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Abstract: While prostate cancer is a common disease in men, it is uncommonly life-threatening. 

To better understand this phenomenon, tumor biologists have sought to elucidate the mechanisms 

that contribute to the development of virulent prostate cancer. The recent discovery that 

caveolin-1 (Cav-1) functions as an important oncogene involved in prostate cancer progression 

reflects the success of this effort. Cav-1 is a major structural coat protein of caveolae, specialized 

plasma membrane invaginations involved in multiple cellular functions, including molecular 

transport, cell adhesion, and signal transduction. Cav-1 is aberrantly overexpressed in human 

prostate cancer, with higher levels evident in metastatic versus primary sites. Intracellular Cav-1 

promotes cell survival through activation of Akt and enhancement of additional growth factor 

pro-survival pathways. Cav-1 is also secreted as a biologically active molecule that promotes 

cell survival and angiogenesis within the tumor microenvironment. Secreted Cav-1 can be 

reproducibly detected in peripheral blood using a sensitive and specific immunoassay. Cav-1 

levels distinguish men with prostate cancer from normal controls, and preoperative Cav-1 

levels predict which patients are at highest risk for relapse following radical prostatectomy 

for localized disease. Thus, secreted Cav-1 is a promising biomarker in identifying clinically 

significant prostate cancer.
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Introduction
Over the past decade, advances in basic tumor biology have influenced the approach to 

treating patients with prostate cancer. While research efforts have historically focused 

on the prostate cancer epithelial cell, there is growing evidence that interactions 

between the host tissue microenvironment and the cancer epithelial cell are critical 

for tumorigenesis.1 Understanding the bidirectional cancer cell-host interaction now 

dominates prostate cancer research. For example, prostate cancer epithelial cells 

preferentially metastasize to bone by acquiring osteomimetic properties that usurp 

normal bone homeostasis.2 Once in the bone, prostate cancer epithelial cells secrete 

soluble factors that act through both paracrine and autocrine mechanisms to promote 

cell survival and angiogenesis. This knowledge has led to novel treatment strategies 

that target the bone microenvironment (eg, with antiangiogenesis inhibitors) in addition 

to the epithelial cell (eg, with chemotherapy).

Despite this progress, however, novel biomarkers are needed to improve the ability 

to detect prostate cancer, predict prostate cancer lethality, and monitor response 

to therapy. Prostate-specific antigen (PSA) is the most widely used biomarker in 

prostate cancer management, but after two decades its value and appropriate use 
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remain controversial.3,4 This has led to the development of 

additional biomarkers to compensate for, or improve upon, 

the limitations of PSA. Candidate prostate cancer biomarkers 

now broadly include circulating tumor cells, tumor-specific 

genetic changes (mutations, amplifications, deletions, 

translocations), epigenetic changes (DNA methylation, 

histone modifications, microRNAs), and protein changes 

(increased expression of oncogenic proteins, diminished 

expression of tumor suppressor proteins, production of soluble 

tumor-associated proteins).5–7 High-throughput technologies 

are also significantly impacting prostate cancer biomarker 

research, with the potential to provide comprehensive tumor 

“transcriptomes” (complete set of mRNAs expressed) and 

“proteomes” (complete set of proteins expressed).8

To date, however, few of these markers have made 

the transition from research to clinical practice. Most 

biomarkers are attractive in theory but fail to meet the 

required standards for a clinically useful test with respect 

to sensitivity/specificity, positive/negative predictive value, 

reproducibility, reliability, precision, accuracy, and validity. 

For these reasons, the development of a successful biomarker 

is as challenging as the development of a successful new 

drug, since both discovery platforms involve screening 

hundreds of candidates, discarding most, and validating 

only a select few.9 Given the reality of limited funding for 

translational research, limited patient tissue resources (blood, 

urine, biopsy specimens, etc), and limited time to meet critical 

patient needs, it is essential to prioritize development of the 

most promising biomarkers.10

For a number or years, our laboratory has been investigating 

the use of caveolin-1 (Cav-1) as a novel predictive biomarker 

for prostate cancer progression.11 Cav-1 is an important 

regulatory molecule involved in molecular transport and cell 

signaling.12 While normal prostate epithelia express minimal 

levels of Cav-1, prostate cancer cells abundantly overexpress 

Cav-1, both at the tissue level and as a secreted protein in 

sera that can be measured by enzyme-linked immunosorbent 

assay (ELISA).13 In contrast with PSA, detailed mechanis-

tic studies have shown that Cav-1 is linked to malignant 

characteristics of prostate cancer cells and alters the tissue 

microenvironment in a manner that promotes angiogenesis.14 

In this review, we discuss current concepts illustrating the 

need for novel biomarkers in prostate cancer and the potential 

for Cav-1 to fill this need.

Clinical features of prostate cancer
Prostate cancer is a major health care problem in the US. 

