.26 Bocca et al27 assessed 

the antiproliferative activity of celecoxib on human BC cells 

with different COX-2 expression levels. Celecoxib treatment 

induces a robust inhibition of cell growth in estrogen receptor 

(ER)α (+) MCF-7 cells, which is accompanied by a decrease 

in expression and activation of aromatase and ERα. The 

related mechanism may involve ERK and Akt inhibition as 

well as induction of PP2A and PTEN. In this cell line, cele-

coxib shows only weak effect on COX-2 level. In contrast, in 

ERα (–) MDA-MB-231 cells, celecoxib induces a striking 

suppression of COX-2, which is associated with a decrease 

in aromatase expression and cell proliferation. These results 

imply that celecoxib may exert antiproliferative activity in 

BC cells through COX-2-dependent or COX-2-independent 

pathways. A study identifying transcriptional changes in 

BC tissues of patients treated with celecoxib suggested 

that short-term COX-2 inhibition by the drug stimulates 

transcriptional programs that facilitate antitumor activity 

in primary BC tissue. The influence on proliferation-related 

genes is reflected by a decrease in Ki-67 (+) cells.28 Basu 

et al29 explored the mechanisms by which celecoxib affects 

tumor growth of two human BC cell lines such as MDA-

MB-231 (highly invasive) and MDA-MB-468 (moderately 

invasive). They demonstrated that the distinct molecular 

mechanisms of celecoxib-induced growth suppression 

depend on the expression level of COX-2 and invasiveness 

in different human BC cell lines. The studies suggest that 

COX-2 plays an important role not only in the cancer cell 

growth but also in activating the angiogenic pathway via 

modulating levels of VEGF. Taken together, these results 

provide a theoretical and experimental basis for the clinical 

anticancer effect of celecoxib.

induction of apoptosis
Apoptosis is an evolutionary conserved programmed cellular 

suicide mechanism that is vital for tissue homeostasis in 

multicellular organisms. It also causes the cytotoxic effects in 

response to standard genotoxic chemotherapy/radiotherapy. 
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Intriguingly, some researchers found that the tumor growth 

inhibition effect of celecoxib was mainly caused by induc-

ing apoptosis30 rather than disturbing cell proliferation.31 

Celecoxib-resistant cell lines with COX-2 overexpression32 

exhibit a reduced level of Bax, a pro-apoptosis protein, and 

increased levels of anti-apoptosis proteins such as Bcl-2 or 

Bcl-xL. COX-2 knockdown by its specific siRNA signifi-

cantly decreases clonogenicity and levels of Bcl-xL and Bcl-2 

in these cells. In MDA-MB-23129,30 and MCF-7 cell lines,33 

celecoxib induces apoptosis by decreasing phosphorylation 

of Akt, then increasing the expression of Bax and activation 

of caspase 3 and caspase 7. Wang et al34 showed that cele-

coxib induces apoptosis of the BC cell line, MDA-MB-231, 

by inhibiting the NF-κB pathway. Another mechanism 

of celecoxib-induced apoptosis in most cellular systems 

involves p53-independent mitochondrial apoptosis pathway, 

which is COX-2 independent and could not be inhibited by 

the overexpression of Bcl-2.35,36

Some studies suggest that the antineoplastic effects of 

celecoxib are attributed to its unspecific inhibitory actions on 

β-catenin signaling,37,38 which is a fundamental component of 

the canonical Wnt pathway. Overactivation of Wnt/β-catenin 

signaling is associated with the progression of different types 

of cancer and promotion of cancer cell growth, survival, and 

malignant phenotype. Furthermore, recent studies suggest 

that Wnt/β-catenin signaling plays an important role in the 

modulation of cancer stem cells.39,40 GSK-3β phosphory-

lates and marks β-catenin for ubiquitination and succeeding 

proteasomal degradation. Binding of Wnt ligands to their 

receptors initiates a signaling cascade that averts GSK-3β 

from tagging β-catenin for degradation, leading to its accu-

mulation, translocation to the nucleus, binding to the T cell 

factor (TCF) family of transcription factors, and activation 

of Wnt target gene expression. Celecoxib treatment induces 

GSK-3β dephosphorylation, contributing to β-catenin 

phosphorylation induced by GSK-3β and suppression of the 

Wnt/β-catenin-dependent gene transcription, for example, 

c-Myc or cyclin D1, COX-2, and VEGF.38,41 It is noteworthy 

that GSK-3β is a direct downstream target of Akt/PKB and 

activated Akt/PKB phosphorylates and consequently inac-

tivates GSK-3β. Hence, celecoxib inhibition of Akt/PKB 

might at least partly be responsible for the reduction in the 

β-catenin levels.

