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Background: Glioblastoma multiforme (GBM) remains to be one of the top lethal cancer 

types for adult to date. Current GBM therapies suffer greatly from the highly heterogeneous and 

adaptable nature of GBM cells, indicating an urgent need of alternative therapeutic options. In 

this study, we focused on identifying novel epigenetic targeted strategy against GBM.

Methods: A collection of epigenetic modulating small molecules were subjected to anti-GBM 

screening and the inhibitory effect of identified agent was validated both in vitro and in vivo. 

Genetic targeting approaches were also used to verify the on-target inhibitory effect of identified 

agent. Furthermore, the inhibitory mechanism of identified agent was investigated by integrative 

analyses of drug-treated GBM cells and GBM tumor databases.

Results: The covalent CDK7 inhibitor THZ1 was one of the top hits in our screening and its 

anti-GBM activity was confirmed both in vitro and in vivo. CDK7 inhibition through CRISPR-

Cas9 or RNA interference also markedly disrupted GBM cell growth. Furthermore, analyses of 

multiple GBM tumor databases consistently revealed that CDK7 expression was significantly 

elevated in GBM compared with normal brain tissues and lower grade gliomas. Higher CDK7 

expression was correlated with worse prognosis for both glioma and GBM. Mechanistically, 

THZ1 treatment led to considerable disruption of global gene transcription in GBM cells, pref-

erentially targeting those associated with super-enhancers (SEs). We also showed that THZ1 

sensitive and SE-related genes had important roles for GBM growth.

Conclusion: Our study shows that targeting SE-associated transcription addiction by CDK7 

inhibition could be an effective therapeutic strategy against GBM.

Keywords: THZ1, CDK7, GBM, epigenetic targeted therapy, transcriptional addiction

Introduction
Glioblastoma multiforme (GBM) is the most common and malignant primary brain 

cancer in adults.1 Despite multimodality treatment consisting of surgical debulking, 

radiotherapy, and temozolomide chemotherapy, the median survival is still 12–15 

months.2 Based on successful preclinical studies, many clinical trials have tested the 

efficacy of novel therapies, but improved survival for patients with GBM has been 

limitedly achieved over the past few decades.2 Therefore, further work is urgently 

required to discover novel therapeutic strategies for GBM treatment.

Transcriptional dysregulation is increasingly recognized as a major factor con-

tributing to pathogenesis of various cancers, including glioblastoma.3 GBM cells 

harboring IDH1 mutation display G-CIMP signature due to accumulation of (R)–

2-hydroxyglutarate, resulting in global modulation of epigenome and transcriptome.4–6 

Tumor-specific EGFR splicing variant EGFRvIII could modulate GBM epigenome and 
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transcriptome through induction of two critical transcription 

factors SOX9 and FOXG1, thereby contributing to tumor 

growth and drug resistance.7 Transcription inhibition has 

already been explored in GBM therapy. Bromodomain and 

extra-terminal protein inhibitors, targeting family member 

BRD4, a key activator of RNA polymerase II (RNAPII) 

transcription at active chromatin marks, have been shown to 

effectively treat genetically diverse GBM alone or in com-

bination with conventional therapies, especially exhibiting 

higher sensitivity to EGFRvIII containing GBM cells.8,9 A 

small molecule targeting facilitates chromatin transcrip-

tion complex, a histone chaperone complex that supports 

RNA polymerase-II mediated transcriptional elongation by 

remodeling nucleosomes, has been shown to preferentially 

eliminate glioblastoma stem cells and effectively overcome 

temozolomide resistance.10

CDK7 phosphorylates RNA Pol II to initiate transcrip-

tion and plays an active role in promoter proximal pausing.11 

THZ1 is a highly specific CDK7 inhibitor effective in pre-

clinical models for malignancies with transcription factor 

dysregulation, such as T cell acute lymphoblastic leukemia,12 

small cell lung carcinoma,13 neuroblastoma,14 and triple-

negative breast cancer.15 THZ1 has also been shown to be able 

to cross blood–brain-barrier in our previous study and inhibit 

growth of diffuse intrinsic pontine glioma, which is a fatal 

pediatric cancer with limited therapeutic options.16 Recently, 

a study has found that THZ1 inhibits growth of high-grade 

glioma (HGG) in vitro.17 However, the therapeutic efficacy 

of THZ1 against GBM in vivo, the mechanisms of action, 

and the clinical significance of THZ1 in GBM still need to 

be further elucidated.