It is the most common noncutaneous malignancy and the 

second leading cause of cancer death in men. In 2009, it 

is estimated that 192,280 men will be newly diagnosed 

with prostate cancer and 27,360 men will die from the 

disease.15 The greatest risk factor for developing and 

dying from prostate cancer is increasing age.16,17 Thus, 

as life expectancies increase and death rates decrease, 

the burden of prostate cancer on patients, families, and 

society continues to grow.18 Other prostate cancer risk 

factors include race (African-American), family history, 

obesity, and hereditary susceptibility loci, including 

BRAC1/BRACA2.19–22

Prostate cancer is a biologically and clinically heterogeneous 

disease. While most men who live long enough eventually 

develop prostate cancer, only a minority will die from it. 

This is evidenced by a high incidence of occult malignancy 

in autopsy series of men who die from non-prostate cancer 

causes and in clinically normal prostates of men undergoing 

cystoprostatectomy for bladder cancer.23,24 These data illustrate 

two unique features of prostate cancer that distinguish it from 

other solid tumor types. First, untreated prostate cancer has 

a relatively prolonged natural history and is often indolent 

for 15 years or more before becoming life-threatening.25,26 

Second, longitudinal studies suggest that prostate cancer has 

the potential to be either clinically “significant” or clinically 

“insignificant” based on the likelihood that the cancer will 

threaten a person over the course of his natural lifetime.27 

For these reasons, it is critical to consider a patient’s age and 

comorbidities at the time of diagnosis, since the risk of mor-

bidity and mortality from non-prostate cancer illnesses also 

increases with age and may even exceed those from prostate 

cancer in older patients.25

For those patients with clinically significant disease, 

tumor progression occurs in a well-recognized anatomic pat-

tern.28 Tumors that are initially confined within the prostate 

gland first spread to locoregional lymph nodes (though not 

usually with radiographic enlargement) and then subsequently 

disseminate to distant organs, with a striking predilection for 

the skeleton.2 The discovery and application of hormone 

ablative therapy to patients with metastatic disease reveals 

that most tumors (90%) are initially responsive to castration 

but remain incurable because of the subsequent evolution of 

castrate-resistant disease. Thus, the greatest opportunity to 

cure patients with prostate cancer is through local therapy 

(surgery or radiation) for early-stage, small-volume, 

androgen-dependent, organ-confined disease. Fortunately, 

only a minority of patients ultimately develop metastatic 

castrate-resistant disease. To conceptualize the clinical 

heterogeneity evident during prostate cancer progression, 
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patients are assigned to different “clinical disease states” 

to help structure treatment recommendations as well as the 

development of novel therapies and biomarkers.29,30

Prior to the discovery of PSA, most patients with 

prostate cancer were not diagnosed until they presented 

with clinical symptoms of advanced disease, such as bladder 

outlet obstruction or bony pain. These patients were rarely 

cured with available therapies. Following the widespread 

implementation of PSA screening in 1988, however, there 

has been a dramatic increase in the number of asymptomatic 

younger men detected with earlier-stage, localized disease.31 

This “stage-migration” phenomenon has been accompanied 

by a significant increase in the number of patients undergoing 

radical prostatectomy.32

The advent of PSA also influenced the development of 

a logical strategy to reduce morbidity and mortality from 

prostate cancer, by detecting clinically significant cancers 

at their earliest stage when they are androgen-dependent 

and organ-confined, because these tumors have the great-

est chance of being cured with local therapy (surgery or 

radiation).33,34 In support of this strategy, treatment of 

early-stage tumors with radical prostatectomy has been shown 

to improve survival when compared with watchful waiting 

in a randomized clinical trial.35 In this study, the majority of 

tumors were detected by digital rectal examination rather 

than PSA. Since tumors detected by PSA are generally of 

lower clinical stage than tumors detected by digital rectal 

examination (for example, comparing T1c versus T2 dis-

ease), one would predict that treatment of PSA-detected 

tumors would improve outcomes for men diagnosed with 

prostate cancer.

However, whether the practice of PSA screening and 

early therapeutic intervention has contributed to the decline 

in death rates from prostate cancer remains controversial. The 

recent publication of two large randomized screening trials 

(with greater than 250,000 patients) has not helped clarify 

the issue, given that one trial did not show a survival benefit 

(the Prostate, Lung, Colorectal and Ovarian Cancer Screen-

ing Trial [PLCO] in the US) while the other one did (the 

European Randomised Study of Screening for Prostate Cancer 

[ERSPC] trial in Europe).36,37 In the positive ERSPC trial, it 

was estimated that 1,410 men would need to be screened and 

48 treated to prevent one prostate cancer death during a 10-

year period. Thus, the benefits of screening come at a high 

cost with respect to the large number of patients that need to 

be screened, biopsied, and treated to prevent each death.