Survivin is an “inhibitor of apoptosis” (IAP) protein 

that also functions as a mitotic regulator essential for cell 

 division.42 It represses apoptosis through hindering the activa-

tion of caspases. Intriguingly, celecoxib treatment downregu-

lates survivin levels of cancer cells in vitro and in vivo.43–47 

The degree of survivin inhibition of celecoxib correlates 

with its efficacy to impede cancer cell growth and to promote 

apoptosis among different types of cancer cells. Since pros-

taglandins elevate survivin expression, the downregulation 

of survivin may be partly attributable to celecoxib-induced 

suppression of COX-2.48 In view of the role played by survivin 

in apoptosis resistance of cancer cells, the inhibitory effects 

of celecoxib on this protein might be particularly relevant to 

its use in anticancer treatment.49,50 Whether the induction of 

apoptosis leads to clinical benefits is still debatable. A study 

showed that celecoxib increased apoptosis and reduced the 

levels of PG and VEGF expression.51 However, this effect 

could not postpone tumor appearance and reduce tumor 

progression and development.

immunoregulation
A thorny problem in the process of treating tumors is a 

repressed cell-mediated immunity, characterized by the 

failure of immune effector cells to induce effective antitumor 

responses. CD4+ or CD8+ T cells were mostly involved in 

local tumor suppression, while natural killer (NK) cells were 

involved in tumor metastasis.52 Immunosuppressive factors, 

produced by the tumor, cause this problem according to 

tolerance. COX-2 plays an important role in BC immune 

escape. PGE2 has a series of adverse effects on the immune 

response to tumors in the body, for example, negatively 

influencing the activity of T/B lymphocytes, NK cells, and 

dendritic cells, reducing TNF-α synthesis and increasing the 

activity of immunosuppressive IL-10.53 These unfavorable 

effects ablate the effectiveness of host defenses in monitor-

ing and eliminating malignant cells, thus resulting in their 

unrestrained proliferation.54 Previous studies demonstrate that 

the reduced expression of COX-2 in BC cells promotes tissue 

infiltration of cytotoxic T lymphocytes (CD8+), implying a 

role of COX-2 in immunosuppression. COX-2 inhibitors 

such as celecoxib regulate antitumor immunity in local and 

metastasis BC individually.55 In addition, the application 

of celecoxib in human BCs prompts an increased number 

of immune cells in the tumor microenvironment.54 A study 

by Gallouet et al56 demonstrated that follicular lymphoma 

stromal cells release great amounts of PGE2. This produc-

tion can be abolished by celecoxib treatment that targets the 

COX-2 isoenzyme associated with PGE2 synthesis. Interest-

ingly, they also found that celecoxib promotes apoptosis in 

primary follicular lymphoma B cells cocultured with stromal 

cells, nonetheless, independently of the PGE2/COX-2 axis.

Substantial studies suggested that celecoxib might 

switch the function of immune cells to a more tumor-killing 
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 phenotype via impeding tumors from releasing prostaglan-

dins and via hindering COX activity in immune effector cells. 

Lang et al57 suggested that cancer cells suppress the physi-

ological function of immune cells and that celecoxib, to a 

certain extent, recovers this function. These results deliver an 

in-depth understanding of the anticancer effect of celecoxib 

and support its prophylactic use in high-risk patients. In a 

study evaluating the influence of celecoxib administration on 

tumor-infiltrating lymphocyte (TIL) subsets (CD3[+]CD4[+]

CD8[+]CD25[+] and T cell receptor [TCR]-zeta-expressing 

cells) and tryptase(+) mast cells in human cervical cancers, 

Ferrandina et al58 provided the first evidence that this drug 

can restore zeta expression by TIL in primary cervical can-

cers. Overall, these results suggest that a positive regulation 

of immune function might serve as a crucial mechanism 

underlying the antitumor effect of celecoxib.

Regulation of tumor microenvironment
During chronic inflammation, pro-inflammatory molecules 

including cytokines, ROS, NF-κB, and inducible nitric oxide 

synthase (iNOS) are increased and provide an advantageous 

microenvironment for cancer cell growth. Therefore, inflam-

mation might result in the initiation of cancer and provide 

the suitable environment to support tumor growth.59 The 

tumor microenvironment consists of a variety of cell and 

molecular components, such as matrix metalloproteinases 

(MMPs) and tissue inhibitors of metalloproteinase (TIMP)-1. 

Tumor microenvironment has profound impacts on tumor 

cell proliferation, migration, and apoptosis.60,61 Celecoxib 

inhibits 12-O-tetradecanoyl phorbol-13-acetate (TPA)-

induced MMP-9 expression in a dose-dependent manner by 

increasing the activity of TIMP-1.62,63

The stimulation of constitutive expression of COX-2 is 

a crucial factor in the tumorigenic process. Various key risk 

factors associated with cancer causativeness are capable of 

stimulating COX-2. These factors comprise certain essen-

tial dietary fatty acids, nicotine and its metabolites, growth 

factors, infectious agents, hypoxia, hormones, ultraviolet 

B, and free radicals; oncogenic proteins; and endotoxins; 

etc.64–67 Some microenvironmental stimuli, for example, 

bacterial lipopolysaccharides, TNF, and by-products of 

protein synthesis and degradation, also induce constitutive 

COX-2 expression. In addition, because the COX-2 gene 

contains various promoter binding sites, nuclear transcrip-

tion factors including NF-κβ or NF-IL6 might also mediate 

its upregulation.68 Genetic induction of COX-2 in BC cells 

triggers local constitutive estrogen synthesis through activat-

ing the promoter II region of the aromatase gene (CYP-19) 

in adjacent fat and muscle cells.69 Terry et al70 revealed a 

vital relationship between COX-2 overexpression and mam-

mary tumorigenesis induced by estrogen. Hence, COX-2 

tumorigenesis seems to involve synergistic interactions 

between many microenvironmental and genetic cofactors. 

