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Abstract: Understanding protein–protein recognition is one of the main goals in structural 

biology. Most of the key biological processes involve the formation of specific protein complexes, 

for which a detailed structural knowledge is essential to understand the mechanism of protein 

association and their functional implications. Computational docking methods are currently 

able to predict the structure of a protein–protein complex with a high degree of accuracy in 

some cases. However, in the majority of cases, with conformational movements upon binding, 

we have to go beyond the current rigid-body approach and introduce flexibility. Given the dif-

ficulties of using full-atom descriptions during flexible docking, we need to focus our efforts 

in coarse-grain models. Here, we have implemented and tested a version of the united residue 

(UNRES) forcefield for protein–protein docking refinement. The results indicate improvement 

in the geometry of the docking solutions, and better docking energy landscapes, although in 

general, the scoring did not improve with respect to rigid-body pyDock function. However, as 

opposed to other scoring algorithms, the UNRES scoring does not seem to be biased towards 

cases that are over-represented in the structural databases (typically enzyme-inhibitor and anti-

body-antigen cases). This consistency among all types of complexes suggests its use as a solid 

basis for developing better unbiased scoring methods.

Keywords: molecular recognition, structural prediction, protein–protein association, global 

energy

Introduction
The behavior of the cell, both internally and with respect to the external environment, 

relies on a vast number of different molecular interactions. Among all these interactions, 

protein–protein interactions are responsible for the most important biological processes, 

including signal transduction, transportation, enzymatic activity and immune activities. 

It is thus essential to understand the structural and physicochemical basis of protein–

protein recognition and to be able to predict the structure of the specific complexes 

formed between interacting proteins. The low number of protein–protein complexes 

experimentally assessed stresses even more the importance of this endeavor.

In recent years, computational approaches have boosted the structural biology 

field, and with increasing frequency more studies are focusing on protein–protein 

associations. Protein–protein docking addresses the problem of predicting the 

three-dimensional structure of a protein–protein complex given the structure of the 

subunits. Since a full ab initio physical calculation is computationally prohibitive, 

due to the huge number of degrees of freedom that appear to be in a standard system, 

many algorithms have been developed that try to combine different disciplines, from 
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according to the specific size and shape of the amino acid 

side chain.7 The Cαs are used only to construct the chain, 

and to place the peptide group p halfway between them 

(see Figure 1), although they are not used to compute the 

energy. The distance between consecutive Cαs is fixed, 

just as the distance between the side chain centers and the 

corresponding Cα. Thus, each amino acid is described by 

four degrees of freedom, they are the virtual bond bending 

θ, the virtual bond dihedral angle γ and the angles α and 

β, for the orientation of the side chain with respect to the 

backbone.

The force field has been derived as a potential of mean force 

(PMF), or restricted free energy (RFE) by averaging out the 

degrees of freedom of the chain not present in the two-bead 

model, as the ones belonging to the solvent molecules (the 

reader is referred to Alberts21 for an introduction to PMF, and 

to Liwo et al10 for a theoretical basis of the UNRES forcefield). 

Performing a factorization of the RFE, into one-, two- and 

multibody-terms, according to the cluster expansion of Kubo,22 

analytical expressions for the description of the energy are 

obtained. The expression for the calculation of the intrachain 

potential energy is then given by equation 1 below:
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where USCiSC j
, USCi p j

, and  U pi p j
 stand for the potential energy 

accounting for the interactions in water between different side 

chains, between side chains and peptide groups, and between 

different peptide groups, respectively (the term “peptide 

group” refers to the backbone portion of each residue).The 

term U
b
 describes the bending of the virtual bond angles, U

tor
 

and U
tord

 the virtual bond torsional angle and coupled (double) 

torsional angle, and U
rot

 the energetics of the rotameric state 

of the side chains. Finally the terms Ucorr
i( )  refer to three- and 

four-body interactions between non-contiguous parts of the 

chain, while Uturn
i( )  accounts for the same interactions between 

contiguous parts of the chain. These terms come from the 

truncated expansion of the free energy into independent clus-

ters (together with U
tor

 and U
tord

), and involve mixed interac-

tions between local energies (averaged all atom energy of the 

mathematics to biology.1 In most cases, docking algorithms 

generally include a rigid body orientational sampling part, 

followed by a scoring and post-analysis selection of small 

numbers of conformations for a final refinement. Despite 

improvements in these methods during the last few years, as 

can be seen from the results of the CAPRI experiment2–4 

(see http://www.ebi.ac.uk/msd-srv/capri), most methods 

usually fail when there are conformational changes upon 

complexation. Thus, a proper inclusion of conformational 

flexibility in the docking algorithms is essential to make 

progress in this field.