The success of the early diagnosis-early intervention 

strategy has arguably been hampered by the lack of accurate 

clinicopathologic, prognostic, and predictive biomarkers 

to distinguish reliably between clinically significant and 

insignificant disease. For example, because most early-stage 

cancers are statistically likely to be clinically insignificant, 

many patients are “overdiagnosed” and “overtreated” 

because they receive local therapy for tumors that would 

never have harmed them. Since local therapies carry some 

risk for morbidity (eg, incontinence, loss of potency), this 

has important implications for the patient who receives 

unnecessary treatment. Overtreatment, in conjunction with 

lead-time bias due to PSA screening (where survival appears 

longer because of diagnosis before the cancer is clinically 

evident), certainly dilute the survival benefit of treating 

early-stage disease.38

Conversely, some patients are “undertreated” because local 

therapies are not uniformly curative for clinically significant 

disease. Reasons for this include deficiencies in execution 

of the therapeutic modality (for example, inadequate tumor 

resection by an inexperienced surgeon), localized tumors with 

an aggressive biology that is not altered by local therapy, and 

undetectable micrometastases at the time of treatment. These 

“undertreated” patients also diminish the potential positive 

impact of local treatment on survival. As evidence for this, 

up to 35% of patients will experience a PSA relapse follow-

ing local therapy.39 These patients also suggest that efforts 

to improve local control and eradicate micrometastases (for 

example, by incorporating neoadjuvant or adjuvant therapy 

into local therapy) would benefit long-term patient out-

comes.39 Emerging data support this hypothesis, including 

the use of adjuvant radiation following radical prostatectomy 

for high-risk, node-negative tumors, immediate treatment 

with hormone ablation following radical prostatectomy and 

lymphadenectomy for node-positive disease, and the use of 

adjuvant hormone ablation following radiation therapy for 

high-risk disease.40–42

As the incidence of men diagnosed and treated for 

localized prostate cancer increases, so does the incidence of 

men presenting with PSA-only recurrent disease (in other 

words, no radiographic evidence for metastases). This sce-

nario poses a therapeutic dilemma for physicians and consid-

erable anxiety for patients. Remarkably, as experience with 

this disease state matures, it is becoming clear that PSA-only 

recurrences do not uniformly portend morbidity/mortality 

from the disease. For example, data from a large series of 

patients who underwent radical prostatectomy for localized 

disease showed that only approximately one-third of patients 

who experience a PSA relapse go on to develop metastases 

within 15 years and, for those who did, the median time to 
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death was five years.43 These patients are generally offered 

hormone ablative therapy, commonly using an intermittent 

strategy.44

For patients with metastatic disease, the initial standard 

treatment approach is hormone ablative therapy for 

androgen-dependent disease.45 However, this therapy 

is not curative and most patients eventually develop 

castrate-resistant progression within 12 to 18 months.46 

Castrate-resistant prostate cancer is defined as progression 

when the serum testosterone level is 50 ng/dL.30 Even 

in the clinically castrate disease state, however, there is 

growing evidence that prostate cancer cells continue to rely 

on androgen receptor signaling by utilizing extragonadal 

sources of testosterone produced in the adrenal gland and 

by the tumor itself.47 Tumors in this clinical state continue 

to respond to secondary hormonal manipulations including 

ketoconazole, diethylstilbestrol, and abiraterone.48 When 

tumors truly become castrate-resistant, patients are offered 

docetaxel-based cytotoxic chemotherapy, which results in 

significant palliation of symptoms but only a modest pro-

longation in survival.49,50

In order to identify which prostate cancers require 

treatment and to improve existing therapies for those that 

do, there is a real sense of urgency among physicians and 

scientists to improve our ability to predict which prostate 

cancers are most virulent. This will require refinement of 

existing predictive and prognostic tools that are commonly 

employed by physicians to manage prostate cancer patients 

among different disease states. In this way, treatment will 

be applied only to patients who need it, while avoiding 

unnecessary treatment-related morbidity for those who 

do not. A major translational research effort is presently 

underway to address this need through the identification of 

novel biomarkers for prostate cancer.

Biomarkers for prostate cancer
A biomarker is defined as a characteristic that is measured 

and evaluated as an indicator of normal biologic processes, 

pathogenic processes, or pharmacologic responses to a 

therapeutic intervention.51 Biomarkers can thus provide 

information about the biology and natural history of 

the patient’s disease (diagnostic/prognostic biomarker), the 

probability a patient will respond to a particular therapy 

(predictive biomarker), and “target engagement” by the 

therapy and modulation of the tumor phenotype in a clinically 

favorable manner (pharmacodynamic biomarker).52 There 

are four principal promises of biomarker research.10 First, 

biomarkers will improve current standards for defining 

disease by adding molecular analyses to more traditional 

criteria relying on patient symptoms and tissue pathology. 

Second, the clinical trials process will improve because 

biomarkers will provide “short-term” surrogate endpoints 

that substitute for traditional “long-term” endpoints such as 

time to disease recurrence and/or mortality from disease. 

Third, clinical care will improve based on the concept of 

personalized medicine – the idea that biomarkers will help 

physicians select therapies with the highest likelihood of 

success based on a patient’s unique host and tumor biology. 

