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Background: Liver -cell proliferation occurs in hepatocellular carcinoma (HCC) and liver 

regeneration (LR). The development and progression of HCC and LR have many similar 

molecular pathways with very different results. In simple terms, LR is a controllable process 

of organ recovery and function reconstruction, whereas liver cancer is uncontrollable. Do they 

share common key pathways and genes? 

Methods: In this study, the dynamic transcriptome profile at ten time points (0, 2, 6, 12, 24, 

30, 36, 72, 120, and 168 hours) during LR in rats after two-thirds hepatectomy and eight stages 

(normal, cirrhosis without HCC, cirrhosis, low-grade dysplastic, high-grade dysplastic, and very 

early, early advanced, and very advanced HCC) representing a stepwise carcinogenic process 

from preneoplastic lesions to end-stage HCC were analyzed in detail. A variety of bioinfor-

matic methods, including MaSigPro, weighted gene-coexpression network analysis, and spatial 

analysis of functional enrichment, were used to analyze, elucidate, and compare similarities and 

differences between LR and HCC formation. 

Results: Key biological processes and genes were identified. From the comparison, we 

found that cell proliferation and angiogenesis were the most significantly dysregulated 

processes shared by LR and HCC. The pattern of cell-proliferation-related gene expression 

in progression stage during LR is similar to the transition process from dysplasia to early-

stage HCC. LR and HCC showed different expression patterns as a whole. Some key genes, 

including FYN, XPO1, FOXM1, EZH2, and NRF1, were identified as playing critical roles 

in both LR and HCC. 

Conclusion: These findings could contribute to revealing the molecular mechanism of devel-

opment and regulation mechanism of normal and abnormal proliferation, which could provide 

new ideas and treatment methods for regenerative medicine, oncological drug development, 

and oncological treatment.

Keywords: liver regeneration, hepatocellular carcinoma, angiogenesis, MaSigPro, microarray, FYN

Background
The liver plays a vital role in the maintenance of body homeostasis and is essential for 

the coordination of normal metabolism of carbohydrates, lipids, proteins, and vitamins 

as well as for biochemical defense against toxic chemicals. The liver is a magic organ, 

due to its powerful regenerative ability. Two-thirds partial hepatectomy (PH) is one of 

the most effective surgical models in rodents for the study of liver regeneration (LR). 

After resection of two of the six lobes, quiescent hepatocytes, which stay in the G
0
 

phase, can rapidly reenter the G
1
 phase under the influence of different cytokines and 
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growth factors, which play roles of activating downstream 

kinases and transcription factors (TFs). After one or two 

rounds of hepatocyte proliferation, the remnant liver lobes 

undergo compensatory hyperplasia via cell proliferation, 

thereby restoring the liver to its original presurgical size 

within 7 days, the process which is called LR.1,2

Hepatocellular carcinoma (HCC) is the f ifth most 

common cancer in men and the seventh in women across 

the world and the second leading cause of cancer-related 

deaths worldwide, accounting for around 11% of all cancer 

deaths.3 Major risk factors for HCC development include 

chronic viral hepatitis, metabolic disease, and autoimmune 

hepatitis. Because of the increase in hepatitis C virus infec-

tions, the incidence of liver cancer is gradually increasing. 

HCVs can cause acute and chronic infections that can lead 

to liver cirrhosis and HCC.4 Cirrhosis is the most impor-

tant risk factor for developing HCC, and the majority of 

virus-associated HCC cases develop from liver cirrhosis, 

therefore, the clarification of the mechanism of liver cancer 

caused by hepatitis B virus infection will contribute to the 

new understanding of liver cancer formation. The incidence 

of HCC in individuals with hepatitis C virus cirrhosis is 

about 3%–5% per year.5,6

Currently, potential curative options for HCC patients 

include radiofrequency ablation, liver transplantation, and 

tumor resection. However, many factors, including tumor 

staging, donor deficiencies, graft rejection, and opportunistic 

infections, affect these adaptations. The pathological stage of 

liver cancer is very important for the development of treat-

ment plans and patient prospects.7,8 For early HCC without 

cirrhosis, liver resection or liver transplantation can be used, 

but recurrence occurs frequently. In the end stage of HCC, 

patient survival is usually <3 months. It is necessary to under-

stand the mechanism of progression from cirrhosis to HCC.9–12

Organ regeneration has been observed in many animals 

and the human liver is able to regenerate after moderate injury. 

Liver transplantation is a typical application of regenerative 

capacity of the liver. Since 50%–70% of the normal liver is 

excised and exchanged with the recipient’s diseased liver, donor 

and recipient liver will not regenerate if the liver does not have 

the regenerative capacity. The powerful regenerative capacity 

of the liver has been used to cure patients with liver removal 

due to liver disease, such as liver cancer, and provide a safe 

and effective transplantable tissue source in the case of liver 

donation.13–15 The development and progression of HCC and 

LR have many similar molecular pathways with very different 

results. In simple terms, LR is a controllable process of organ 

recovery and function reconstruction, whereas liver cancer 

is uncontrollable. In this study, gene-expression  patterns in 

stepwise HCC formation were compared with LR, which eluci-

dated the similarity and differences between them. Several key 

pathways and genes involved in this pathway were identified.