Coarse-grained models for proteins have experienced 

significant advances during the last few years, which have 

aroused a renewed interest in this field.5 One can sim-

plify the geometry, describing each residue with a small 

number of beads, or use simplified forcefields, elastic 

network models, or even Gō-like models.6 In general, 

the coarser the description, the larger the system can be 

treated. However, with coarser models it also becomes 

more diff icult to parameterize forcef ields for being 

both accurate and transferable. In this framework the 

united residue (UNRES) forcefield,7–17 with two beads 

per residue, achieves an acceptable compromise. Since 

it has been derived from first principles, averaging the 

degrees of freedom that the model neglects, its appli-

cability becomes largest. Thus, the UNRES forcefield 

has proven to be quite adequate for several molecular 

mechanics problems such as in protein folding – as shown 

in recent CASP experiments18 – in multichain protein fold-

ing,19 or in free energy calculations with multicanonical 

algorithms.20 However, it has not yet been applied to the 

broad problem of protein–protein association or bench-

marked as part of a general protein–protein docking and 

refinement protocol.

In this work, we will apply the UNRES model meth-

odology to the refinement of protein–protein rigid-body 

docking poses. We will evaluate different UNRES forcefield 

parameters and will analyze the improvement of the docking 

landscapes.

Methods
UNRES forcefield
The UNRES model for protein modeling7–17 offers a coarse 

grained description of the molecule together with a physical 

based forcefield. Two beads per residue are used as interac-

tion sites, one for the main chain (p) and the other for the 

side chain (SC). The SC beads are different-sized ellipsoids 
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Figure 1 The UnReS model uses a 2-bead coarse-grained description for each amino acid residue.
Notes: Four angle values describe the geometry of each peptide, θ and ϕ for the backbone and α and β for the side chain (Sc). The interacting sites are different-sized 
ellipsoid beads corresponding to the Sc, and peptide groups p represented as black circles. The bond lengths are kept fixed and two extra dumb residues are placed between 
receptor and ligand to allow extra mobility.

backbone for each peptide) and the electrostatic interaction 

between peptide groups.

The use of this force field for protein–protein interactions 

requires a term for the interaction between proteins, as in a 

previous work about multichain protein folding.19 Following 

that study, we have used the same nonbonded terms as in 

the single chain forcefield, with the same derived weights. 

Hence, the interacting energy between two different chains 

k and l is described by equation 2 below:
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Depending on the energy terms, the parameterization 

comes from fitting to distributions derived from the Protein 

Data Bank23 (PDB) (USCiSC j
, USCi p j

, U
b
, and U

rot
) or from 

fitting to averaged free energy surfaces (the rest of terms). 

The set of weighting factors for the different energy terms 
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can define the behavior of the proteins. In this work we have 

compared the results produced from three different sets of 

weights, previously described. The first set of weighting fac-

tors used in this work, (called 4P)17 was derived from decoys 

composed of lowest-energy conformations, so it should 

be able to identify near-native conformations from a large 

decoy set based on the conformational docking energy. It 

was also shown to be suitable to fold medium-sized proteins 

although it performed better on the α- and α- + β- than on the 

β-proteins.17 However, the 4P forcefield did not include any 

thermal effects because it was derived from lowest-energy 

conformations. Therefore, for some proteins it revealed 

 difficulties to reproduce canonical molecular dynamics.24 

The other two sets of weights used here were 07αβ25 and 

09.26 Both were derived in order to include temperature 

dependence in the forcefield. The 07αβ set was derived 

for an αβ-protein (another set 07α was derived for an α-

protein, but has not been used in this work).25 The 09 set 

was derived for an α-protein.26 Both were used here at a 

temperature of 300 K.