Fourth, the drug discovery process will become more efficient 

(and thereby less expensive) because biomarkers will help 

identify the most promising candidate therapeutics worthy 

of further development.

The most widely used biomarker in prostate cancer 

diagnosis and management is serum PSA.4,53 PSA is an 

androgen-regulated, serine protease encoded as a member of 

the tissue kallikrein family located on chromosome 19q13.4. 

Its normal physiologic function is to liquefy seminal fluid. 

PSA is synthesized in normal prostate tissue, benign pros-

tatic hypertrophy, and in prostate cancer. The increase in 

serum PSA observed in prostate cancer patients is not due 

to increased expression of PSA on a cellular level per se, 

but rather tumor-associated disruption of normal prostate 

tissue architecture that leads to increased release of PSA into 

peripheral blood.54 PSA was first approved in 1986 by the 

Food and Drug Adminstration (FDA) to monitor response 

in patients treated for prostate cancer and subsequently as a 

diagnostic marker in 1994. Even at the time of its discovery, 

however, three inherent limitations of PSA as a biomarker 

were evident. First, PSA is not a prostate cancer specific 

antigen. Second, PSA does not reliably predict grade or 

stage of prostate cancer at diagnosis. Third, PSA reflects 

tumor volume but does not functionally contribute to the 

pathophysiology of tumor progression. Thus by itself, PSA 

does not distinguish clinically significant from insignificant 

prostate cancer. For these reasons, PSA is most useful as 

a predictive/prognostic tool when combined with other 

clinicopathologic parameters.

For patients with newly diagnosed prostate cancer, a 

combination of pretreatment PSA, Gleason score, and clinical 

stage have been incorporated into models to predict outcomes 

following radical prostatectomy or radiation therapy. 

Investigators at Johns Hopkins first used these three variables 

to predict the rate of finding disease that is not confined to the 

prostate at the time of surgery (by pathologic analysis of the 

surgical specimen).55,56 Since the decision to offer local ther-

apy with curative intent depends on predicting whether the 
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tumor is organ-confined versus nonorgan-confined, the now 

famous “Partin tables” have profoundly influenced clinical 

practice. Of course, not all patients with pathologically organ-

confined disease relapse, and not all patients with pathologi-

cally organ-confined cancers are cured. Thus the importance 

of predicting surgical outcome using pre-surgical covariates 

was and remains uncertain.

Additional models have been developed to predict 

outcomes following radical prostatectomy or radiation 

therapy. Based on the work of D’Amico, a combination of 

pre-therapy PSA, Gleason score, and clinical stage can be 

used to stratify patients into low (T1–T2a, Gleason score 

2–6, and PSA 10 ng/mL), intermediate (T2b–T2c, Gleason 

score 7, or PSA 10–20 ng/mL), high (T3a or Gleason score 

8–10 or PSA 20 ng/mL), and locally advanced (T3b–T4) 

groups that predict risk for both biochemical recurrence 

and survival following definitive local therapy (radical 

prostatectomy or radiation).34,57,58 Similarly, Kattan et al have 

developed postoperative nomograms for predicting prostate 

cancer recurrence after radical prostatectomy.59,60 These 

tools not only help guide recommendations for individual 

patients, but also help stratify patients for clinical trials. For 

example, low-risk patients can be directed towards “active 

surveillance” trials, while high-risk patients can be direct 

towards adjuvant/neoadjuvant trials.

Despite the efforts detailed above, tumors with identical 

PSA and clinicopathologic characteristics often display 

biologic and clinical heterogeneity. For example, some 

low-risk tumors rapidly progress while some high-risk tumors 

are relatively indolent. Accurate stratification is particularly 

challenging for Gleason 7 tumors, the most commonly 

reported score. Gleason 7 cancers (ie, 3 + 4 or 4 + 3) repre-

sent a clinically heterogeneous group with variable biologic 

potential and clinical outcomes.61 Despite efforts to improve 

stratification of Gleason 7 tumors using PSA and clinical 

stage, it is clear the Gleason system is inherently limited by 

the ability of light microscopic methodology to distinguish 

tumors with different biologic potential.

Investigational approaches to improve risk stratification of 

localized disease include assessing suspicious nodes or small-

volume extracapsular extension by magnetic resonance imag-

ing (MRI) or positron emission tomography (PET), staging 

biopsies of seminal vesicles and extraprostatic tissue, and 

incorporation of molecular signatures derived from analysis 

of biopsy and/or prostatectomy specimens. For example, loss 

of tumor suppressor pathways (eg, p53) and gain of oncogene/

antiapoptotic pathways (eg, Bcl-2) contribute to prostate can-

cer progression.62,63 In addition to these and other “epithelial” 

events, the importance of the host-epithelial interaction in 

prostate cancer progression has been supported by evidence 

that pathways involved in paracrine regulation of normal 

stromal-epithelial interactions have also been implicated in 

prostate cancer progression.61,64,65 For example, sonic hedge-

hog and Src kinase signaling pathways are involved in normal 

bone development but their aberrant activation contributes 

to tumor progression. These pathways are currently being 

studied for biomarker development.