Methods
Microarray-data normalization
The mRNA-expression profile of LR came from what we 

have done before, the microarray data have been deposited 

in the Gene Expression Omnibus under accession number 

GSE55434, and details about the experiment have been 

described in a study published previously. The platform is 

GPL1355, and all samples are hybridized on the Affymetrix 

Rat Genome 230 2.0 Array. The gene-expression data 

set GSE6764 provided by Wurmbach et al (https://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6764) was 

downloaded from the Gene Expression Omnibus database. A 

total of 75 tissue samples were divided into eight consecutive 

pathological stages from preneoplastic lesions to HCC, 

including normal, cirrhosis (cirrhosis with and without 

HCC), dysplastic (low- and high-grade dysplastic), very 

early HCC, early HCC, advanced HCC, and very advanced 

HCC. All tissue samples are hybridized on the human U133 

plus 2.0 array (Affymetrix). These are all raw .cel files 

and were converted into expression data using the robust 

multiarray average (RMA) algorithm using the Bioconductor 

Affy package.

Identification of differentially expressed 
genes during LR
MaSigPro software was used to identify differentially 

expressed genes (DEGs) across different time points in rat 

LR and stepwise carcinogenic process in HCC. MaSigPro 

can be used to perform analyses of single and multiseries 

time-course data. A two-regression-step approach was 

defined by MaSigPro to find genes with significantly 

changed expression profiles between experimental groups 

by dummy variables. The first step is to identify DEGs by 

constructing a global regression model with all the defined 

variables. The second is to find statistically significant, 

differentially expressed profiles using a variable selection 

method to identify the differences between groups. Different 

pathological stages were considered at different time points. 

Quaternary regression models (df=4 in LR and df=3 in HCC) 

were defined across the samples that had enough power to 

compute the reduced number of time points. The threshold 
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of a false discovery rate of 0.05 (Q=0.01) was set to sift the 

significantly differentially transcribed genes. We defined a 

stepwise regression method (“two ways backward”, a=0.05), 

with an R2-cutoff value fit of 0.7 in LR and 0.5 in HCC. The 

hierarchical approach based on correlation distances was 

used to cluster the significantly differentially transcribed 

genes across the samples.

Construction of weighted gene-
coexpression networks and identification 
of modules associated with external 
traits in LR and HCC
DEGs obtained from MaSigPro were subjected to further 

analysis using weighted gene-coexpression network analysis 

(WGCNA) to test the clustering results from MaSigPro.16 

From thousands of genes, interesting gene modules were 

identified with WGCNA, and then intramodular connectivity 

and gene significance based on the correlation of a gene-

expression profile with a sample trait were used to identify 

hub genes in LR and HCC for further validation. WGCNA 

is a freely accessible R package for the construction of 

WGCNs.

Gene-enrichment analysis
The ClusterProfiler package was employed to perform the 

enrichment analysis of the biological process (BP) Gene 

Ontology (GO) term (GO:BP) and the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) for all DEGs. For each module 

with a cutoff value of P=0.05, the q-value cutoff is 0.2, the 

pAdjustMethod is BH, and the minimum and maximum 

number of genes annotated by the ontology term for testing 

are 10 and 500, respectively. Functional similarity among 

GO terms was computed using the SimRel method, which 

is based on Resnik’s and Lin’s similarity measures using the 

REVIGO and visualized with R language.17

Comparison and merging of results from 
MaSigPro and WGCNA
The algorithm’s mathematical essence of WGCNA is the 

exponentiation of correlation coefficients between paired 

genes, which makes the strong stronger and the weak weaker. 

In theory, the DEGs, grouped into one cluster by MaSigPro 

based on their similar expression profiles, will be inclined to 

occur in the same module in WGCNA. As such, the results 

were redesigned systematically, and the new clustered DEGs 

were defined for the next analysis.

Comparative analyses of all new modules 
in LR and HCC
Owing to the dynamic progression of LR and HCC, 

ToppCluster was used to perform multimodule gene functional 

enrichment analysis, which shows shared and list-specific 

functional features in the results.18 The BioMart package was 

used to perform homologous matching from rats to humans.19,20 

Unmatched genes by BioMart are confirmed one by one 

manually. A hypergeometric test was applied in the analysis. 

GO:BP, human phenotype (HP), mouse phenotype (MP), 

pathways, transcription factor binding site, and microRNA 

were selected for annotations with a P-value cutoff of 0.05 

and multiple-testing correction, ie, module-specific phenotype 

associations, BP, pathways, genes whose mRNAs were targets 

of microRNAs, and genes whose promoters contained known 

TFs. Results were visualized in Cytoscape.