Here, THZ1 was also identified as one of the top potent 

agents in our anti-GBM screening with a collection of 

epigenetic modulating small molecules. We further dem-

onstrated that CDK7 inhibition through either THZ1 or 

genetic approaches (CRISPR-Cas9 and RNA interference) 

effectively disrupted GBM growth both in vitro and in vivo. 

Furthermore, analyses of multiple GBM tumor databases 

consistently revealed that CDK7 expression was significantly 

elevated in GBM compared with normal brain tissues and 

lower grade gliomas. Higher CDK7 expression was correlated 

with worse prognosis for both glioma and GBM. Mecha-

nistically, THZ1 treatment led to considerable disruption 

of global gene transcription in GBM cells, preferentially 

targeting those associated with super-enhancers (SEs). We 

also showed that THZ1 sensitive and SE-related genes had 

important roles for GBM growth. Taken together, our study 

showed that targeting SE-associated transcription addiction 

by CDK7 inhibition could be an effective therapeutic strategy 

against GBM.

Materials and methods
For detailed experimental procedures, please see the Supple-

mentary materials.

Cell culture
U87 and U251 cell lines were obtained from Cell Bank of 

Chinese Academy of Science (Shanghai, China). SHSMU_

GBM05 and SHSMU_GBM06 primary cell lines were 

established from tumor tissues of GBM patients as described 

previously.18 Human fetal neural stem cell (hfNSC) was a 

gift from Prof Michelle Monje (Stanford University School 

of Medicine). Human cells used were approved by ethnics 

committee of Ren Ji Hospital affiliated to Shanghai Jiao 

Tong University School of Medicine. The patients provided 

written informed consent and experiments were conducted 

in accordance with the Declaration of Helsinki. A172 was a 

gift from Dr Qingwei Zhu (Shanghai Jiao Tong University, 

Shanghai, China). SHSMU_GBM05, SHSMU_GBM06, and 

A172 GBM cell lines were verified with short tandem repeat 

profiling (Table S1). SHSMU_GBM05, SHSMU_GBM06, 

U87_serum_free, and hfNSC were cultured using NeuroCult 

NS-A Proliferation Kit supplemented with human EGF-basic, 

human fibroblast growth factor-basic, and 0.2% heparin 

solution.19 U87_serum-free cells were passaged for 2 months 

before used for experiments. Other GBM cell lines were 

cultured in DMEM/high glucose supplemented with 10% 

FBS, penicillin (100 U/mL) and streptomycin (100 mg/mL). 

SHSMU_GBM06_FBS were passaged for 2 months before 

used for experiments. Mouse neural stem cells (mNSCs), 

mouse astrocytes (mAstro), and mouse granule cells (mGCs) 

were established and cultured as described previously.20–22

Tumor xenograft models
All experimental procedures were approved by the Animal 

Care and Use Committee of Shanghai Jiao Tong University 

School of Medicine and performed according to the guide-

lines. For subcutaneous xenograft studies, U87 cells were 

subcutaneously implanted into both flanks of nude mice. 

Mice were treated with vehicle control or THZ1 at 10 mg/

kg twice daily by intravenous injection. Tumor volumes 

were calculated as length×width2×0.5. Tumor sections were 

stained for H&E, Ki67, and cleaved caspase 3. Intracranial 

xenograft experiments were performed by injection of U87 

cells into the right corpus striatum of nude mice.23 Treatment 

continued for 2 weeks and mice survival status was recorded.
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lentivirus preparation and infection
To generate lentiviral sgRNA or shRNA plasmids, oligo-

nucleotides were annealed and cloned into LentiCRISPR v2 

plasmid or pLKO.1 plasmid, respectively. Lentiviral shRNA 

plasmids targeting CDK7 were from GE Healthcare Life Sci-

ences (Marlborough, MA, USA). Lentivirus was generated 

by transfection of HEK293T cells with transducing vector 

and packaging vectors pMD2.G and psPAX. After 48 hours, 

virus particles were harvested, filtered, and concentrated by 

PEG6000. The oligonucleotides used are listed in Table S2.