Accordingly, recent studies suggested that regular use of 

aspirin and other coxibs has noteworthy therapeutic impact 

in cancer patients.71,72 Expression of COX-2 can also be 

increased by large amount of collagen, which contributes 

to high breast density73 and growing incidence of BC.74,75 

This effect can be inhibited by celecoxib through reducing 

overall collagen deposition and the levels of COX-2, PGE2, 

and Ki-67 expression.76

Tumor-associated macrophages are associated with can-

cer cell survival. In a microenvironment study of BC cells, 

Li et al77 demonstrated that COX-2 is plentifully expressed 

in breast tumor-associated macrophages, which is associated 

with poor prognosis in BC patients. Their studies suggested 

that COX-2 serves as an important cancer-promoting fac-

tor through prompting a positive feedback loop between 

macrophages and BC cells. Apparently, COX-2 inhibitor, 

celecoxib, is favorable in disturbing this feedback loop in 

the cancer microenvironment. Accordingly, COX-2 can be 

exploited as a target for BC prevention and therapy. These 

findings provide solid molecular evidence to support the anti-

BC effect of celecoxib, which has potential to raise positive 

expectations for clinical use.

Antiangiogenic effect
Angiogenesis refers to the generation of new blood vessels 

through the extension of preexisting vasculature. It is modu-

lated by an equilibrium between the pro- and antiangiogenic 

factors. During tumorigenesis, the role of pro-angiogenic 

factors exceeds that of their counterpart and triggers the 

growth of new capillaries to supply more blood flow and 

overcome hypoxia inside the cancer microenvironment, 

leading to tumor growth and metastasis. At the molecular 

level, one of the mechanisms underlying COX-2-dependent 

neoplastic initiation and development in BC involves its 

proangiogenic activity.78,79 Actually, COX-2 activates MMPs 

in an intricate mechanism involving NF-κB. This protein 

also promotes endothelial migration by thromboxane A2 

(TXA2).78,80 Moreover, the augmented activity of COX-2 

contributes to the release of proangiogenic factors by 

epithelial and endothelial neoplastic cells, fibroblasts, and 

macrophages.80,81 In detail, COX-2-dependent angiogenesis 

begins with the formation of proangiogenic prostaglandins 

(primarily PGE2) by tumor cells, which enhances the levels 
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of VEGF and bFGF. VEGF directly induces COX-2 in ECs, 

while bFGF induces COX-2 in fibroblasts to synthesize PGs, 

which can stimulate the PKA pathway via the EP2 receptor. In 

addition to their direct pro-angiogenic action, PGs may also 

induce angiogenesis indirectly, via activating monocytes that 

infiltrate tumor tissues. Subsequently, the activated vascular 

COX-2 leads to the elevated permeability, proliferation, and 

morphogenesis of vasculatures.81 The high microvessel den-

sity results in the greater metastatic potential of tumor cells 

and poor patient prognosis.78,81 Furthermore, PGE2 can also 

promote angiogenesis through activating EP4 and its second 

messenger PKA in ECs.82

Celecoxib could inhibit PGE2-induced angiogenesis and 

lymphangiogenesis and sequentially inhibit tumor growth 

and metastasis, especially in COX-2-overexpressed cell 

lines,17,83 together with the reduction in microvessel density, 

microtubule formation, and serum VEGF level.84,85 This 

inhibition effect was associated with PGE2 receptor 4 (EP4) 

and could be reversed by exogenous PGE2.86 Microvascu-

lar permeability could also be reduced by celecoxib.87,88 

Tamoxifen (TAM) is an ER modulator and widely used in 

the treatment of BC as an adjuvant therapy against recurrence 

after surgery. Nevertheless, prolonged TAM administration 

increases VEGF levels in BC patients, stimulating new blood 

vessel formation and thus limiting its effectiveness. Kumar 

et al89 demonstrated that celecoxib can relieve TAM-induced 

angiogenesis via ROS-dependent VEGF/VEGFR2 autocrine 

signaling. In addition, Vaish and Sanyal90 reported that cele-

coxib can inhibit angiogenesis during the early neoplasm of 

colon through regulating PI3-K/PTEN/Akt and the canonical 

Wnt/β-catenin signaling pathway. In short, these findings 

shed light on molecular mechanisms underlying celecoxib’s 

anticancer effect from another perspective, which enhances 

the positive anticipation of its clinical application.