For patients with PSA-only recurrence after local therapy, 

PSA is commonly used as both a prognostic and predictive 

biomarker.39,66 The critical variable influencing therapy 

options for these patients is determining if the rise in PSA 

represents a local recurrence and/or microscopic metatastic 

disease. If patients are judged to have a local recurrence, 

salvage options are available, including radiation therapy after 

initial prostatectomy or cryosurgery after initial radiation 

therapy. For patients deemed to have micrometastatic disease, 

hormone ablative therapy is preferred. Both a rapid PSA 

velocity (rate of rise) and short PSA doubling time (PSADT) 

have been proposed as biomarkers to predict local versus dis-

tant metastases, and PSADT has additionally been predictive 

of risk for metastatic progression and cancer-specific mor-

tality.67–70 For patients who receive androgen ablation for 

PSA-only recurrent disease following local therapy with 

curative intent (surgery or radiation), PSA nadir is signifi-

cantly associated with prostate cancer-specific mortality.71 

At present, however, neither PSA velocity nor PSDAT have 

been prospectively validated, and there are still no established 

methods to accurately distinguish between local versus dis-

tant recurrence or to predict risk of metastatic progression 

and death in this patient group.

For patients with androgen-dependent metastatic 

disease, PSA nadir after androgen ablation is a strong pre-

dictor of overall survival, as is evidence for PSA progres-

sion after the nadir is achieved.72,73 Similarly, for patients 

with castrate resistant metastatic disease, the degree of 

PSA decline (eg, >50%) achieved with chemotherapy 

predicts overall survival benefit.74,75 Because PSA is an 

androgen-regulated gene, PSA decline may be a better 

biomarker for response to hormonal ablative therapies 

rather than cytotoxic chemotherapies. This is one of the 

reasons circulating tumor cells may prove superior to PSA 

as a biomarker in patients receiving cytotoxic therapy for 

castrate-resistant disease.5

Based on the above considerations, it is clear that novel 

biomarkers are needed in prostate cancer. PSA, considered 

alone or in combination with other clinicopathologic markers, 
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has limitations as a biomarker and is not a valid surrogate 

for long-term benefit (ie, overall survival) in clinical trials 

testing novel therapies. Novel biomarkers will improve our 

ability to: distinguish clinically significant from insignificant 

cancers at diagnosis; predict which clinically significant 

tumors are at highest risk for relapse after local therapy so 

that adjuvant (or neoadjuvant) therapy can be applied; predict 

which patients with PSA-only relapse warrant aggressive 

therapy; predict response to therapies in the androgen-

 dependent and castrate-resistant disease states; and predict 

overall survival. Furthermore, in order to become useful in 

clinical practice, this biomarker should ideally be sensitive, 

specific, and reproducible.

Caveolin-1 in prostate cancer
Cav-1 is a major structural coat protein of caveolae, 

specialized plasma membrane invaginations involved in 

multiple cellular functions including molecular transport, 

cell adhesion, and signal transduction.76,77 Caveolae are 

normally expressed in highly differentiated cells including 

epithelial cells, endothelia, cardiomyocytes, adipocytes, 

and osteoblasts. Caveolae have a specialized structure 

and function that distinguish them from general plasma 

membranes, lipid rafts, or clathrin-coated pits.78 In 

particular, caveolae contain high concentrations of signaling 

molecules including G-proteins, receptor tyrosine kinases, 

non-receptor tyrosine kinases, and endothelial nitric oxide 

synthase (eNOS).79 These molecules interact with caveolae 

via protein-protein interactions with a 20-amino acid 

region of Cav-1 called the “caveolin-1 scaffolding domain” 

