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Background: A growing body of evidence suggests that E2Fs, by regulating gene expression 

related to cell cycle progression and other cellular processes, play a pivotal role in human can-

cer. However, the distinct roles of each E2F in the development and treatment of hepatocellular 

carcinoma (HCC) remain unknown. In the present study, the mRNA expression and prognostic 

value of different E2Fs in HCC are analyzed.

Materials and methods: Transcriptional and survival data related to E2F expression in 

patients with HCC were obtained through ONCOMINE and UALCAN databases. Survival 

analysis plots were drawn with Kaplan–Meier Plotter. The sequence alteration data for E2Fs 

were obtained from The Cancer Genome Atlas and c-BioPortal. Gene functional enrichment 

analyses were performed in Database for Annotation, Visualization and Integrated Discovery.

Results: The mRNA expression levels of E2F1–E2F8 were all significantly upregulated in HCC 

patients, and high expression of each E2F was obviously related to poor prognosis. Similarly, 

the expression of E2Fs showed prognostic prediction value in HCC patients with different can-

cer stages and pathological grades. Moreover, the mutation rate of E2Fs was relatively high in 

HCC patients, and the DNA sequence alterations primarily occurred in E2F5, E2F3, and E2F6, 

which were associated with worse overall survival and disease-free survival in HCC patients. 

Network analysis confirmed that the expression levels of cell cycle-related genes were mostly 

affected by E2F mutations.

Conclusion: High expression of individual E2Fs was associated with poor prognosis in all 

liver cancer patients. E2Fs may be exploited as good prognostic targets for comprehensive 

management of HCC patients, but this notion should be further evaluated in clinical studies.

Keywords: HCC, E2F, prognosis, ONCOMINE, Kaplan–Meier plotter

Introduction
Hepatocellular carcinoma (HCC) is the sixth most common, aggressive cancer and 

the third leading cause of cancer-associated mortality worldwide.1,2 Unfortunately, to 

date, the precise molecular mechanisms involved in the development, progression, 

and metastasis of HCC remain largely unknown despite tremendous efforts in the past 

decades. Moreover, the incidence of HCC is increasing rapidly, and only ~9% of HCC 

patients survive for >5 years.3 The poor prognosis of HCC is largely attributed to the 

rapid progression of this disease.4–6 Advances in HCC treatment will no doubt depend 

on a better understanding of the biology and behavior of HCC. Recently, the mammalian 

E2F family of transcription factors has been found to have a close relationship with 

HCC, which may help in finding novel prognostic and therapeutic targets for HCC.7
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The mammalian E2Fs lay downstream of cell cycle 