Integrating celecoxib into BC 
treatment
Celecoxib has been examined for improvement in chemo-

therapy effectiveness in cancer clinical trials. In fact, it has 

been reported that celecoxib could stimulate sensitivity to 

chemotherapy of BC cells91–93 via affecting the activation 

of multidrug resistance protein 1 (MDR1) which induces 

drug resistance and could be upregulated by COX-2.94,95 

Instead of affecting the pump function of MDR1, celecoxib 

downregulates its expression by inducing hypermethylation 

of MDR1 gene promoter96 and inhibiting the DNA-binding 

activity and expression of nuclear transcription factors such 

as AP-1 and NF-κB, which can combine with putative  binding 

sites of human MDR1 gene promoter.97 In addition to the 

activation of MDR1, of pertinence to this review, celecoxib 

was recently demonstrated to significantly sensitize other 

antitumor drugs with multiple mechanisms.

Combination with chemotherapy
Considering its own antitumor competence and resensitiza-

tion of other antitumor drugs, celecoxib could be a potential 

candidate for combination therapy. Preclinical research 

suggested that the antitumor effect of several agents can be 

enhanced by combining with celecoxib,98 including doxoru-

bicin99 and 5-fluorouracil (5-FU).100 In several Phase II stud-

ies, the combination of celecoxib and capecitabine, an orally 

administered pro-drug of 5-FU, could provide a clinical ben-

efit rate at 42.1–47.5% and an unexpected lower toxicity than 

capecitabine alone in metastatic BC (MBC) patients.101,102 In 

a single-arm, mono-institutional, nonrandomized, Phase II, 

two-step clinical trial, celecoxib was combined with cyclo-

phosphamide, and the clinical benefit of this combination 

came to 55% in 20 advanced BC (ABC) patients.103

Celecoxib can also be integrated into multidrug che-

motherapy regimens, in which FEC (5-FU, epirubicin, 

and cyclophosphamide) is the most common one. A study 

containing 50 patients showed that preoperative FEC with 

celecoxib (FECC) could provide lower intensity staining for 

COX-2, Ki-67, and p53 in 90% patients, while no difference 

was observed on tumor size, grade, or axillary lymph node 

status.104 In a Phase II, multicenter, open-label, single-arm 

study (N001),105 64 invasive BC patients received four cycles 

of FEC (500, 100, 500 mg/m2) followed by four cycles of 

docetaxel (100 mg/m2) with celecoxib (200 mg twice daily) as 

neoadjuvant therapy (NAT). After NAT, 43 patients achieved 

clinical complete response (cCR) and 13 achieved clinical 

partial response (cPR). In addition, despite potential side 

effects on cardiac system, the cardiac safety of celecoxib 

has been declared to be acceptable.106,107

It has also been reported that celecoxib increases the 

sensitivity of drug-resistant KBV20C cancer cells to anti-

mitotic drugs.108 This sensitization mechanism is indepen-

dent of the suppression of p-glycoprotein, indicating that 

the KBV20C cells are sensitized via targeting of signaling 

pathways by celecoxib. Moreover, it has also been observed 

that celecoxib intensely sensitizes KBV20C cells to vin-

blastine and paclitaxel, as indicated by microscopic obser-

vation, determination of Annexin V staining, and cleaved 

poly(ADP-ribose) polymerase (cleaved PARP). These 

results suggest that COX-2 inhibitors such as celecoxib 

can be used for cancer patients with potential resistance, 
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without the toxic effects of p-glycoprotein suppression. 

Of interest, as detailed previously,109 celecoxib promotes 

(sorafenib + sildenafil) lethality in multiple ovarian cancer 

cell lines, concomitant with a decrease in the expression of 

several chaperone proteins in parallel with decreased levels 

of the drug efflux pumps such as ABCB1/ABCG2. The cyto-

toxicity by the triple combination was induced by caspase 

9-dependent apoptotic pathway and RIP-1/caspases 2, 4/

AIF-dependent necroptotic pathway. In addition, the triple 

combination significantly reverted platinum chemotherapy 

resistance. Combined with the previous studies substantiat-

ing in vivo the combinations of “celecoxib + sildenafil” and 

“sorafenib + sildenafil” as cytotoxic to various cancer cell 

types, it has been suggested that the celecoxib/sorafenib/

sildenafil combination ought to be investigated in a Phase 

I trial in ovarian cancer.109 Table 1 summarizes the drugs 

suggested for use in combination with celecoxib for BC 

treatment based on preclinical data.