(CSD).80 Through CSD-mediated activities, caveolae act 

as compartments to organize signaling events from the 

cell surface to the inside of the cell and between specific 

intracellular organelles.81

Cav-1 was first implicated in cancer development when it 

was discovered to be a substrate for v-SRC in Rous sarcoma 

virus-transformed chicken embryo fibroblasts.82 Subsequent 

studies using both mouse and human cells revealed a complex 

role for Cav-1 in malignant transformation that is dependent 

on cell type, cell context, and growth conditions. For example, 

initial “gain of function” studies of Cav-1 ectopically 

expressed in breast cancer cells grown in vitro suggested 

that Cav-1 has tumor suppressor functions.83 Similar in vitro                                                                                 

studies also suggested a tumor suppressor role for Cav-1 in 

colon cancer and sarcoma cell lines.84 Cav-1 expression is also 

reduced in primary human breast cancers, colon cancers, and 

sarcomas, consistent with the notion that Cav-1 functions as 

a tumor suppressor in these tumor types.84

In contrast, immunohistochemistry analyses of primary 

human tumors of bladder, esophageal, breast, and prostate 

origin demonstrated aberrant overexpression of Cav-1 relative 

to normal tissues, suggesting an oncogenic role for Cav-1 for 

select tumor types.85–88 Importantly, immunohistochemical 

analysis of radical prostatectomy specimens obtained from 

patients with clinically localized tumors demonstrated that 

Cav-1 expression is positively associated with increasing 

Gleason grade, increasing Gleason score, lymph node 

involvement, and positive surgical margins.88 In a subset of 

lymph node-negative patients, multivariate analysis indicated 

that positive Cav-1 expression is an independent prognostic 

factor for a higher Gleason score (7), extraprostatic 

extension, seminal vesicle involvement, positive surgical 

margins, and shorter time to disease progression. In another 

study, patients with increased Cav-1 expression were at 

increased risk for developing an aggressive recurrence after 

surgery as defined by a PSADT of 10 months, failure to 

respond to salvage radiotherapy, and/or radiographically 

detected metastases.89 Taken together, these studies suggest 

that Cav-1 expression predicts development of prostate cancer 

with lethal potential.

In further support of this hypothesis, it is notable that 

Cav-1 was initially identified as a gene that is specifically 

upregulated in metastatic versus primary cancer cells in a 

mouse model system.87 Gain of function studies demonstrated 

that ectopically overexpressed Cav-1 protects prostate 

cancer cells from apoptotic stimuli.90 Loss of function 

studies demonstrated that Cav-1 antisense cDNA converts 

castrate-resistant mouse prostate cancer cells to an androgen-

dependent phenotype that is less prone to form metastases 

in vivo.91,92 As a corollary finding, selection for castrate-

resistant clones in vivo is associated with increased Cav-1 

levels. These studies demonstrate that Cav-1 independently 

promotes prostate cancer cell survival, clonal expansion, 

castrate-resistance, and metastatic activities.

The frequency of Cav-1 positive cancers also underscores 

its distinct functional role in malignant progression.87 In 

normal prostate tissues, Cav-1 is abundantly expressed in 

stromal smooth muscle and endothelial cells but minimally 

expressed in both ductal and acinar epithelium. In contrast, 

in clinically localized prostate cancer (T1/T2aN0), Cav-1 is 

focally expressed by malignant epithelial cells in ∼14% of 

cases. Cav-1 expression proportionally increases in high-grade 

primary tumors with lymph node metastases (T3N1; ∼30%) 

and in metastatic lymph nodes (∼56%). Increased Cav-1 

expression also correlates with hormone ablative therapy.93 

Analysis of primary tumor and metastatic specimens from 
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patients with metastatic disease demonstrated that aberrant 

expression of Cav-1 was increased after hormone ablation in 

both primary (73% versus 38%) and metastatic (82% versus 

62%) sites. The focal expression of Cav-1 in primary prostate 

cancers, the increase in Cav-1 expression in untreated 

metastases, and the additional increase in Cav-1 expression 

in tumors treated with hormone ablative therapy support the 

hypothesis that Cav-1 functions in progression-related events 

rather than local tumor growth.

The mechanism(s) for increased expression of Cav-1 in 

aggressive prostate cancer remains unclear. Cav-1 is regulated 

by testosterone, but at relatively modest levels when com-

pared with PSA.92 This is evidenced by the relative paucity of 

Cav-1 expression in normal prostate acinar epithelium com-

pared with expression of PSA. Cav-1 is located on 7q31.1, a 

conserved fragile site that is frequently deleted and/or ampli-

fied in human cancers.94,95 In addition, the gene promoter 

for Cav-1 possesses a “CpG” island that has been reported 

to be hypermethylated, an event generally associated with 

transcriptional repression.96 However, Cav-1 expression levels 

do not consistently correlate with genetic and/or methylation 

changes of the Cav-1 gene.97 More recently, an alternative 

epigenetic mechanism for increased Cav-1 expression has 

been proposed through the aberrant, cancer-specific loss of 

miR-205, a noncoding microRNA that normally silences 

Cav-1 expression.98

To further explore the significance of Cav-1 overexpression 

in human cancer, numerous preclinical studies have been 

performed to elucidate the precise molecular mechanism(s) 

for Cav-1 mediated oncogenic activity. Caveolae modulate 

diverse intracellular signaling pathways involved in 

regulation of cellular proliferation, apoptosis, endocytosis, 

and cholesterol trafficking.12 This is principally achieved by 

the interaction of Cav-1 with a large number of molecules 

in either a CSD-dependent or CSD-independent manner. 

Notably, Cav-1 modulates the function of many classic 

oncogenes, including v-Src, H-ras, and C-neu.84 Cav-1 

inhibits or activates these pathways depending on the cell 

type and context.