Minimization with UnReS
UNRES energy minimizations have been applied to dock-

ing orientations generated by FTDock (see next section). 

As the UNRES energy is calculated in internal coordinates, 

geometric constraints to the minimization can be easily 

included. Thus, in order to restrict a given degree of free-

dom, one only needs to cancel the corresponding gradient. 

For instance, when minimizing the side chains alone, only 

the corresponding interacting terms were calculated, with 

a dramatic reduction in computational times. One limita-

tion of the original description is that, as the chain is con-

structed with fixed separation between Cαs (Figure 1) the 

distance between the last residue of the receptor and the 

first one of the ligand is restricted during a minimization. 

To allow for extra mobility, we included two dumb residues 

(D
1
 and D

2
) between receptor C-term and ligand N-term 

(Figure 1). This is a more rational way to include better 

sampling of the orientation and translational space between 

the molecules. These dumb residues were only included 

between receptor and ligand molecules, not between chains 

in cases of multi-chain receptor or ligand so that the whole 

receptor or ligand can move at once. In cases of missing 

residues, in the X-ray unbound structures, we have not used 

any restraints to keep the conformation of the residues next 

to the missing ones (to avoid unwanted flexibility in cases 

of missing large residue segments, it would be desirable to 

model the missing residues).

Minimization was performed with the m1qn3 package, 

which uses a limited memory quasi-Newton approxima-

tion of the Hessian and a line-search strategy. It has been 

proven to be specially suited to solve large scale minimization 

problems.27 As a termination criterion we used both gradient 

convergence (a fraction smaller than 10-20 between final and 

initial gradients) and a limited number of steps (70 was the 

number of iterations and 150 the number of simulations).

Rigid body sampling and pyDock scoring
Initial sets of 10,000 rigid-body docking conformations 

were generated using FTDock.28 We used electrostatics and 

a grid size of 0.7 Å, which were previously shown to be the 

best conditions for energy-based scoring with pyDock.29 For 

comparison purposes, we used one of the most competitive 

scoring functions for protein–protein docking, pyDock,30 

which calculates the interaction between receptor and ligand 

based on: i) truncated and linearly screened electrostatic 

term; ii) truncated and weighted Van der Waals term; and 

iii) an accessible surface area (ASA)-based desolvation 

energy term with atomic parameters previously optimized 

for docking.31

Benchmark
To test the reliability of the methods described in this work, 

we used a standard benchmark for structural prediction of 

protein–protein complexes.32 It is composed of 84 complexes 

that have available X-ray crystal structures for the bound and 

the unbound subunits. We always used the unbound subunits 

for all docking calculations in this work. In order to avoid 

biased results (some unbound structures in the benchmark 

were oriented as in the complex, which can make it easier 

for FTDock to find near-native docking solutions in some 

cases), the initial structures were randomly oriented before 

any calculation (a minor random deviation from the exact 

bound orientation helps to avoid any bias). In addition, we 

checked here that the final accepted solutions in the docking 

results did not arise from initial random orientations seren-

dipitously close to the correct complex structure. Moreover, 

we checked that similar sampling results were obtained with 

FTDock when using different initial random orientations 

(data not shown).

Besides, in order to try several parameterization and 

sampling methods, most of the tests were done over a sub-

set of this benchmark. This subset was composed by nine 

complexes: three antibody/antigen complexes, three enzyme/

inhibitor case, and three classified as “other”. All of them 

were described as rigid body in the original benchmark.
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Success rates were defined as the percentage of test cases 

in which at least one acceptable docking solution is found 

with rank lower or equal than a given value when ranking 

the sampled conformations according to the different scor-

ing functions. A near-native or acceptable docking solution 

was defined as the one that, after superimposing the receptor 

molecules of the reference and the corresponding structure, 

had a root-mean-square deviation (RMSD) value of less than 

10 Å between both ligand Cα atoms.

Results and discussion
Side-chain optimization of docking poses
The first test was analyzing the capabilities of the UNRES 

forcefield (in different conditions) for optimizing the con-

formation of the side-chains in rigid-body docking solutions. 