Identification and key modules in LR and 
HCC
Genes belonging to the same biological process or pathway 

tend to share similar expression patterns of genetic 

interactions, and relationships among them can be defined in 

biological networks. Spatial analysis of functional enrichment 

(SAFE) is a systematic and quantitative method mapping local 

enrichment for functions and phenotypes and has uncovered 

a new biological mechanism in budding-yeast Saccharomyces 

cerevisiae.21–23 We constructed a protein–protein interaction 

(PPI) global network for LR with similar interaction patterns 

grouped together: nodes in this network represented genes 

including all known LR-related genes (from NCBI) and all 

DEGs, and edges represented interactions among genes from 

the STRING (search tool for the retrieval of interacting genes/

proteins) database. The network was displayed by applying 

the edge-weighted spring-embedded layout in Cytoscape, 

and all nodes were positioned based on their occurrence. 

The same method was used for the construction of the HCC 

network. Dysplasia-, infiltration-, and metastasis-related 

genes are the known genes for HCC. Genes in the same 

modules with similar expression profiles from MaSigPro 

and WGCNA were overlaid onto the network. Key modules 

were identified according to the position, and they overlap 

with all known LR- and HCC-related genes.

Identification of hub-bottleneck genes
In a scale-free network like the gene-coexpression one, 

highly connected genes are called hub genes (  high-degree  

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Cancer Management and Research 2018:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

5694

Yin et al

genes) and are important for the robustness of the network. 

In WGCNA, the identif ication of hub genes is based 

mainly on intramodular connectivity without any statistical 

criteria.24 Except for degree, betweenness is one of the 

most important topological properties of a network and 

represents the number of shortest paths going through 

a certain node. Nodes with high betweenness are called 

bottlenecks and control the information flow in a network. 

Two types of hubs were defined by Han et al: date hubs (hub 

bottlenecks) and party hubs (hub nonbottlenecks).25 They 

proposed that hub bottlenecks played a more important 

role in the organization of biological modules in the whole 

interaction network.26 Hub-bottleneck genes are identified 

by calculating the degree and betweenness of every gene 

in a network using the CytoHubba plug-in. The top 5% of 

genes ranked by degree score are defined as the hub genes 

and the top 5% of the betweenness genes as the bottlenecks. 

Genes that appear in both hub and betweenness lists are the 

hub-bottleneck genes.

Results
DEGs in LR and HCC
A total of 30 tissue samples from GSE54534 and 75 from 

(.cel format) GSE6764 were downloaded from the NCBI. 

The raw files were converted into expression data using the 

RMA algorithm based on R language, including background 

correction, normalization, and summary. Quality control 

was performed using the SimpleAffy package. QC-plot and 

box-plot results before and after normalization are shown in 

Figures S1 and S2. DEGs were identified using MaSigPro 

according to the details described in the Methods section 

for LR and HCC.

Based on the expression profiles across ten regenerative 

time points from hepatic resection to liver-structure res-

toration, the 1,362 DEGs identified using MaSigPro were 

grouped into nine clusters of 104, 225, 154, 102, 211, 130, 

171, 217, and 48 features, as shown in Figure 1A. The nine 

clusters were further grouped by patterns into “up-down-up” 

(clusters 1 and 3), “down-up” (clusters 2 and 4), “down-

up-down” (clusters 5 and 6), and up-down (clusters 7–9), 

corresponding to changes during LR. The most significant 

turning points during LR were at 12, 36, and 72 hours after 

liver resection.

Based on the expression profiles across six consecutive 

pathological stages from preneoplastic lesions to end-stage 

HCC – normal, cirrhosis, dysplastic, very early HCC, early 

HCC, advanced HCC, and very advanced HCC – the 1,557 

DEGs identified using MaSigPro were grouped into nine 

clusters of 268, 247, 129, 193, 156, 273, 89, 92, and 110 

features, as shown in Figure 1B. The nine clusters were 

further grouped by patterns into down (clusters 1 and 2) 

and up (clusters 3–9), corresponding to changes during the 

dynamic progression of HCC. The most significant turning 

phase occurred at the dysplastic and early stages, representing 

tumorigenesis and tumor aggression.

Functional enrichment analysis for DEGs 
in each cluster obtained from MaSigPro
To explore the relationship between the enrichment 

results from all the DEGs and genes within each module, 

ClusterProfiler was used to perform GO:BP and KEGG 

enrichment analyses for all DEGs and genes in each cluster. 