Cell cycle, proliferation and apoptosis 
assays
Cell cycle analysis was performed using cell cycle staining 

kit. Cell proliferation was measured by using the Click-iT 

EdU Alexa Fluor 647 Flow Cytometry Assay Kit. Cell apop-

tosis was measured by using Annexin V-FITC Apoptosis 

Detection Kit I with some minor modifications. DAPI was 

used instead of propidium iodide. Fluorescence-activated cell 

sorting analyses were performed by using BD Fortessa FACS 

machine. The data were analyzed using Flowjo software.

Rna sequencing
RNA sequencing service was provided by OE Biotech 

(Shanghai, China). The fragments per kilobase million 

(FPKM) values for each gene were calculated by cufflinks 

(version 2.2.1).24 We defined the active genes as the genes 

whose FPKM value is >1. The read count and FPKM per 

gene were normalized so that the ERCC spike-in read counts 

are the same in all samples. The gene ontology (GO) term 

enrichment analysis for the differentially expressed genes 

was performed by using hypermetric distribution to compute 

P-values with C2-canonical pathways and C5-GO gene sets 

from Molecular Signature Database.25

Chromatin immunoprecipitation 
sequencing (ChiP-seq) data processing
Anti-H3K27Ac or anti-MED1 ChIP-Seq data as well as cor-

responding RNA-Seq data for U87 cell line were obtained 

from two previously published studies.7,26 ChIP-seq data were 

processed to define enhancer and SE by ROSE.26 RNA-Seq 

data from the same sample were processed and the lowly 

expressed genes whose FPKM was <1 were not considered 

in the enhancer to gene mapping analysis by ROSE.

Clinical data analyses
Tumor gene expression profile and clinical information 

of glioma or GBM patients were obtained from publicly 

available databases, including Chinese Glioma Genome 

Atlas (CGGA), The Cancer Genome Atlas (TCGA), and 

Rembrandt.27–29 Kaplan–Meier survival and gene expression 

boxplot analyses were performed using Graphpad Prism 6.

statistical analyses
Two-tailed Student’s t-test was used for comparing two groups 

in most statistical analyses. Log-rank test was used for ana-

lyzing survival data. *P<0.05, ** P<0.01, and *** P<0.001.

Results
Identification of THZ1 as a potent 
inhibiter of gBM cells in vitro
To identify epigenetic small molecules that suppress growth 

of GBM cells, we subjected U87 and serum-free cultured 

U87 cells (to mimic stem cell culture environment19,30 to 

an unbiased high-throughput screen with a library of 96 

annotated epigenetic small-molecule inhibitors, including 

experimental compounds or early-stage clinical candidates 

(Figure S1A and Table S3). Cells were plated into 384-well 

plates in duplicates and exposed to drugs at two concentra-

tions (1 µM and 10 µM) for 72 hours, then analyzed for 

inhibition of proliferation using an imaging-based viability 

assay (Figure S1B). Six agents were identified to exhibit an 

IC50 of <1 µM in both conditions, including three HDAC 

inhibitors (HC toxin, panobinostat, and Trichostatin A), two 

CDK inhibitors (flavopiridol and THZ1) and one HMT inhibi-

tor (chaetocin) (Figure 1A). THZ1 is a recently developed 

covalent CDK7 inhibitor that has been shown to effectively 

treat multiple malignancies with transcriptional dysregula-

tion,12–15 but its anti-GBM efficacy in vivo and the underlying 

mechanisms have not been fully investigated yet. Therefore, 

we chose to focus on THZ1 for further investigation.

To validate our results, we treated five GBM cell lines 

(including two primary GBM cell lines) and four control 

cell lines with dimethyl sulfoxide, THZ1 0.001 µM, 0.01 

µM, 0.1 µM, 1 µM, or 10 µM for 72 hours. We found that 

GBM cells were highly sensitive to CDK7 inhibition, with 

IC50 values ranging from 13 nM to 84 nM (Figure 1B). 

On the contrary, all control normal brain cells, such as 

hfNSCs, mNSCs, mAstro, and mGCs, were significantly 

less sensitive to THZ1 treatment, with IC50 values ranging 

from 149 nM to 288 nM (Figure 1B). We also treated U87 

cells cultured in serum-free medium (to mimic stem  cell 

culture environment) or SHSMU_GBM06 cells cultured 

in FBS contained medium (to mimic non-stem cell culture 

environment) with THZ1.19,30,31 We found that both cell lines 

were still sensitive to THZ1 with IC50 of 36 nM or 52 nM, 
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respectively, suggesting THZ1 could be at least equally 

effective against glioma stem cells if not more (Figure 1B). 