In prostate cancer, Cav-1 interacts with and inhibits 

the serine/threonine protein phosphatases PP1 and PP2A 

in a CSD-dependent manner.90 PP1 and PP2A are two 

major classes of phosphatases that act as tumor suppressors 

by maintaining Akt in a dephosphorylated, inactive 

state. Cav-1-mediated inhibition of PP1 and PP2A results 

in constitutive activation of prosurvival Akt-signaling. This 

has important implications in understanding the biology 

of clinically significant prostate cancer, since activation 

of Akt contributes to the development of aggressive, 

castrate-resistant disease.99 In this manner, overexpression 

of Cav-1 represents an alternative to PTEN loss in activat-

ing Akt in prostate cancer. Inactivating mutations of PTEN, 

another major regulator of the (PI3-K)/Akt pathway, are also 

common in advanced prostate cancers.100

More recently, Cav-1 has been shown to participate in 

a reciprocal, positive feedback loop with multiple growth 

factors implicated in prostate cancer progression.101 Cav-1 

expression is increased in response to stimulation of prostate 

cancer cells by vascular endothelial growth factor (VEGF), 

platelet-derived growth factor (PDGF), fibroblast growth 

factor (FGF), and transforming growth factor β1 (TGF-β1). 

In turn, ectopic expression of Cav-1 increases expression of 

VEGF, TGF-1β, and FGF2 protein levels through stabilization 

of mRNA transcripts for these genes in an Akt-dependent 

manner. Functionally, these events increase the invasive 

properties of prostate cancer cell lines in vitro, a phenotype 

associated with enhanced metastatic potential in vivo.101 Addi-

tional studies showed that Cav-1 stimulates VEGF-mediated 

autophoshorylation of VEGF receptor 2 (VEGFR2) in both 

human prostate cancer cells and human umbilical vein endo-

thelial cells, illustrating the potential for Cav-1 to modulate 

angiogenesis through the cancer cell-host interaction.102

A major development in understanding Cav-1 biology 

was the discovery that Cav-1 is secreted by mouse and human 

prostate cancer cell lines.93 Phosphorylation of serine 80 in 

the CSD converts Cav-1 from an integral membrane protein 

to a secreted protein product.103 Cav-1 is then incorporated 

into other membrane-derived microvesicles that are secreted 

by prostate cancer cells, including “prostasomes” and 

“oncosomes”.104,105 Importantly, secreted Cav-1 confers 

growth-promoting and anti-apoptotic properties to cell lines 

lacking endogenous Cav-1.93 This effect is mediated through 

uptake of Cav-1 by the Cav-1-negative prostate cancer 

epithelial cells.14 In a preclinical orthotopic mouse model 

of prostate cancer, Cav-1 antibody suppressed growth and 

metastases of a Cav-1 secreting, castrate-resistant cancer cell 

line.93 These data indicate that secreted Cav-1 is a biologically 

active autocrine-paracrine factor that contributes to malignant 

progression and further suggest that Cav-1 is a valid therapy 

target.

In addition to its effects on prostate cancer epithelial cells, 

secreted Cav-1 also modulates the microenvironment in a 

manner that promotes tumor growth through neoangiogenesis. 

Comparison of wild-type and Cav-1 knockout mice show that 

Cav-1 (-/-) mice display an impaired angiogenic response 

to exogenous stimuli, including basic fibroblast growth 
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factor (bFGF) and a murine melanoma cell line (B16F10).106 

Endothelial cells derived from Cav-1 knockout mice will 

internalize exogenous recombinant Cav-1 using lipid raft/

caveolae and clathrin-dependent endocytic pathways.14 

Internalization of exogenous Cav-1 by Cav-1 (-/-) endothelial 

cells significantly increases their in vitro proangiogenic 

activities including migration, nitrous oxide production, and 

tubule formation. In vivo, orthotopic implantation of Cav-1-

secreting mouse prostate cancer cells into mice demonstrated 

that tumors are both larger and more vascular in Cav-1 (+/+) 

versus Cav-1 (-/-) recipient hosts, although tumor-associ-

ated endothelial cells in Cav-1 (-/-) mice demonstrated 

uptake of tumor-derived Cav-1.14 In a second model system 

using a human prostate cancer cell line with inducible Cav-1 

expression, Cav-1 secreting tumors were both larger and more 

vascular than control tumors in nude mice.14

Correlative studies in primary human prostate cancers 

further substantiate a role for Cav-1 in promoting tumor-

associated neoangiogenesis. Analysis of 56 radical prosta-

tectomy specimens revealed that tumor microvessel densities 

(MVD) were significantly higher in Cav-1 positive than Cav-1 

negative tumors (based on Cav-1 scoring of tumor epithe-

lial cells).107 MVD is a measure of tumor angiogenesis and 

increased MVD is associated with higher pathologic stage 

and shorter time to disease progression in men undergoing 

radical prostatectomy for localized disease.108 Interestingly, 

the percentage of Cav-1 positive tumor-associated endothelial 

cells (TAECs) was also significantly increased in Cav-1 posi-

tive versus negative tumors. Quantitative analysis indicated 

that the percentage of microvessels containing VEGFR2-pos-

tive TAEC was higher in Cav-1 positive than Cav-1 negative 

tumors. Taken together, these positive correlations support 

the concept that Cav-1 promotes pathologic neoangiogenesis 

in human prostate cancer.