A total of 101 GO terms were identified to be significantly 

enriched for all DEGs (Table S1). The final GO enrichment 

result was visualized using R language after calculating 

semantic similarity of GO terms (Figure 2A). Enriched GO 

terms in all DEGs were associated with carboxylic acid 

catabolism, which included the metabolic processes of amino 

acids, fatty acids, and small molecules, RNA localization, 

which included RNA localization and transport and protein 

transport, DNA replication, which included DNA replication 

and repair, nuclear division, which included nuclear and 

organelle fission, telomere maintenance, and extracellular 

matrix (ECM) organization, aging, which included aging, 

liver development, and vasculogenesis, and response 

to hypoxia, which included response to oxygen levels 

and nutrients. All DEGs were grouped into nine clusters 

according to their expression profiles, and GO enrichment 

terms were grouped into several modules. As we know, the 

nine clusters were related to the dynamic process of LR with 

different meanings. This indicated that the clusters did not 

occur randomly if their enrichment results were consistent 

with the results of all DEGs. As such, we extracted all 

genes in every cluster and performed GO-term enrichment 

analysis using ClusterProfiler, as shown in Figure 3. Six of 

the nine clusters stood for special meanings, and clusters 4, 

6, and 9 had relatively fewer genes. It was obvious that each 

module occurred sequentially in LR. KEGG enrichment 

terms for all DEGs in LR included mainly the cell cycle, 

DNA replication and repair, RNA transport, spliceosomes, 

amino-acid metabolism, and ribosome biogenesis (Figure 

S3). The enrichment result for every module was consistent 

with all DEGs, which indicated an orderly process occurring 

during LR (Figure S4).
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Figure 1 Differentially expressed gene-expression patterns.
Note: (A) Liver regeneration (B) hepatocellular carcinoma.
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Gene ontology treemap of all DEGs
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Figure 2 (Continued)

The same workflow described in this section was applied 

to the enrichment analysis of all DEGs and genes in each 

module in HCC. A total of 250 GO terms were identified 

to be significantly enriched for all DEGs (Table S1). The 

final GO enrichment result was visualized using R language 

after calculating GO-term semantic similarity (Figure 2B). 

Enriched GO terms in all DEGs were associated with cell-

cycle-related processes, which included chromosome segre-

gation, cell-cycle checkpoint, nuclear and organelle fission, 

and ribosome biogenesis, DNA replication, which included 

histone (H3-K27) methylation, DNA-replication initiation 

and elongation, and protein alkylation, RNA localization, 

which included RNA localization to Cajal bodies, protein 

localization to chromosomes, kinetochores, and nucleoplasm, 

and carnitine shuttle, p53-signaling pathway, animal-organ 

regeneration, and methylation. We extracted all genes in the 

nine clusters and performed GO-term enrichment analysis 

using ClusterProfiler, as shown in Figure 4. Six of the nine 

clusters had special meaning. It was obvious that each module 

occurred sequentially in HCC. The KEGG enrichment terms 

for all DEGs in LR included mainly the cell cycle, DNA 

replication, RNA transport, spliceosomes, p53-signaling 

pathway, and oocyte meiosis (Figure S5). Enrichment results 

for every module were consistent with all DEGs, which indi-

cated an orderly process occurring during the development 

of HCC (Figure S6).

Construction of WGCNA and 
identification of modules associated with 
external traits in LR and HCC
The coexpression network was constructed from DEGs 

obtained from MaSigPro in LR and HCC. In LR, seven 
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modules were identified, including a gray module. We chose 

soft-threshold power 18 to define the adjacency matrix based 

on the criterion of approximate scale-free topology, with 

a minimum module size 30, module detection sensitivity 

DeepSplit 2, and a cutoff height for merging of modules 0.2, 

which meant that modules whose eigengenes were correlated 

>0.8 were merged. Modules associated with different time 

points during LR were identified according to module–trait 

relationships (Figure 5A). The cyan module was positively 

correlated with PH at 72 hours. The green and green/yellow 

modules were also similar. In order to explore the biological 

meaning of every module, functional enrichment analysis was 

performed for each module in LR (Figures S7 and S8). DEGs 

from MaSigPro were recalculated according to amplified 

correlations between paired genes. It was obvious that 

enrichment results were consistent with results from MaSigPro. 

Overlapping analysis of genes in the nine clusters from 

MaSigPro and seven modules from WGCNA was performed 

(Figure S9). Results showed that each module overlapped with 

a specific cluster. For example, the overlapping rate of genes 

between the cyan module and cluster 5 reached 68%. Because 

of the nature of unsigned networks, there were possibilities 

where one module overlapped with several clusters.

In the same way, the DEGs from HCC were assessed 

by WGCNA (Figure 5B). A soft-threshold power of 12 was 

selected to define the adjacency matrix based on the criterion of 

approximate scale-free topology with other parameters same as 

the LR. Functional enrichment analysis results were consistent 

with MaSigPro results (Figures S10 and S11). Overlap analysis 

of genes in the nine clusters from MaSigPro and seven modules 

from WGCNA was also performed (Figure S12). The brown 

module had the most genes overlap, with several clusters.

Figure 2 Gene functional enrichment analysis (GO:BP) of all DEGs during LR and HCC formation.
Note: (A) LR (B) HCC.
Abbreviations: BP, biological process; DEGs, differentially expressed genes; GO, Gene Ontology; HCC, hepatocellular carcinoma; LR, liver regeneration.
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Figure 4 Functional enrichment analysis (GO:BP) of DEGs from six clusters in HCC.
Abbreviations: BP, biological process; DEGs, differentially expressed genes; GO, Gene Ontology; HCC, hepatocellular carcinoma.
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WGCNA and MaSigPro results were in good agreement 

in this analysis, so genes that appeared simultaneously in 

modules and clusters played an important role in biological 

function. Based on this information, genes were regrouped 

into new modules in LR and WGCNA, with some genes 

filtered. Finally, 1,004 and 1,275 probes were obtained in 
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LR and HCC, respectively. Six modules – blue, magenta, 

green, green/yellow, black, and cyan – were generated in LR. 