signaling and play a crucial role in control of cell prolif-

eration, differentiation, senescence, and apoptosis as well 

as other cellular processes by regulating the expression of 

a large number of targeted genes related to cell cycle pro-

gression.8–10 Since the discovery of the first member, E2F1, 

in the 1980s, a total of eight E2Fs, E2F1–E2F8, have been 

identified in mammalian cells.11,12 Conventionally, these 

eight E2Fs are classified into three categories based on 

their functional properties and structural features: activa-

tor E2Fs (E2F1–E2F3), repressor E2Fs (E2F4–E2F5), and 

inhibitor E2Fs (E2F6–E2F8).13 In mammalian cells, E2Fs 

form a network with retinoblastoma protein (pRb) and 

cyclin-dependent kinases (CDKs) to participate in regula-

tion of the transcriptional activities of cell cycle-related 

genes.14 Given their important roles in cell cycle regulation, 

E2Fs are reportedly associated with the development and 

progression of various types of human cancer.15,16 In recent 

years, a growing body of evidence has indicated that E2Fs 

are intimately associated with HCC. For example, E2F1 

and E2F3 have been found to be substantially upregulated 

in HCC tissues compared with adjacent nontumoral tis-

sues.17,18 E2F5 was significantly overexpressed in primary 

HCC, and knockdown of E2F5 repressed the growth of 

HCC cells.19 Similarly, E2F8 was also reported to con-

tribute to the oncogenic potential of HCC by upregulating 

cyclin D1 transcription and enhancing the accumulation 

of S-phase cells.20

Though their relationship with human cancer is clear, 

the function of E2Fs in cancer varies. Certain E2Fs, such as 

E2F3 and E2F4, have been reported to contribute to carcino-

genesis, while others, such as E2F1, exhibit tumor suppres-

sive properties in mouse models and specific human cancer 

types through an unknown mechanism. More surprisingly, 

even the function of individual E2Fs in the same tumor can 

be controversial.21 For example, dysregulation of E2F1 can 

either promote or inhibit tumorigenesis.7 Thus, analyzing 

the expression, mutation, and prognostic values of different 

E2Fs in HCC patients via bioinformatics analysis may help 

to further distinguish their potential roles in HCC. In this 

study, we address this problem.

Materials and methods
ethics statement
The study protocol was approved by the Ethics Committee 

of the Third Affiliated Hospital of Sun Yat-sen University for 

Human Study and conducted according to the principles of 

the Declaration of Helsinki. All the data were retrieved from 

published literature.

OnCOMine database analysis
The ONCOMINE database (www.oncomine.org), an inte-

grated online cancer microarray database for DNA or RNA 

sequence analysis, aims at facilitating discovery from gene-

wide expression analyses.22 In this study, data regarding tran-

scriptional expression of E2Fs between cancer samples and 

corresponding normal control liver samples were obtained 

from the ONCOMINE database, and the differences were 

compared using Student’s t-test. The cutoff P and fold-change 

values were as follows: P-value: 0.05; fold change: 1.5; gene 

rank: 10%; data type: mRNA. Significant correlations are 

shown in Figure 1.

UalCan
UALCAN (http://ualcan.path.uab.edu) is a newly devel-

oped web portal based on level 3 RNA-seq and clinical 

data from 31 cancer types in The Cancer Genome Atlas 

(TCGA) database. UALCAN provides web resources that 

allow cancer researchers and clinicians to analyze the rela-

tive expression of a query gene(s) across tumor and normal 

samples and relative clinicopathologic parameters, obtain 

a survival plot to estimate the effect of a gene expres-

sion level and clinicopathologic parameters on patient 

survival, and identify novel genes in various individual 

cancer types.23

The Kaplan–Meier plotter
The prognostic value of the expression of featured E2Fs 

was analyzed using an open online database, Kaplan–Meier 

(http://kmplot.com/analysis), which was established using 

gene expression data and survival information for liver 

cancer24 and four other types of cancer, namely, breast 

cancer, ovarian cancer, lung cancer, and gastric cancer.24–27 

The desired probe ID was determined according to the file 

of probe sets provided by K–M plotter. Briefly, eight dif-

ferent E2Fs were entered into the database (http://kmplot.

com/analysis/index.php?p=service&cancer=liver_rna-

seq). The cancer patients were divided into high and low 

 expression groups according to the median mRNA expres-

sion values and validated by K–M survival curves. The 

number-at-risk cases, median mRNA expression levels, 

HRs, 95% CIs, and P-values were displayed on the K–M 

plotter webpage. A P-value <0.01 was considered stati-

cally significant.
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TCga and c-BioPortal databases
TCGA, a comprehensive and coordinated project designed 

to improve diagnosis methods, treatment standards, and 

ultimately prevent cancer, has helped TCGA users analyze 

large groups of over 30 human tumors through application 

of genome analysis technologies, including large-scale 

genome sequencing and pathological data analysis.28 

c-BioPortal (www.cbioportal.org) is an online open-access 

resource for exploring, visualizing, and analyzing multidi-

mensional cancer genomics data.29 In this study, c-BioPortal 

was used to access liver HCC (TCGA, Provisional) data. 

The selected genomic profiles contained mutations, puta-

tive copy number alterations from GISTIC and mRNA 

expression Z-scores (RNASeq V2 RSEM). Eight target 

genes were automatically calculated using Z-score ±2.0. 

OncoPrint, overall survival (OS), or disease-free survival 

(DFS) plotter were obtained according to the online instruc-

tions in c-BioPortal.

gene Ontology (gO) and Kyoto 
encyclopedia of genes and genomes 
(Kegg) pathway enrichment analysis
The Database for Annotation, Visualization and Integrated 

Discovery (DAVID; https://david.ncifcrf.gov/)30 was used to 

perform GO and KEGG analyses of eight E2F genes. The 

human genome was selected as the background parameter. 