The same results were achieved using another cell viability 

assay (Figure S1C). Time-course tracking of THZ1-treated 

U87 and U251 cells showed that THZ1 treatment caused a 

dose- and time-dependent growth disruption of GBM cells 

(Figure 1C), resulting in  significant inhibition of colony 

formation in vitro (Figure 1D). The noncovalent CDK7 

inhibitor THZ1-R exhibited much less potency against 

GBM cells in vitro, suggesting that the unique characteristic 

of THZ1 in covalently binding to its target determines its 

antineoplastic potency (Figure 1D, Figure S1D).

Figure 1 ThZ1 inhibits growth of gBM in vitro and in vivo. 
Notes: (A) Top ranked six agents with iC50<1 µM on our drug screen are presented. (B) Dose–response curves of long-established gBM cell lines (indicated in blue color), 
patient-derived gBM cell lines (indicated in red color) and control cell lines (indicated in green color). Data are shown as mean ± sD (C) U87 or U251 cells were treated 
with DMsO or ThZ1 at indicated concentrations. Cell viabilities (mean ± sD) were assessed at day 0, 1, 2, and 3 after treatment. (D) Colony formation assay was performed 
on U87 or U251 cells as indicated. Crystal violet staining images are shown. (E) Tumor growth and body weight curves of subcutaneous tumor model. Data were presented 
as mean ± seM (*P<0.05, ** P<0.01, *** P<0.001). Two-tailed student’s  t-test. (F) images of subcutaneous tumors from vehicle and ThZ1 treatment groups (n=12 each). (G) 
H&E and immunohistochemistry staining of Ki67 and CC3 of tissue sections from vehicle or THZ1 treated subcutaneous tumor. Original magnification, ×400. (H) Kaplan–
Meier survival curves and median survival length of orthotopic tumor models are shown (log-rank test).
Abbreviations: CC3, cleaved caspase-3; gBM, glioblastoma multiforme.
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ThZ1 inhibits growth of gBM cells in 
vivo
We subsequently went on to test the in vivo anti-GBM effects 

of THZ1 in subcutaneous xenograft model of U87. Our results 

showed that intravenous injection of THZ1 at 10 mg/kg twice 

daily could markedly disrupt subcutaneous tumor growth 

without significantly affecting mouse body weight (Figure 

1E, F). Compared with vehicle-treated tumors, tumor tissues 

isolated from THZ1-treated mice had reduced proliferation 

and increased apoptosis, as indicated by immunostaining 

against Ki67 and cleaved caspase 3 (Figure 1G).

THZ1 has been shown to be able to cross blood–brain-

barrier in our previous study,16 therefore, we proceeded to 

test THZ1 treatment in orthotopic xenograft model with 

stereotactic intracranial injection of U87 cells. THZ1 treat-

ment lasted for 2 weeks at 10 mg/kg twice daily via tail vein 

and our results showed that THZ1-treated mice survived 

significantly longer compared with control mice (P=0.0027), 

resulting in an increase of median survival from 29.5 days 

to 34 days (Figure 1H).

CDK7 is a prognostic marker for glioma 
and gBM patients
To explore the clinical significance of CDK7 inhibition in GBM, 

we analyzed two well-known publicly available databases: 

CGGA and TCGA.27,29 Our analysis revealed that CDK7 was 

significantly upregulated in GBM compared with non-neoplastic 

brain tissues or low-grade gliomas (Figure 2A, B). Our analysis 

also found that higher CDK7 expression was consistently linked 

to worse prognosis in glioma patients as shown by Kaplan–Meier 

curves of overall survival (OS) and progression-free survival 

(PFS) in CGGA database (Figure 2C, D). For GBM patients, 

CDK7 expression was also significantly related to OS in both 

databases (Figure 2E, G). The trend that CDK7 expression was 

related to PFS in each GBM database could reach significance 

when combined together (Figure 2F, H, I).