Not all the studies showed positive results, especially in 

patients with HER2-negative tumor. A multicenter random-

ized controlled Phase II clinical trial showed that celecoxib 

did not improve pathological complete response (pCR) rates 

in addition to epirubicin–cyclophosphamide–docetaxel (EC-

D) regimen.110 Moreover, the REMAGUS-02 multicenter 

randomized Phase II trial111 demonstrated that the addition of 

celecoxib could not provide an increased pCR rate in HER2-

negative patients. The long-term follow-up indicated that, in 

the HER2-negative subgroup, the addition of celecoxib led 

to smaller tumor size and lower expression of progesterone 

receptor (PgR) status, but no association of disease-free sur-

vival (DFS) benefit. In BC patients, COX-2 overexpression 

can be induced by HER2 oncogene activation112 and provide 

Table 1 Preclinical studies on combination of celecoxib and other therapeutic drugs in BC

Study Combination reagent Subject Mechanism of action

van wijngaarden 
et al99

Doxorubicin MDA-MB-231 cell line NF-κB-mediated increase in intracellular accumulation

irie et al100 5-FU BALB/c mice Suppression of veGF, enhancement of iFN-γ
Lim et al108 Paclitaxcel and vinblastine KB and KBv20C cell lines increasing G2 phase cell cycle arrest, C-PARP 

production
Hahn et al85 DC-based cell vaccines

GM-CSF
BALB/c mice (4T1) elevation of iFN-γ and iL-4 secretion by CD4+ T cells

Increased infiltration of CD4+ and CD8+ T cells
Basu et al128 Dendritic cell-based cancer 

vaccine
MMTv-Pyv MT mice Reduction in iDO and survivin

increasing PTeN, Bax, and iFN-γ-producing CD8+ 
CTLs

Li et al129 PD-1 mAb BALB/c mice (4T1) increasing CXCL9 and CXCL10
Suppression of iL-1, iL-6

Cho et al130 Nelfinavir (Viracept) MCF7, MCF7/Doxa, MCF7/Taxb

BT-474, BT-1.0B and BT-1.0ec

Aggravation of eR stress

Mustafa and 
Kruger133

F-l-Leu MMAC-1 cell line
C3 (1)-Sv40 Tag-transgenic mice

Activation of PTeN

Niu et al134 Minocycline hydrochloride Nude mice (MDA-MB-435S) inhibition of veGF and MMP-9
increasing tumor cell death

Yu et al135 Matrine MDA-MB-231 cell line impact on eGF/veGF-veGFR1-Akt-NF-κB signaling 
pathway

wang et al136 Berbamine MDA-MB-231 and MDA-MB-435S 
cell lines

inhibition of Akt, NF-κB target, c-Met, Bcl-2/Bax, 
osteopontin, veGF, MMP-9, and MMP-2

Jeon et al137 Luteolin MCF-7, MCF7/HeR18, MDA-
MB-231, and SkBr3 cell lines
BALB/c nude mice (MDA-MB-231)

in MCF-7 and MCF7/HeR18 cells: Akt inactivation and 
eRK signaling inhibition
in MDA-MB-231 and SkBr3 cells: Akt inactivation and 
eRK signaling activation

Kisková et al139 Resveratrol Sprague Dawley rats
MCF-7 cell line

inducing GDF15

Thill et al142 vitamin D MDA-MB-231 and MCF-7 cell 
lines

Suppression of aromatase expression

Notes: aMCF7/Dox, a doxorubicin/multidrug-resistant variant of MCF7. bMCF7/Tax, a taxol-resistant variant of MCF7. cBT-1.0B and BT-1.0e, two trastuzumab-resistant 
variants of BT474.
Abbreviations: BC, breast cancer; CTLs, cytotoxic T cells; CXCL, C–X–C motif ligand; DC, dendritic cell; eR, estrogen receptor; F-l-Leu, N-(9-fluorenyl-methyloxycarbonyl)-
l-leucine; 5-FU, fluorouracil; GDF, growth differentiation factor; GM-CSF, granulocyte–macrophage colony-stimulating factor; IDO, indoleamine 2,3-dioxygenase; IFN, 
interferon; iL, interleukin; MMAC, mammary adenocarcinoma cell; MMP, matrix metalloproteinase; PARP, poly(ADP-ribose) polymerase; PD-1 mAb, programmed death 1 
monoclonal antibody; veGF, vascular endothelial growth factor.
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a positive feedback through its product PGE2 which induces 

HER2 expression.113 However, the combination of celecoxib 

(400 mg twice daily) and trastuzumab (2 mg/kg intravenous 

injection weekly or 6 mg/kg intravenous injection every 

3 weeks) provided no significant enhancement in a Phase II 

study.114 Of note, El-Awady et al115 explored the ability of 

celecoxib to sensitize different types of cancer cells (HeLa, 

HCT116, HepG2, MCF-7, and U251) to a number of anti-

cancer drugs (5-FU, cisplatin, doxorubicin, and etoposide). 