Seven modules – blue_c12, blue_c4, brown_c12, brown_c56, 

brown_c7, black, and red – were obtained in HCC. Enrich-

ment analysis for genes in the new modules in LR and HCC 

was performed and showed consistency in modules before 

and after merging (Figures S13 and S14). All probes in the 

new module were matched to symbols for the next analysis 

using ClusterProfiler. The probe with the smallest P-value 

was selected if several probes matched the same symbol. 

Finally, 1,004 probes matched 849 unique genes in LR and 

1,275 probes to 1,047 unique genes in HCC.

Comparative analyses of all new modules 
in LR and HCC
The abstracted network of LR is shown in Figure 6. 

Notably, the magenta, black, and blue modules shared 

general ribonucleoprotein-complex export and localization 

and RNA transport and localization biological pathways, 

but differed with respect to phenotypes, which included 

embryonic lethality prior to organogenesis, increased 

carcinoma incidence, and small gonads; GO:BP, which 

included DNA geometric and conformation change, DNA 

replication and repair, G
1
/S and G

2
/M transition, and the 

p53-signaling pathway; TFs, including E2F1, E2F4, and 

KTGGYRSGAA_unknown, and Has-miR24 for the blue 

module; and GO:BP, which included translation initiation, 

ribosomal large-subunit biogenesis, ER to Golgi vesicle-

mediated transport and posttranscription regulation of 

gene expression, and NRF1 TF for the magenta module; 

and GO:BP, which included RNA splicing, termination of 

transcription and telomere maintenance via telomerase, 

and ELK1 TF. Genes in these three modules shared similar 

expression profiles at the second cell cycle. The green and 

yellow/green modules shared the general abnormality of 

amino-acid and carboxylic acid metabolism, fatty acid 

and organic acid metabolism, and oxidation–reduction 

processes, but differed with respect to MP, which included 

decreased cholesterol and abnormal lipid levels, GO:BP, 

which included lipid metabolism and fatty acid oxidation in 

the green/yellow module, HP, which included abnormality 

of acid–base homeostasis, acidosis, and brain atrophy (very 
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small), and GO:BP, which included cerebral hypoplasia 

and purine metabolism. Genes in the cyan module were 

enriched in MP, which included abnormal angiogenesis, 

abnormal ECM morphology, and decreased angiogenesis 

and respiratory distress, HP, which included atrophic scars 

and gastrointestinal angiodysplasia, GO:BP, which included 

angiogenesis, cell migration and mobility, and endothelial 

cell proliferation and cell localization, and TF, which 

included PU1, ELK1, and Has-miR29a–c.

The abstracted network of HCC is shown in Figure 7. 

Notably, the blue_c1 and brown_c12 modules shared general 

GO:BP, which included lipid metabolic and oxidation–

reduction processes, but differed with respect to phenotypes, 

which included liver fibrosis and abnormal circulating 

amino-acid level, GO:BP, which included organic-acid 

metabolism in the blue_c12 module, phenotypes, which 

included abnormal homeostasis and hepatobiliary system 

physiology, and GO:BP, which included fatty acid oxida-

tion, complement action, and inflammatory response in 

the brown_c12 module. Genes in the cyan module were 

enriched in the respiratory system phenotype, GO:BP, which 

included angiogenesis, cell motility and migration, cell 

localization, and response to growth factor, and  pathways, 

which included ECM  proteoglycans and ensembles of genes 

encoding the extracellular matrix. Genes in the brown_c56 

module were enriched in MP, which included embryonic 

lethality and abnormal tumor incidence, HP, which included 

myelodysplasia and aplasia cerebrum, GO:BP, which 

included cell-cycle arrest, DNA replication, and ribosome 

biogenesis, pathways, which included TP53 activity and 

AURKA activation by TPX2, TF, which included USF, 

NFY, MAX, E2F, E2F1, E2F4, YY1, NRF1, and KTGGYRS-

GAA_unknown, and microRNAs, which included miR24 

and miR108a. The genes in brown_c7, black, and blue_c4 

enriched few pathways.