Figure 2 CDK7 is a prognostic marker of glioma and gBM. 
Notes: (A,B) Box plots of CDK7 expression levels in glioma or gBM samples from Cgga (A) or TCga (B) databases. P-values were determined by Two-tailed student’s  
t-test. *P<0.05, **P<0.01***P<0.001. (C–I) Kaplan–Meier plots showing Os or PFs rate in Cgga_glioma, Cgga_gBM, TCga_gBM or Cgga and TCga combined 
cohorts comparing CDK7-high (red) vs CDK7-low (blue) patients. Median survival days, ratio, and 95% Ci were shown.
Abbreviations: Cgga, Chinese glioma genome atlas; gBM, glioblastoma multiforme; Os, overall survival; PFs, progression-free survival; TCga, The Cancer genome 
atlas.

25

A B C

D E F

G H I

CGGA

CGGA_Glioma CGGA_GBM
Median (days) Median (days)

Ratio 1.568
0.9163 to 2.68495% CI

Median (days)

Ratio 4.012
2.985 to 5.39195% CI

CDK7 low 75% n=234,1011
CDK7 high 25% n=78,252

n=109
n=72
n=144

***

***

*
20

15

C
D

K7
 (F

PK
M

)

10

5

0

0

50

100

PF
S 

(%
)

4

6

8

10 100

CGGA_Glioma

CGGA_GBM

CDK7 low 75% n=234,1394
Median (days)

Ratio
95% CI

3.547
2.625 to 4.792

CDK7 high 25% n=78,393

50

O
S 

(%
)

0
0 1000 2000

Days
3000 4000

P<0.001

P=0.1032

P=0.0298

**
** * *

TCGA

n=10
n=143
n=155
n=137
n=83

Lo
g2

 (C
D

K7
)

Grad
e 2

Grad
e 3

Grad
e 4

Norm
al

Clas
sic

al

Mes
en

ch
ym

al

Pron
eu

ral

Neu
ral

0 1000 2000
Days

3000 4000

0
0

50

100

TGGA_GBM

CDK7 low 75% n=369,424
CDK7 high 25% n=123,380

Ratio
95% CI 0.8831 to 1.410

1.116

Median (days)

O
S 

(%
)

1000 2000
Days

3000 4000 5000 0
0

50

100

PF
S 

(%
)

0

50

100

PF
S 

(%
)

500
Days

1000 1500 2000

0

50

100 CDK7 low 75% n=64,494 CDK7 low 75% n=64,274
CDK7 high 25% n=21,223

Median (days)
CDK7 low 75% n=307,208
CDK7 high 25% n=102,184

Ratio
95% CI

1.127
0.8987 to 1.414

Ratio
95% CI

1.229
0.7275 to 2.075

CDK7 high 25% n=21,315

O
S 

(%
)

0 1000 2000
Days

3000
0

50

100

PF
S 

(%
)

0 1000 2000
Days

3000

0 1000 2000
Days

3000

4000

P <0.001

P=0.0485

TGGA_GBM CGGA&TCGA_GBM

CDK7 low 75% n=243,195
CDK7 high 25% n=81,183

Ratio
95% CI 0.8287 to 1.370

1.066

Median (days)

P=0.1185

P=0.0377

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Cancer Management and Research 2018:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

5752

Meng et al

Targeting CDK7 by CRisPR-Cas9 or 
Rna interference inhibits growth of 
gBM cells
To validate the on-target inhibitory effects of THZ1, we 

employed CRISPR-Cas9 and RNA interference approaches to 

genetically target CDK7 and measured their effects on growth 

of GBM cells. Two individual sets of sgRNAs and shRNAs 

were designed and their efficiency of targeting CDK7 expres-

sion in U87 and U251 cells were confirmed, respectively 

(Figure 3A, D). Like THZ1 treatment, genetically targeting 

CDK7 by either CRISPR-Cas9 or RNA interference mark-

edly suppressed cell proliferation (Figure 3B, E) and colony 

formation in both GBM cell lines (Figure 3C, F), confirming 

that CDK7 represents a valid therapeutic target for GBM.