P<0.05 was set as the threshold to indicate a statistically 

significant difference.
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Figure 1 e2F gene expression in 20 different cancer types.
Notes: e2F1–e2F8 mRna expression (cancer tissue vs normal tissue) was analyzed using the OnCOMine database. The numbers in colored cells show the quantities of 
datasets with statistically significant mRNA overexpression (red) or underexpression (blue) of target genes. Cell color was determined by the best gene rank percentile for 
the analysis within the cells. The number in each cell represents the number of analyses that satisfied the threshold, such as gene rank percentile (10%), P-value (0.05), and 
fold change (1.5).

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com
www.cbioportal.org
https://david.ncifcrf.gov/


Cancer Management and Research 2019:11submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1728

huang et al

Results
Transcriptional expression of different 
e2Fs in patients with hCC
Eight E2Fs have been identified in the human genome, and 

their mRNA expression levels in human cancer have been 

determined using the ONCOMINE database. As shown in 

Figure 1, we first calculated the expression levels of E2Fs 

in 20 types of cancer compared with adjacent nontumoral 

tissues. Noticeably, as shown in Table 1, E2F mRNA expres-

sion was significantly upregulated in HCC samples, except 

E2F4 and E2F6 (fold change >1.5, P-value <0.05).31–33 These 

results show that the mRNA expression of E2F1/2/3/5/7/8 is 

distinctively high in liver cancer tissues compared with nor-

mal liver tissues, suggesting that E2Fs might play important 

roles in the development of liver cancer.

Relationship between the mRna levels 
of e2Fs and the clinicopathological 
parameters of patients with hCC
The mRNA expression of E2F factors between HCC and liver 

tissues was also detected using the UALCAN web portal. The 

results showed higher mRNA E2F1–E2F8 expression in liver 

cancer tissues than in normal tissues (Figure 2, P<0.05). Next, 

we focused on whether mRNA expression of E2Fs was related 

to cancer stage in individual patients. As shown in Figure 

3, the results indicated that patients with a more advanced 

stage of HCC tended to express higher levels of E2F1–E2F8. 

Patients in stage III expressed the highest mRNA levels of 

E2F1–E2F8 (P<0.05). However, no statistical significance was 

found between the stage IV group and other groups, possibly 

due to its small sample size. Consistently, the data shown in 

Figure 4 indicate that patients with higher pathological grade 

tumors expressed higher levels of E2F mRNA (P<0.05). Taken 

together, these results indicate that the mRNA expression 

levels of E2Fs are associated with different cancer stages and 

pathological grades in HCC patients.

Prognostic value of e2Fs in liver cancer 
patients
We used Kaplan–Meier plotter (http://kmplot.com/analysis/) 

to further determine the prognostic values of the mRNA 

expression of E2Fs in liver cancer patients. The results 

showed that all eight E2Fs were significantly associated with 

patient prognosis. First, we analyzed the relationship between 

the combined mRNA expression of all E2Fs and the prognosis 

of HCC patients. The survival curves (Figure 5A) revealed 

that a higher level of combined E2F expression predicts a 

poor prognosis in HCC. Next, we focused on the relation-

ship between the mRNA expression levels of individual E2F 

members and the prognosis of HCC patients. As shown in 

Figure 5B–I, overexpressed mRNA levels of E2F1–E2F8 

were significantly related to shorter OS time. These results 

suggest that the mRNA expression levels of E2Fs may be 

useful for prediction of HCC patient survival.

sequence alterations in e2Fs affect Os 
and DFs in hCC patients
Next, TCGA database and the c-BioPortal website were 

applied to further explore E2F sequence alterations and 

their effects on OS and DFS in HCC patients. As shown in 

Figure 6A, E2F sequence alterations occurred in 171 samples 

Table 1 Significant upregulated expression in transcription level 
of e2Fs between hCC and liver tissues (OnCOMine database)