For that, we tried the three different sets of weighting factors 

4P, 07αβ, and 09 (described in Methods) on a sub-set of 

cases of the benchmark for which rigid-body docking poses 

were generated by FTDock (using the unbound subunits). 

Each docking pose was described by the UNRES approach 

and only the side-chains of both molecules were allowed 

to move. The three forcefield conditions above described 

were applied, using the total energy of the system. The final 

scoring energy after minimizing the side chains is given by 

the corresponding UNRES forcefield, considering either 

the interaction energy between receptor and ligand (inter) 

or the total energy of the system (total). The results are 

shown in Figure 2.

As can be seen, all conditions place a near-native solution 

within the top 1000 docking orientations in around 80% of the 

cases. However, when we focus on the success rates for the 

 lowest-ranked docking orientations, there are some clear differ-

ences. First, in all conditions, the use of interaction energy seems 

better than the total energy. Then, we can see that although the 

4P forcefield gives better results for the top 10 docking predic-

tions, the 07αβ forcefield is more consistent and gives better 

results for most ranking values up to top 100 (this forcefield 

yields the best results especially at top 1, and top 20).

Side-chain optimization: results  
in full benchmark
Following the previous test, we decided to evaluate the 

results of the most promising forcefield (07αβ) on the total 

of 68 cases of the benchmark that had at least one near-native 

solution within the FTDock-generated docking sets (using 

the unbound subunits). The results are shown in Figure 3. 

The first striking result is that success rates of the minimized 

docking poses are worse than when scoring the rigid-body 

docking poses with pyDock. The reason could be that the 

energy function of the UNRES forcefield might not be use-

ful to disregard false positives that may have very different 

interfaces. In order to test this, for each case we considered 
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Figure 2 Success rates (eg, percentage of cases with at least a near-native solution with rank lower or equal than that indicated in axis) of the side-chain minimization with 
different UNRES forcefields on a subset of nine benchmark cases.
Notes: For each forcefield setup, the interaction energy between receptor and ligand (inter) or the total energy of the system (total) has been used for the final scoring as indicated.
Abbreviation: RMSD, root mean square deviation.
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only the top 50 or 100 conformations as sorted them by 

pyDock before minimization, and then they were ranked by 

the UNRES potential after minimization of the side-chains. 

The success rates were practically the same as the pyDock 

values (for top 10 the UNRES success rates were slightly 

worse than for pyDock, but for top 2, top 3, top 4 or top 5, 

the UNRES success rates were slightly better than pyDock). 

This indicates that the UNRES forcefield after side-chain 

minimization can be used for the scoring of docking poses 

once most of the false positives have been removed.

It is interesting to analyze the results of the UNRES 

minimization in the complete docking sets, on the complexes 

grouped by type. In Figure 4 we can see the results for three 

types of complexes (as defined in the original benchmark): 

enzyme-inhibitor, antibody-antigen, and “other” types of 

cases. We can see that for the top 10 docking poses, the results 

are practically the same for all types of complexes. This is in 

contrast with the results by pyDock (also shown for compari-

son). The scoring by pyDock clearly works better for enzyme-

inhibitor cases, and clearly worse for “other” type of cases, in 

line with what has been previously observed.29 These results 

indicate that the UNRES scoring is providing results that are 

independent on the type of complex. However, the UNRES 

results are similar to pyDock ones for the “other” type, and it is 

clear that UNRES scoring does not particularly recognize the 

characteristics that make certain types of complexes (enzyme-

inhibitors and antibody-antigens) to be better identified by 

pyDock. The positive aspect is that UNRES is not biased 

towards certain types of complexes (at least for the low-rank 

values), as the parameters have not been specifically derived 

from structural databases of protein–protein complexes (where 

some complex types are over-represented). We could specu-

late that any general future improvement in the forcefield 

(both minimization and scoring) might be beneficial for all 

docking cases (including the difficult ones, as in the “other” 

type), although this remains to be seen.