ThZ1 causes cell cycle arrest, shuts off 
proliferation and induces apoptosis of 
gBM cells
Next, we aimed to comprehensively dissect the inhibi-

tory mechanism of THZ1 against GBM cells. CDK7 has 

been implicated in cell cycle regulation by controlling 

 phosphorylation of CDK1 and CDK2.11 Our cell cycle 

analysis found that THZ1 caused cumulative G2/M arrest 

(Figure 4A). We also found that THZ1 treatment of GBM 

cells resulted in almost complete shut-off of cell prolifera-

tion (Figure 4B). Moreover, THZ1 could induce a significant 

activation of caspase 3/7 (Figure 4C) and remarkable apop-

tosis (Figure 4D), eventually leading to robust cell death 

(Figure 4E). Consistent with aforementioned findings, our 

real-time (RT)-qPCR results revealed THZ1 induced signifi-

cant downregulation of proliferative genes (TOP2A, CCND1, 

and MKI67) and anti-apoptosis genes (BCL2, BCL-XL, and 

BIM) (Figure 4F).

ThZ1 inhibits global gene transcription 
and preferentially targets se-associated 
genes in gBM cells
CDK7 also plays a critical role in transcription through 

directly or indirectly affecting phosphorylation of the 

initiation-associated serine 5 (S5) and serine 7 (S7) and the 

elongation-associated serine 2 (S2) at the carboxyl-terminal 

domain (CTD) of RNAPII,32,33 so we went on to determine 

Figure 3 Targeting CDK7 by CRisPR-Cas9 or Rna interference inhibits growth of gBM cells. 
Notes: (A) Knockout efficiencies of sgCDK7s are shown by Western blot. (B) Cell growth of gBM cells infected with CRisPR-Cas9 expressing lentivirus as indicated. 
green and red asterisks indicate P-values of sgCDK7-1 and sgCDK7-2 group compared with control (sgCtrl plus sggFP), respectively. (C) Colony formation assay was 
performed on gBM cells infected with CRisPR-Cas9 expressing lentivirus as indicated and crystal violet staining images are shown. (D) Knockdown efficiencies of shCDK7s 
were determined by RT-qPCR (n=3). (E) Cell growth curve of gBM cells infected with shRna expressing lentivirus as indicated. Red and green asterisks indicate P-values 
of shCDK7-1 and shCDK7-2 group compared with shscr, respectively. (F) Colony formation assay was performed on gBM cells infected with shRna expressing lentivirus 
as indicated and crystal violet staining images are shown. P-values were determined by Two-tailed student’s  t-test. ***P<0.001.
Abbreviations: gBM, glioblastoma multiforme; RT, real-time.
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how THZ1 affects transcription and gene expression in GBM 

cells. As expected, THZ1 but not THZ1R caused a remark-

able decrease of phosphorylated S2, S5, and S7 of RNAPII 

CTD in GBM cells (Figure 5A), resulting in significant 

global downregulation of steady-state mRNA levels only 

after 8 hours of treatment as measured by RNA sequencing 

Figure 4 ThZ1 causes cell cycle arrest, shuts off proliferation, and induces apoptosis in gBM cells. 
Notes: (A) FaCs Cell cycle analyses of gBM cells exposed to DMsO or 0.1 µM ThZ1 for 24 or 48 hours. The percentages of each cell cycle phase are presented in bar chart 
on the right. (B) Cell proliferation analyses of gBM cells treated with DMsO or 0.1 µM ThZ1 for 24 hours with edU incorporation FaCs assay. Percentages of edU+ cells 
are presented. (C) Caspase 3/7 activity of gBM cells treated with DMsO or ThZ1 at indicated concentrations for 48 hours with Caspase-glo assay. (D) apoptosis analyses 
of gBM cells treated with DMsO or 0.1 µM ThZ1 for 48 hours by annexin-V staining FaCs assay. Percentages of each quadrant are presented. (E) Cytotoxicity of gBM cells 
treated with DMsO or ThZ1 at indicated concentrations for 48 hours with Cytotox-glo assay. (F) RT-qPCR analyses of mRna levels of proliferation and anti-apoptosis-
related genes in gBM cells treated with DMsO or 0.1 µM ThZ1 for 8 or 24 hours. P-values were determined by Two-tailed student’s  t-test. *P<0.05, **P<0.01***P<0.001.
Abbreviations: FACS, fluorescence-activated cell sorting; GBM, glioblastoma multiforme: ND, not detected; RT, real-time.
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Figure 5 ThZ1 inhibits global gene transcription and preferentially targets super-enhancer-associated genes in gBM cells. 
Notes: (A) immunoblotting analyses of RnaPii CTD phosphorylation in gBM cells treated with DMsO, ThZ1 (0.1 µM) or ThZ1-R (0.1 µM). (B) heatmap of relative gene 
expression levels of all active transcripts in U87 cells treated with ThZ1 (0.1 µM for 8 hours) vs DMsO. (C) histogram of active transcript counts grouped by fold change of 
gene expression in response to ThZ1 treatment. Red and blue bars indicated FDR ≤0.05 or FDR >0.05, respectively. (D) Top five enriched GO categories of THZ1-sensitive 
transcripts (log2FC ≤–1.5, FDR ≤0.05). (E) Box plots of log2 fold changes for all active transcripts (all) or those associated with Te or se in U87 cells treated with 0.1 µM 
ThZ1 for 8 hours. *P<0.05, Two-tailed student’s  t-test. (F) Gene set enrichment analysis plot showing significant enrichment of SE-associated genes in DMSO-treated cells 
relative to ThZ1-treated cells. (G) Top 10 enriched gO biological process and molecular function categories of ThZ1-sensitive se-associated transcripts (log2FC≤–1, FDR 
≤0.05).
Abbreviations: CTD, C-terminal domain; FDR, false discovery rate; gBM, glioblastoma multiforme; gO, gene ontology; nes: normalized enrichment score; se, super 
enhancer; Te, typical enhancer.
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(Figure 5B, C). GO analyses of significantly downregulated 