Interaction of celecoxib with these chemotherapeutic drugs 

is antagonistic in the BC cells, MCF-7, but not in other cells, 

suggesting that celecoxib exerts distinct molecular actions 

in different cancer cells. Mechanistic investigations demon-

strated that celecoxib increases drug-triggered G2/M arrest 

in MCF-7 cells allowing more time to repair drug-elicited 

DNA damage before access into mitosis, leading to decrease 

in cell death and thus contributing to antagonism. These find-

ings, if substantiated in vivo, suggest that celecoxib is not an 

appropriate chemo-sensitizer for BC. Therefore, the combina-

tion of celecoxib with other chemotherapeutic drugs must 

be customized to the cancer type. To obtain a more accurate 

conclusion, more in-depth and extensive clinical trials are 

Table 2 Clinical trials of celecoxib on BC (ClinicalTrial.gov)

NCT number Phase Start date Status Patients Enrollment Interventions

NCT00075673 i November 2003 Terminated with recurrent or 
metastatic (stage iv) disease

6 Celecoxib on days 1–21, repeat 
every 21 days
vinorelbine ditartrate on days 7, 14, 
and 21, repeat every 21 days

NCT01425476 i/ii July 2008 Completed with increased risk of BC 45 Celecoxib
Cholecalciferol 400 iU or 2,000 iU/
daily for 30 days

NCT00201773 ii July 2003 Completed with stage ii–iv disease 22 exemestane 25 mg QD for 16 weeks
Celecoxib 200 mg BiD for 16 weeks

NCT00291694 ii April 2003 Completed with increased risk of BC 72 Celecoxib 400 mg BiD for 12 months
Placebo

NCT00056082 ii January 2003 Completed with increased risk of BC 110 Celecoxib 400 mg BiD for 12 months
NCT00291122 – January 2003 Completed with T1 or T2 noninvasive 

BC
100 Celecoxib 400 mg BiD

NCT00070057 i April 2009 Completed 75 Celecoxib for 1–3 weeks
Celecoxib (the doses are higher 
than those of the aforementioned 
studies) for 1–3 weeks
No intervention

NCT01769625 i/ii January 2009 Completed with invasive breast 
carcinoma (≥1 cm)

31 Placebo + cholecalciferol 400 iU
Placebo + cholecalciferol 2,000 iU
Celecoxib 400 mg + cholecalciferol 
400 iU
Celecoxib 400 mg + cholecalciferol 
2,000 iU

NCT03185871 ii September 2017 Recruiting with stages T1cN0 to 
T3N0 BC (≥1 cm), eR/PgR 
(+), without lymph node 
spread

45 Celecoxib 200 mg BiD for 2 weeks

NCT01881048 i December 2009 Active, not 
recruiting

with BC 42 No intervention
Omega-3 fatty
Celecoxib

NCT00045591 ii February 2003 Terminated with invasive BC 39 Celecoxib 100 mg BiD
Celecoxib 400 mg BiD

NCT00088972 ii November 2004 Terminated with increased risk of BC 8 Celecoxib
Placebo

NCT00328432 i June 2003 Completed with T1 or T2 noninvasive 
breast

100 Celecoxib 400 mg BiD

NCT00305643 iii February 2003 Terminated with metastatic colorectal 
cancer or MBC

11 Celecoxib 200 mg BiD + standard 
capecitabine treatment
Placebo with standard capecitabine 
treatment

Abbreviations: BC, breast cancer; eR, estrogen receptor; MBC, metastatic BC; PgR, progesterone receptor; BiD, twice a day; QD, once a day.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Cancer Management and Research 2018:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

4660

Li et al

needed. Table 2 summarizes the clinical trials of celecoxib 

or celecoxib combined with chemotherapy on BC patients.

Combination with endocrinal therapy
It was demonstrated that the expression of aromatase CYP19 

might be potentially regulated by PGE2 through cAMP-

mediated pathways, and it makes further influence on aroma-

tase activity116,117 and estrogen biosynthesis.69 Linear positive 

correlation was shown between CYP19 and COX-2 by semi-

quantitative reverse transcriptase PCR (RT-PCR), suggesting 

that the combination of COX-2 and aromatase inhibitors (AIs) 

could have synergistic effect on hormone-dependent BC.69 

The inhibition of aromatase by celecoxib was observed at 

transcriptional level by real-time PCR and appeared to be 

dose dependent.118 Anastrozole, an AI, was combined with 

celecoxib to treat BC in rats.119 The results showed that this 

combination might be workable for clinical therapy.

Besides laboratory investigations, clinical trials also 

conducted to combine celecoxib with selective ER modula-

tor (TAM) and AIs (exemestane). In the Celecoxib Anti-

Aromatase Neoadjuvant (CAAN) trial,120 a combination of 

exemestane (25 mg daily) and celecoxib (400 mg twice daily) 

gained significantly lowered cholesterol and low-density lipo-

protein (LDL) levels and higher bone mineral density (BMD) 

and BC subscale scores compared with single-agent groups 

of exemestane (25 mg daily) and letrozole (2.5 mg daily), in 

postmenopausal women with histologically proven local ABC 

(LABC). So, although the final outcomes showed no statistical 

difference on clinical response and tumor volume,121 which 

meant that different neoadjuvant anti-aromatase therapies have 

similar efficacy, the combination with celecoxib may provide 

some additional benefits. Some other studies, including a Phase 

II study122 and a Phase III study,123 positively supported the 

combination of celecoxib and exemestane in postmenopausal 

MBC patients. A Phase II trial of neoadjuvant exemestane (25 

mg daily) plus celecoxib (400 mg twice daily) demonstrated 

that the combination was tolerated and anticancer response was 

observed in the majority of postmenopausal women with BC. 