Initial studies have demonstrated that secreted Cav-1 

is a novel biomarker for predicting clinically significant 

prostate cancer. Secreted Cav-1 can be measured in periph-

eral blood using an ELISA that is sensitive, specific, and 

reproducible.13 The median serum Cav-1 level is significantly 

higher in patients with clinically localized prostate cancer 

than in men with benign prostatic hypertrophy or healthy 

controls.13 In a group of 419 patients undergoing radical 

prostatectomy for localized disease, patients with high 

preoperative serum Cav-1 levels had a 2.7-fold greater 

risk of experiencing a biochemical recurrence compared 

with patients with low values.109 In a subset analysis of 

patients with high-risk disease (PSA  10), those with high 

preoperative serum Cav-1 levels had a 2.4-fold greater risk 

of developing biochemical recurrence compared with those 

with low Cav-1 levels. Importantly, when both Cav-1 and 

biopsy Gleason score were combined into a multivariate Cox 

proportional hazard model, the analysis of both variables 

more accurately predicted for risk of biochemical recurrence 

than either variable alone. Lastly, Cav-1 could stratify patients 

with Gleason 7 tumors into high- and low-risk recurrence 

groups after adjusting for PSA levels.109

These data suggest that measurements of tissue Cav-1 

and serum Cav-1 expression levels represent clinically useful 

prognostic and predictive biomarkers for prostate cancer 

(see Table 1). In patients with localized disease at diagno-

sis, Cav-1 improves the ability of current predictive tools 

to distinguish patients with clinically significant disease 

from those with insignificant disease. In this way, serum 

and tissue Cav-1 levels supplement (rather than supplant) 

other established predictive variables including serum PSA, 

Gleason score, and clinical stage. Future research efforts 

will test whether Cav-1 expression levels identify patients 

with localized disease who would benefit from neoadjuvant 

and/or adjuvant therapy.

Notably, when compared with serum PSA, serum Cav-1 

more specifically identifies clinically aggressive disease. This 

likely reflects the fact that, unlike PSA, Cav-1 biologically 

contributes to malignant progression and the development 

of castrate-resistance. For the same reason, serum Cav-1 

measurement may also prove useful as a biomarker in other 

prostate cancer disease states (see Figure 1). For example, 

Table 1 Rationale for developing caveolin-1 as a biomarker for  
clinically significant prostate cancer

•  Cav-1 expression is significantly increased in prostate cancer versus 
normal epithelium.

•  Cav-1 expression is increased in metastatic versus localized prostate  
cancer.

•  In contrast with PSA, Cav-1 is an oncogene that significantly  
contributes to the biology of aggressive disease.

• Prostate cancer cells secrete Cav-1 into the tumor microenvironment.

•  Like endogenous Cav-1, secreted Cav-1 promotes malignant  
progression through antiapoptotic activities, stimulation of 
angiogenesis, castrate-resistant growth, and metastases formation.

•  Secreted Cav-1 can be reliably and reproducibly measured from  
peripheral blood using a Cav-1-specific ELISA.

•  Serum Cav-1 levels are significantly higher in men with clinically  
localized prostate cancer than in men with BPH or healthy controls.

•  High pretreatment levels of serum Cav-1 predict for a shorter time  
to biochemical recurrence in patients undergoing radical 
prostatectomy for localized disease.

Abbreviations: BPH, benign prostatic hypertrophy; Cav-1, caveolin-1; ELISA, enzyme-
linked immunosorbent assay; PSA, prostate-specific antigen.
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in patients with PSA-only recurrent disease following local 

therapy, analysis of serum Cav-1 levels may help determine 

which of these patients warrant aggressive therapy. Similarly, 

in patients with castrate-resistant metastatic disease, serum 

Cav-1 levels may be useful in monitoring response to therapy. 

Since Cav-1 critically modulates both the epithelial and host 

tissue microenvironment, the success of novel treatment 

strategies that target both compartments should correlate 

with serum Cav-1 responses.

Summary
A growing body of preclinical and clinical data has 

established the importance of Cav-1 in the development of 

virulent prostate cancer. As an oncogene, Cav-1 protects 

prostate cancer epithelial cells from apoptotic stimuli, 

enhances prosurvival pathways mediated by multiple 

growth factors involved in prostate cancer progression, and 

supports castrate-resistant growth. Cav-1 also contributes 

to the metastatic potential of prostate cancer through 

induction of tumor-associated neoangiogenesis in the host 

microenvironment. Because it is a secreted protein that can be 

reliably measured in peripheral blood by ELISA, Cav-1 has 

enormous potential as a novel biomarker in prostate cancer. 

Preliminary studies suggest that serum Cav-1 enhances 

the performance of existing tools that rely on serum PSA, 

Gleason score, and clinical stage to predict outcomes for 

patients who receive treatment for localized disease. Serum 

Cav-1 should also prove useful as a prognostic/predictive 

biomarker for patients with PSA-only recurrent disease 

and in patients receiving therapy for metastatic disease. 

Additional studies are currently underway to validate this 

promising biomarker.
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