Identification of key modules and key 
genes in LR and HCC
The PPI network for LR, containing 990 nodes and 7,755 

edges, was constructed by connecting the 219 known 

LR-related genes downloaded from the NCBI and the 

849 DEGs during LR. The network was visualized by 

applying the spring-embedded layout algorithm in 

Cytoscape, as shown in Figure 8A. Next, genes sharing 

similar expression profiles in each module were overlapped 

onto the network with different colors corresponding to 

different modules, as shown in Figure 8B. Four functional 

domains in the network were identified. With opposite 

expression prof iles, the cyan and magenta modules 

were mutually exclusive in the network based on their 
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interaction, and the same was applied to the blue and 

green modules. Known LR-related genes (the yellow dot 

pointed to by arrows) were overlapped onto the network, 

as shown in Figure 8C and D. Note that all known genes 

related to LR were overlapped mostly onto the cyan 

module, which represented angiogenesis. The degree and 

betweenness of every gene in the network were calculated 

using the CytoHubba plug-in. Hub-bottleneck genes were 
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organic acid metabolism
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including DEGs

Distribution of all known genes
related to liver regeneration
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Figure 8 Distribution of known LR-related genes and DEGs in the spatial protein–protein interaction (PPI) network, generated in Cytoscape.
Notes: (A) The PPI network was constructed by connecting all the known LR-related genes and DEGs in our study. (B) All DEGs from six modules were colored differently. 
The cyan module was opposite the to magenta module l. The cyan module is located in the middle of the blue and pink modules. (C) All known LR-related genes were mapped 
to the PPI network, shown in yellow. These genes overlapped with the cyan model most. (D) Distribution of all known LR-related genes, including DEGs, in our study.
Abbreviations: DEGs, differentially expressed genes; LR, liver regeneration.
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overlapped onto the network, as shown in Figure 9A. Notably, 

hub-bottleneck genes overlapped with the cyan module most. 

FYN was the only hub-bottleneck gene that did not belong 

to known LR-related genes in the cyan module. FYN is 

a member of the protein tyrosine-kinase oncogene family, 

which is involved in angiogenesis, cell growth, cell motility, 

and tumor invasion.27–31 However, FYN has not been reported 

to play a role in LR.

The same method was used for PPI-network construction, 

which contained 1,963 nodes and 45,499 edges for liver cancer, 

as shown in Figure 10A. Next, genes belonging to the same 

module were overlapped onto the network (Figure 10B). Nota-

bly, the brown_c56 module formed a central and independent 

area that represented cell-cycle-related processes. The distri-

bution of genes in the red and brown_c12 modules was also 

very concentrated. In fact, the genes in red and brown_c12 
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Glycolysis
Module:red

Angiogenesis
Cell chemotaxis
Extracellular matrix organization
Respiratory tube development

VEGF signaling pathway

Phosphatidic acid metabolic process
CDP-diacylglycerol biosynthetic process

Cell cycle
Organic acid metabolism

Organelle fission
DNA repliction and repair

Cell cycle checkpoint (G2/M,G1/S)
Histone modification, methylation, exchage

Module:blue_c4

Module:brown_c56

Response to extracellular stimulus
Coenzyme metabolic process

Protein activation cascade

Toll-like receptor signaling

Protein targeting to mitrochondrion
Chaperone-mediated protein complex assembly

Distribution of known genes
related to liver disease

Distribution of known genes
related to cirrhosis

Distribution of known genes
related to invasion and metastasis
of HCC

Distribution of known genes
related to dysplastic

Pathway

Module:brown_c12

Module:black

Module:brown_c7

A B

C D

E F

Figure 10 Distribution of known liver disease-related genes and differentially expressed genes (DEGs) in the spatial protein–protein interaction (PPI) network, generated 
in Cytoscape.
Notes: (A) A PPI network was constructed by connecting all the known liver disease-related genes and DEGs in our study. (B) All DEGs from seven modules were 
colored differently. The brown_c56 module was in opposition to brown_c12. (C) All known liver-disease-related genes were mapped to the PPI network, shown in yellow. 
(D) Distribution of all known cirrhosis-related genes, including DEGs, in our study. (E) Distribution of all known dysplasia-related genes, including DEGs, in our study. (F) 
Distribution of all known invasion and metastasis-related genes, including DEGs, in our study.
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were from cluster 2, identified by MaSigPro software. They 

were further divided into two different categories according to 

the power law by WGCNA and given different physiological 

meanings. It can be inferred that angiogenesis and fatty acid 

oxidation may share common regulators or co-occurrence 

mechanisms, due to their similar expression profiles and 

close PPI. To explore the spatial distribution of known genes 

associated with the stepwise carcinogenic process from 

preneoplastic lesions to end-stage HCC, including cirrhosis, 

dysplasia, infiltration, and metastasis in the network, the 

known genes were overlapped onto the network, as shown 

in Figure 10C–F. It can be concluded that angiogenesis, fatty 

acid metabolism, and cell proliferation play vital roles dur-

ing the progression of HCC and that angiogenesis and fatty 

acid metabolism may be the initial inducing factors. Studies 

have shown the relationship among fatty acid synthesis, cell 

proliferation, angiogenesis, and autophagy.32–36 The degree 

and betweenness of every gene in the network was calculated 

using the CytoHubba plug-in. The top-ranked 100 and 200 

hub-bottleneck genes were overlapped onto the network, as 

shown in Figure 9B and C. Hub-bottleneck genes belonging 

to known liver-disease-related genes were not listed in the 

figure. Notably, the hub-bottleneck genes overlapped mostly 

with the red, brown_c12, and brown_c56 modules.