transcripts (log2FC ≤–1.5, FDR ≤0.05) showed that the top 

THZ1-sensitive biological processes and functions were 

related to transcription, gene expression, DNA repair, cell 

cycle and apoptosis (Figure 5D, Table S4).

SE-associated genes, which play key roles in determining 

tumor cell identity and malignant phenotypes, have been 

shown to be more sensitive to THZ1 inhibition and thereby 

serve as its primary target genes in other cancer types.12–15 To 

further investigate how THZ1 affected SE-associated genes 

in GBM, published anti-MED1 and anti-H3K27Ac ChIP-seq 

data of U87 cells were obtained and analyzed to characterize 

its enhancer landscape. A total of 462 and 575 SE-associated 

genes were identified, with an overlap of 251 genes, including 

four known GBM-associated genes: STAT6, PKM2, CD44, 

and BCL2L1 (Figure S2A-C). Notably, GO_POSITIVE_

REGULATION_OF_GENE_EXPRESSION was identified as 

the top enriched biological process from GO analyses of the 

shared SE-associated genes, suggesting a crucial role of gene 

expression regulation in GBM (Figure S2D and Table S5). Our 

data found that the mean abundance of SE-associated genes 

was significantly more reduced by THZ1 compared with that 

of typical enhancer-associated genes (Figure 5E). Moreover, 

the shared SE-associated transcripts were enriched of THZ1-

sensitive genes (Figure 5F), and these THZ1-sensitive SE 

associated genes (log2FC≤–1, FDR ≤0.05) were significantly 

associated with molecular processes and functions related to 

biosynthesis, transcription, apoptosis, embryo development 

and signal transduction (Figure 5G, Table S6).

Functional validation of ThZ1-sensitive 
se-associated genes in gBM cells
THZ1-sensitive SE-associated genes have been shown to be 

enriched of tumor “Achilles gene”,15 therefore, we selected 

the top five highly expressed THZ1-sensitive SE-associated 

genes of U87 cells (WNT7B, FOSL1, FOXL1, ZMIZ1, and 

PHC2 as shown in Figure 6A) for functional validation. Our 

RT-qPCR results confirmed that these five selected genes were 

highly sensitive to THZ1 inhibition (Figure 6B). Moreover, we 

employed shRNA-mediated knockdown to silence each one 

of them individually in U87 cells (Figure 6C) and monitored 

their effects on cell proliferation. As shown in Figure 6D, 

knockdown of four such genes, WNT7B, FOSL1, FOXL1, and 

ZMIZ1, markedly disrupted U87 cell proliferation.