Statistically, noteworthy reduction could also be found in the 

expression of ER, PgR, Ki-67, and COX-2.124 Nevertheless, 

some other research provided a different opinion. A study 

established by Dirix et al125 showed that the demographic 

characteristics, prognostic factors, and time to progression 

(TTP) were all similar no matter whether celecoxib was added 

to endocrine therapy or not, and the lack of COX-2 expression 

may attribute to this result.126 Moreover, it was suggested that 

the anticancer effect of combination therapy might have mainly 

resulted from exemestane instead of celecoxib.127

TAM is extensively used in BC therapy as a preventive 

drug against recurrence after surgical treatment, but the long-

term TAM treatment enhances patients’ VEGF levels, stimu-

lates neovascularization, and thus restrains its effectiveness. 

Kumar et al89 demonstrated that the combination of TAM and 

celecoxib at nontoxic concentrations exerted antiangiogenic 

effects via explicitly targeting VEGF–VEGFR2 pathway 

through ROS formation. In addition, their preclinical studies 

suggested that the TAM/celecoxib combination is a feasible 

strategy for the treatment of BCs with VEGF/VEGFR2 over-

expression. This inventive combination exhibits encouraging 

effect in anti-metastasis and stimulation of apoptosis and may 

be a superior personalized clinical regimen vs TAM alone 

for BC treatment. The clinical trials on the combination of 

endocrine therapy and celecoxib are summarized in Table 3.

Combination with other antitumor 
treatments
Dendritic cell-based cancer vaccine, from tumor lysate-pulsed 

dendritic cell, is a popular candidate for cancer immunother-

apy. Hahn et al85 tested the antitumor immune response using 

the combination of celecoxib, vaccine, and GM-CSF in 4T1 

cells, a cell line with COX-2 expression, poorly immunogenic, 

and highly metastatic ability. The triple combination therapy 

successfully suppressed primary tumor growth and signifi-

cantly reduced the incidence of lung metastases. This effect 

was achieved by a tumor-specific immune response which 

could be observed as increased interferon (IFN)-γ and IL-4 

secretion by CD4+ T cells and infiltration of CD4+ and CD8+ 

T cells to the tumor site. Basu et al128 also combined celecoxib 

with dendritic cell-based cancer vaccine and reconfirmed that 

the combination gained its antitumor effect by downregulat-

ing the expression of indoleamine 2,3-dioxygenase (IDO), a 

negative regulator of T cell activity. A recent study by Li et 

al129 using alginate hydrogel system to locally deliver cele-

coxib and programmed death 1 (PD-1) monoclonal antibody 

(mAb) to treat 4T1 MBC mouse model demonstrated a sig-

nificant improvement in the anticancer activities of celecoxib, 

PD-1 mAb, or both combined. The persistent high levels of 

the drugs in peripheral circulation and within local tumor 

areas were observed. Importantly, the concurrent dual local 

delivery of celecoxib and PD-1 synergistically elevated the 

levels of CD4+ IFN-γ+/CD8+ IFN-γ+ T cells in the tumor and 

the immune system, implying that the combinatorial therapy 

synergistically enhances antitumor immunity. In addition, 

this combination treatment induces the production of two 

antiangiogenic chemokines such as C–X–C motif ligand 

(CXCL)9 and CXCL10 as well as inhibits the intra-tumoral 
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formation of IL-1, IL-6, and COX2, indicating a diminished 

pro-cancer angiogenic and inflammatory microenvironment. 

This celecoxib/PD-1 mAb combination treatment provides a 

promising regimen for treating human BC.

By combining celecoxib with the HIV protease inhibitor, 

nelfinavir (Viracept), Cho et al130 explored the aggravation 

of endoplasmic reticulum stress caused by this combination, 

which led to apoptosis in chemoresistant BC cells. Further-

more, unmethylated celecoxib (UMC), with superior COX-2 

inhibitory efficacy, showed substantially weaker antitumor 

effect. Therefore, they speculated that the antitumor effect 

of celecoxib was COX-2 independent in chemoresistant 

BC. Chloroquine is another material that can play a role 

in antitumor effect with celecoxib through endoplasmic 

reticulum stress response.131 In addition, treatment with the 

combination of anti-IL-17 antibody and celecoxib can sig-

nificantly decrease bone and lung metastasis in SKG mice 

with mammary gland tumors and autoimmune arthritis.132 

Preclinical studies also suggested that celecoxib could be 

combined with peroxisome proliferator-activated receptor 

gamma agonist for the treatment of spontaneous BC133 and 

minocycline hydrochloride for osseous metastasis in BC.134 

These combination treatments were strikingly more effective 

than celecoxib alone. Moreover, many plant-derived materials 

were combined with celecoxib and emerged synergistic effect 

on antitumor effect via VEGF/Akt/NF-κB signaling, includ-

ing matrine,135 berbamine,136 and luteolin.137,138 Resveratrol139 

can also enhance the tumor prevention effect of celecoxib, 

but the exact mechanism is still under investigated.