Discussion
With a series of bioinformatic methods and tools, possible 

key pathways, genes, enriched TFs, and microRNAs that may 

regulate DEGs were analyzed during the dynamic progression 

of LR and HCC formation. The fundamental difference 

between LR and HCC is that the former will eventually return 

to its 0-h level after PH, whereas the latter will never come 

back (Figures 6 and 7).

During LR, within 2 h after two-thirds hepatectomy, the 

residual liver grows relatively slowly, but its growth rate is 

extremely obvious from 36 to 72 h and then relatively slow. 

As shown in Figure 6, cell-proliferation-related activities 

increased significantly between 36 and 72 h, whereas the 

genes associated with angiogenesis and ECM remodeling 

and fatty acid oxidation increased significantly during this 

time period, suggesting that cell proliferation had been com-

pleted by 72 h, and angiogenesis and fatty acid metabolism 

played an active role in the process of liver restoration. At 

the termination stage of LR, active protein synthesis implies 

recovery of the physiological function of the liver. Based 

on this analysis, we propose that liver cells may have some 

kind of memory signal: once the liver is resected, the signal 

is activated or induced, and the cell numbers reach original 

levels in a short period through cell proliferation. In our 

study, LR was accompanied by acid–base balance disorders. 

Was the change in the extracellular environment leading to 

changes in biological processes in the cells or vice versa? In 

addition, LR was accompanied by brain atrophy and sexual 

dysplasia. Was this a redistribution of energy after PH or an 

evolutionary sacrifice to survive? These questions need to 

be explored further. Some key genes, which included FYN, 

GART, IMPDH2, RAN, POLR2C, ACACB, CAV1, VIM, 

and NRP1, some microRNAs, which included miR24 and 

miR29a–c, and some TFs, including PU1, ELK1, E2F1/4, 

NRF1, and KTGGYRSGAA_unknown, may play important 

roles in LR.

During the stepwise carcinogenic process from preneo-

plastic lesions to end-stage HCC, the most significant turning 

point is from dysplastic nodules to early HCC. As shown in 

Figure 7, genes associated with cell-proliferation-related 

activities increased significantly at very early and early HCC 

points, whereas genes involved in fatty acid metabolism and 

angiogenesis were the opposite. All of these three biologi-

cal processes played vital roles in HCC formation through 

spatial network analysis. Some key genes, which included 

FYN, GYS2,CENPF, FYN, CCNB2, KIF4A, H2AFV, BUB1, 

H2AFZ, DCN, TOP2A, RRM2, HSP90AB1, and XPO1, some 

microRNAs, which included miR24 and miR208a, and some 

TFs, which included USF, MAX, E2F1/4, NRF1, YY1, and 

KTGGYRSGAA_unknown, may play a critical role during 

HCC formation.

Comparative analysis of LR and HCC formation was 

performed. LR and the formation of HCC share three com-

mon biological processes – cell proliferation, angiogenesis, 

and fatty acid metabolism – of which angiogenesis may play 

the most important role based on spatial network analysis. 

Some key genes, such as FYN, XPO1, FOXM1, and EZH2, 

were identified and need further study to determine their 

mechanism in the pathogenesis of LR and HCC. As the 

most significant and most fundamental change in LR and 

HCC formation, what exactly determines the initiation and 

termination of the cell cycle? Why do almost all DEGs 

return to 0-h levels after PH, but continue to upregulate or 

downregulate in HCC? These questions need further study.

Angiogenesis is the formation of new microvessels from 

preexisting vessels and involves tumor growth and metastasis, 

organ development, regeneration, and wound healing when 

the distance between cells and vessels increases as the cell 

numbers increase.37–39 Angiogenesis is a dynamic process that 

is hypoxia-stimulated and growth-factor-dependent. Several 

reports have shown that angiogenesis plays a key role in LR 
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after PH and confirmed that LR is an angiogenesis-related 

physiological process.40,41 It is a striking fact that many of 

the growth factors upregulated in LR are known to be proan-

giogenic.42,43 When antiangiogenic agents are administered, 

hepatocyte proliferation decreases after PH, leading to a delay 

in LR. In our study, angiogenesis played a vital role in both 

LR and HCC. Is it possible that angiogenesis is the key driver 

for normal or abnormal proliferation of cells?

Regardless of LR or the formation of liver cancer, initially 

small cell clusters form as a result of certain stimuli (eg, 

resection, virus) that initiate the cell cycle. As the number of 

cells increases, the distance between cells, especially internal 

cells and blood vessels, increases, resulting in the formation 

of a hypoxic environment inside the cells. Cells, including 

tumor cells, require blood supply to provide oxygen and 

nutrients while excreting metabolic waste. Hypoxia induces 

the production of certain factors, eventually leading to the 

formation of new blood vessels from the preexisting vascular 

network, which could provide energy and substances for cells. 