Discussion
GBM remains to be one of the top lethal cancer types for 

adults to date. Current clinical therapies of GBM  suffer 

greatly from the highly heterogeneous and adaptable 

genome and transcriptome of GBM cells.34,35 Therefore, 

further work is urgently required to discover novel thera-

peutic strategies for GBM treatment. We focused on identi-

fying novel epigenetic therapy against GBM because most 

oncogenic driver genes or signalling pathways converge to 

affect gene expression, which is universally under control 

of epigenetic regulation. In this study, the covalent CDK7 

inhibitor THZ1 was one of the top hits in our anti-GBM 

epigenetic drug screening. Therapeutic efficacy of CDK7 

inhibition against GBM by THZ1 or genetic targeting 

approaches (shRNA and sgRNA) were confirmed both in 

vitro and in vivo. Notably, multiple long-established GBM 

cell lines and recent patient-derived primary GBM cell lines 

tested in our study all exhibited high sensitivity to THZ1. 

Our study was further strengthened by analyses of GBM 

patient tumor database, such as CGGA and TCGA, which 

revealed the clinical significance of CDK7 as a prognostic 

marker of GBM. These results strongly support the thera-

peutic efficacy of THZ1 in antagonizing CDK7-mediated 

transcriptional addiction in GBM.

Like previous studies,12–15 we found that THZ1 treatment 

of GBM cells resulted in broad inhibition of RNAPII-medi-

ated gene transcription but preferentially target SE-associated 

genes compared with regular enhancer-associated genes. 

SEs have been shown to be associated with key oncogenic 

genes in several cancer types,26 therefore, the hypersensitiv-

ity of these genes to THZ1 could make CDK7 inhibition 

a promising therapeutic strategy against GBM. Moreover, 

our functional validation of the top five highly expressed 

THZ1-sensitive SE-associated genes showed knockdown 

of four such genes individually remarkedly inhibited GBM 

cell growth, underscoring SE-associated genes as critical 

downstream functional targets of THZ1 in treating GBM and 

supporting the idea that THZ1-sensitive SE-associated genes 

are enriched with tumor “Achilles genes”.

Notably, another group has recently published a study 

showing that CDK7 could be a potential therapeutic target 

in HGG,17 our current study adds values on theirs, including 

1) our study successfully demonstrates in vivo therapeutic 

efficacy of THZ1 against GBM, 2) our study uses genetic 

targeting approaches (CRISPR-Cas9 and RNAi) to directly 

confirm CDK7 as valid therapeutic target of GBM, 3) our 

study revealed SE-associated genes as top sensitive and criti-

cal functional targets of THZ1-induced global transcription 

inhibition in GBM cells and 4) our integrative analyses of 

GBM tumor databases provide further clinical-relevant sup-

port for CDK7 inhibition therapy of GBM.
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Figure 6 Functional validation of ThZ1-sensitive se-associated genes in gBM cells. 
Notes: (A) gene tracks of MeD1 (top) or h3K27ac (bottom) ChiP-seq occupancy at indicated se-associated gene loci. The x-axis shows genomic position and the y-axis 
shows the signal of binding in units of reads per million bin (rpm/bp). (B) RT-qPCR analyses of mRna levels of 5 selected ThZ1-sensitive se-associated genes in response to 
ThZ1 treatment as indicated. (C) RT-qPCR analyses of knockdown efficiency of shRNAs targeting five selected THZ1-sensitive SE-associated genes. (D) Cell growth curve 
of U87 cells infected with shRna expressing lentivirus as indicated. green and purple asterisks indicate P-values of two shRna groups compared with control (shscr-1 plus 
shscr-2), respectively. **P<0.01, ***P<0.001, Two-tailed student’s  t-test.
Abbreviations: ChiP-seq, chromatin immunoprecipitation sequencing; gBM, glioblastoma multiforme; RT, real-time; se, super enhancer. 
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In summary, our study demonstrates that targeting CDK7-

associated dysregulated transcriptional program could be 

an effective therapeutic strategy of treating GBM. Together 

with a couple of other recent studies,10,17,36,37 we contribute 

to uncover the importance of transcription process in GBM 

oncogenesis and therapy and provide rational for further 

exploiting transcriptional addiction as valid therapeutic 

target of GBM. Finally, given that a recent study reported 

transcription inhibition by THZ1 could also suppress adap-

tive responses to targeted cancer therapy,38 combination of 

transcription inhibition therapy with canonical chemotherapy 

or targeted therapy in GBM shall be further tested in future.
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