Several epidemiological studies have shown that vitamin 

D has beneficial effects against the carcinogenesis and devel-

opment of BC.140,141 Recent studies revealed an association 

between vitamin D and PGE2 metabolism. Thill et al142 

demonstrated that a synergistic growth-inhibiting effect in BC 

cell lines can be elicited by the combination of celecoxib and 

calcitriol (1,25-dihydroxycholecalciferol or 1,25-[OH]2D3), 

which is a biologically active form of vitamin D.143 Calcitriol 

could also inhibit COX-2 expression at both protein and 

mRNA levels. New perspectives emerge from the growing 

knowledge of innovative combination of celecoxib, and 

other anticancer agents, which act in a complementary way, 

increase the efficacy and minimize toxicity.

Side effects and clinical complications
Celecoxib is the only FDA-approved COX-2 inhibitor for use 

in the USA. Although celecoxib is usually a well-tolerated 

drug, it is not harmless. Its typical doses range from 200 to 

400 mg/day; nonetheless, the dose for acute gout can reach 

800 mg once, followed by 400 mg on the first day, then 400 

mg twice daily for 7 days. A higher dose of celecoxib (800 

mg per day) might be related to augmented cardiovascular 

risk according to the Adenoma Prevention with Celecoxib 

(APC) study.144 The cardiotoxicity side effects may be attrib-

uted to its off-target effect, namely modulating calcium levels 

within the cell, according to the immediate time-dependent 

cell response profiles (TCRPs) for celecoxib.145 In fact, 

previous studies have shown that celecoxib therapy induces 

an immediate increase in intracellular calcium levels.146 In 

addition, clinical data indicate that chronic use of celecoxib 

may damage normal skeletal function resulting in reduced 

BMD in older male patients.147 Serious allergic reactions to 

celecoxib have also been reported.148

When celecoxib is recommended in advanced cancer 

patients, the pros and cons need to be considered prudently. 

A meta-analysis by Chen et al149 suggested that celecoxib has 

certain benefits in the treatment of cancer, but increases the 

risk of cardiovascular events. Specifically, they demonstrated 

an increase in grade 3 and 4 toxicities of cardiovascular 

events with the incorporation of celecoxib to the treatment 

of advanced cancers. Other toxicities include rash, hepato-

toxicity, and gastrointestinal events, and there is no statisti-

cally significant difference among them. Of note, the risk of 

anemia in the celecoxib group is also significant. Although 

the risk of grade 3 and 4 cardiovascular events increases by 

1.78 times after celecoxib use for a long time, the risk is 

acceptable, considering that this is a prescription for life-

threatening diseases. Nevertheless, clinical monitoring of 

side effects, for example, cardiovascular events should be 

strengthened. According to these findings, it is necessary to 

carefully consider the benefit vs harm when recommending 

celecoxib in the treatment of patients with advanced cancer, 

especially those with a history of heart disease. Further stud-

ies are needed to confirm these results with large samples.

Conclusion
In addition to being widely used for treating inflammatory 

diseases such as rheumatoid arthritis and osteoarthritis,150 

celecoxib may also play an important role in the cancer 

prevention and treatment. Preclinical evidence demonstrates 

that celecoxib seems to suppress the proliferation and growth 

of different types of cancer through various mechanisms 

(Figure 1). Results of abundant clinical studies, although 

unconvincing, suggest that celecoxib administration is related 

not only to diminished incidence of cancer but also to the 

better prognosis in cancer patients. In view of the potential 

variations in response to celecoxib in cancer patients, it 
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seems critical to ascertain target populations for its use. 

Nevertheless, factors that contribute to better outcome in 

celecoxib consumers are still to be explicated. The data on 

the effectiveness of celecoxib as neoadjuvant treatment in 

cancer patients are deficient. There are substantial clinical 

studies evaluating the role of celecoxib in the cancer treat-

ment. The results will permit evaluation of the position of 

celecoxib in cancer prevention and therapy and identify the 

target populations in the near future. Of note, comparative 

studies should be designed to ascertain the optimal dosage, 

duration, side effects (especially the gastrointestinal and 

cardiovascular systems), and its cost-effectiveness. As was 

originally pointed out more than 10 years ago, “there exists 

an urgent need for clinical trials of this compound so as to 

accelerate its effective application in the chemoprevention 

and treatment of cancer.” NSAIDs, and especially celecoxib, 

represent an inspiring proposition for repurposing as anti-

cancer drugs with low toxicity, hence demonstrating how 

understanding cancer-relevant molecular signaling pathways 

in combination with clinical data will contribute to further 

development of oncology.
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