As we know, there is a huge difference between physiologi-

cal and cancer-associated angiogenesis. For regeneration, 

regenerated hepatocytes are reconstructed structurally and 

functionally. Finally, cell proliferation was completed, cells 

reentered the G
0
 phase, and all returned to the 0-hour level 

after hepatectomy. In the advanced stage of HCC, cancer 

cells spread to nearby normal tissue as the establishment of 

neovascularization. We discovered some key genes involved 

in this process by a variety of bioinformatic methods. As one 

of the most promising developments in cancer treatment, 

more angiogenesis inhibitors have been evaluated in clini-

cal trials.44–47 In our study, angiogenesis is at the core of LR 

and HCC formation. The tumor is highly vascularized with 

abnormal structure and function. Is there a different regula-

tion mechanism in LR and tumor formation? In addition, 

almost all growth-factor cytokines involved in angiogenesis 

play an important role in LR, which is not just a coincidence. 

A further and thorough analysis of angiogenic mechanisms 

may provide new and effective approaches to augment LR 

and counter liver diseases, especially HCC.

As the most frequently occurring gene, the role of FYN 

in LR and HCC is crucial. The proto-oncogene FYN is a 

member of the Src family of kinases and is a non-receptor 

tyrosine kinase (nRTK). Most nRTKs are localized in the 

cytoplasm without a transmembrane structure, which is the 

fundamental difference between RTKs and the transmem-

brane domain.48,49 RTKs receive extracellular signals through 

membrane-bound proteins, including EGFR and VEGFR. 

Fyn is anchored at the cytoplasmic membrane, through the 

myristoylation of the second glycine at its N-terminal and 

palmitoylated myristic acid of the third cysteine. FYN plays 

an important role in cell growth and proliferation, cell-cycle 

entry, skeleton remodeling, and cell migration through 

Ras–Mek–ERK, FAK, and PI3K signaling pathways, is 

often highly expressed in many tumors, and is related to the 

initiation of and progression to some cancers.27,28,31 TSP1 

is a natural antiangiogenic substance in vivo. It can inhibit 

angiogenesis by destroying newly formed microvascular 

endothelial cells and inducing apoptosis of endothelial 

cells. However, its role requires the transmembrane recep-

tor CD36.31,50 CD36 itself lacks intracellular kinase and has 

no phosphorylation activity. It works in conjunction with 

nRTKs, such as Fyn. In other words, TSP1 inhibits angio-

genesis by depending on CD36 and Fyn.  

In our study, the expression of Fyn in LR was generally 

in a inverted v-shaped distribution (peak at 72 hours after 

PH; Figure 11A). In HCC formation, the expression of Fyn 

in cirrhotic samples increased significantly, then decreased 

until early-stage HCC, followed by a small upregulation in 

end-stage HCC (Figure 11B), which was inconsistent with the 

high expressions in some tumors. Presumably, this was due to 

the following factors. First, the expression of Fyn is related 

to the pathological process of the tumor. Second, there are 

many downstream factors of Fyn, which depend mainly on 

the upstream factors that act on it. In newly forming vascular 

endothelial cells, TSP1 inhibits angiogenesis through Fyn, 

thereby promoting apoptosis and inhibiting proliferation. 

Although angiogenesis must be present during regeneration 

and tumor formation, vascular structure and function are 

abnormal in tumors. We speculate that Fyn may regulate 

angiogenesis in two ways in two processes or stages. Third, 

Fyn has three types of alternative splicing: FynT, FynB, 

and FynC. Among these, FynT contains exon 7B, which is 

expressed mainly in blood-related cells, and FynB contains 

exon 7A, which is expressed widely, especially in eucalyptus. 

FynC does not contain exons, and its corresponding protein 

and physiological effects have not yet been found.49 There-

fore, Fyn may has different spiceosomes  and plays different 

roles in different time and space.

It is of great theoretical and practical significance to 

explore the key physiological processes and key genes that 

determine LR and liver cancer formation. For example, 

the elucidation of certain molecular mechanisms in LR 

can be used to promote the survival of patients with acute 

liver failure, and even artificial livers can be used to make 

up for donor deficiencies and transplant rejection in liver 

transplantation.
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Figure 11 Dynamic changes in Fyn expression: (A) LR. (B) HCC.
Abbreviations: HCC, hepatocellular carcinoma; LR, liver regeneration; PH, partial hepatectomy.
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Conclusion
In summary, a variety of bioinformatic methods, including 

MaSigPro, WGCNA, and SAFE, have been used to 

compare the similarities and differences between LR and 

HCC formation. Key biological processes and genes were 

identified. We found that angiogenesis plays a critical role 

in both LR and HCC. Some key genes, including FYN, 

XPO1, FOXM1, EZH2, and NRF1, were identified. These 

findings could contribute to revealing molecular mechanisms 

of development and regulation mechanisms of normal and 

abnormal proliferation, which could provide new ideas and 

treatment methods for regenerative medicine, oncological 

drug development, and oncological treatment.
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