global energy minimization: backbone 
and side-chain optimization
We also evaluated the results of applying global energy 

minimization with UNRES (including backbone, side-chain 

and rotation/translation ligand movements) to the refinement 

that rigid-body docking poses. In Figure 5 are shown the 

results with the different UNRES forcefields. As can be 

seen, although the success rates for the top 10 docking poses 

are the same as with side-chain only optimization, for the 

rank values above 10 the results are worse. Since the global 

minimization was performed after side-chain minimization, 

perhaps the conformations did not evolve further and hence 

did not improve. However, it was necessary to run global 
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Figure 3 Results for the 68 complexes of the benchmark that had at least one near-native conformation generated by FTDock.
Notes: Success rates (eg, percentage of cases with at least a near-native solution with rank lower or equal than that indicated in axis) for 07αβ UnReS interaction energy 
after side-chain minimization are shown (green line). For comparison, success rates for pyDock scoring of the rigid-body docking poses are also shown (red line). When only 
the best 50 or 100 docking poses as sorted by rigid-body pyDock are considered, the success rates for scoring them with 07αβ UnReS after side-chain minimization are 
shown in blue and magenta lines, respectively.
Abbreviation: RMSD, root mean square deviation.
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Figure 4 Success rates (eg, percentage of cases with at least a near-native solution with rank lower or equal than that indicated in axis) on groups of cases classified according 
to complex type, for the 68 complexes of the benchmark that had a near-native conformation generated by FTDock.
Notes: The success rates of 07αβ UNRES forcefield after side-chain minimization are shown for enzyme-inhibitors (red line), antibody-antigen (green line) and “other” type of cases 
(blue line). For comparison, the success rate of pyDock scoring of rigid-body docking poses are shown for the same groups of cases (magenta, cyan and orange lines, respectively).
Abbreviation: RMSD, root mean square deviation.

minimization after side-chain optimization, otherwise there 

were problems of instability (some docking orientations 

unfolded when global minimization was directly applied after 

rigid-body docking; probably due to an excessive number of 

clashes in the rigid-docking geometries).

In some cases the globally refined docking structures 

significantly improved after the UNRES global energy opti-

mization. For instance, in the case of the 1D6O/1IAS complex 

(PDB 1B6C), the distribution of docking orientations after 

side-chain and global energy minimization improved the 
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Figure 6 energy landscape for the 1B6c complex before (pyDock values in gray) after side chain minimization and global energy minimization (ie, including backbone and 
side-chains) with UNRES forcefield 07αβ (in red).
Notes: A nice funnel can be seen for the docking poses closest to the reference structure (lowest RMSD values).

docking landscape. As can be seen in Figure 6, the dock-

ing energy landscape has a nice funnel shape in which the 

lowest-energy docking conformations are the closest to the 

reference state in terms of RMSD. In this case, the lowest-

energy docking solution after side-chain and full energy 

minimization was a near-native docking solution (rank 1; 

5.9 Å ligand RMSD with respect to the reference complex 

structure; Figure 7), which before minimization was not even 

considered as a near-native solution by our standards (11.8 Å 

ligand RMSD; ranked 5 by pyDock). Other conformations, 

not considered near-native solutions by our standards before 

minimization, also had better RMSD after full minimization 

(14.9 to 8.04 Å, final rank after minimization: 366; 10.1 to 

5.9 Å, final rank after minimization: 49; and 12.0 to 9.0 Å, 

final rank after minimization: 30).

Conclusions
We have implemented and tested a version of the UNRES 

forcefield for the use in the refinement of protein–protein 

docking orientations. The results indicate an improvement 

on the geometry of the docking solutions in some cases, 

although in general, the scoring did not improve with respect 

to rigid-body pyDock function. The fact that the UNRES scor-

ing gives similar results for all types of complexes indicates 

that there is no bias towards specific, overrepresented types 

of complexes, and can be the basis for developing better 

unbiased scoring methods.

Figure 7 Docking and UNRES refinement results for 1B6C complex (reference in 
white). The lowest energy solution after global minimization (ie, including backbone 
and side-chains) is shown (receptor in orange, ligand in blue).
Notes: The same solution before minimization is also shown (receptor in yellow, 
ligand in cyan). This conformation went from 11.8 Å to 5.9 Å ligand RMSD after 
minimization (and from rank 5 by pyDock, to rank 1 by UnReS). For clarity, the 
1D6O/1iAS reference complex molecule is shown in white (the biggest molecule, 
defined as the ligand in the original benchmark, was superimposed).
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