E2F 
subunits

Types of 
HCC vs 
liver

Fold 
change

P-value t-Test Reference

e2F1
hCC 2.654 1.27e–13* 8.026 Chen et al31

liver
e2F2

hCC 2.097 2.02e–09* 6.233 Chen et al
liver

e2F3
hCC 2.117 6.67e–52* 17.661 Roessler  

et al32

liver 2
hCC 2.471 3.93e–07* 6.026 Roessler  

et al32

liver
hCC 3.174 2.32e–06* 6.388 Wurmbach 

et al33

liver
e2F5

hCC 1.992 3.12e–04* 4.020 Wurmbach 
et al
liver

e2F7
hCC 1.895 4.66e–05* 4.423 Wurmbach 

et al
liver

e2F8
hCC 3.003 8.56e–08* 6.281 Wurmbach 

et al
liver

hCC 2.197 4.16e–11* 6.977 Chen et al
liver

hCC 1.84 9.05e–07* 6.386 Roessler 
et al
liver

hCC 1.614 9.23e–40* 15.455 Roessler 
et al
liver 2

Note: *P<0.05 is considered significantly different.
Abbreviation: hCC, hepatocellular carcinoma.
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out of the 360 patients with liver cancer (the total mutation 

rate was 48%). E2F5, E2F3, and E2F6 were the three genes 

with the highest rate of sequence alterations, and their muta-

tion rates were 23%, 14%, and 12%, respectively. Further 

analysis using a Kaplan–Meier plot and log-rank test showed 

that sequence alterations in E2Fs were associated with worse 

OS in HCC patients (Figure 6B, P=0.00368). Consistently, 

alterations in E2Fs were also associated with worse DFS 

(P=0.0000901). These results indicated that E2F sequence 

alterations could have an impact on HCC patient prognosis.
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Figure 5 Kaplan–Meier curve revealing the Os difference based on e2F mRna levels in hCC patients.
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network analysis of signaling pathways 
affected by mutations in the e2F family in 
hCC
We also used c-BioPortal to construct a network for eight 

E2Fs and the neighboring 50 genes significantly associated 

with E2Fs. The results showed that the cell cycle-related 

genes CDC6, TP53, CDK6, CDK4, CCNE2, CDKN1A, 

and CDKN2A were significantly related to E2F alterations 

(Figure 6C). Next, GO and KEGG analyses using DAVID 

were exploited to discover the functional enrichment of E2Fs 

and their associated genes. GO analysis predicted three main 

functions of target genes, including biological process (BP), 

cellular components (CPs), and molecular functions (MFs). 

The results showed that BPs, such as GO:0006351 transcrip-
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tion, DNA-templated; GO:0090399 replicative senescence; 

GO:0034644 cellular response to UV; GO:0048146 positive 

regulation of fibroblasts; and GO:000012 negative regulation 

of transcription, were remarkably regulated by alterations in 

E2Fs and the related 50 genes in HCC (Figure 7A). CPs, such 

as GO:0005667 transcription factor complex; GO:0005634 

nucleus; GO:0005654 nucleoplasm; GO:0000307 cyclin-

dependent protein kinase; and GO:0070557 PCNA-p21 

complex, were prominently associated with E2F altera-

tions (Figure 7B). Last but not least, the alterations also 

significantly affected MFs, such as GO:0003677 DNA 

binding; GO:0001047 core promoter binding; GO:0003700 

transcription factor activity, sequence-specific DNA bind-

ing; GO:0003684 damaged DNA binding; and GO0003887 

DNA-directed DNA polymerase activity, in liver cancer cells 

(Figure 7C). On the other hand, KEGG analysis showed the 

20 most relevant pathways associated with E2F alterations 

and the neighboring 50 genes in HCC. As shown in Figure 8, 

ptr04110: Cell Cycle, ptr05161: Hepatitis B, ptr04115: p53 

signaling pathway, ptr05203: Viral carcinogenesis, ptr05200: 

pathways in cancer, ptr04350: TGF-beta signaling pathway, 

ptr04330: Notch signaling pathway, and ptr04151: PI3K–

AKT signaling pathway were involved in tumorigenesis and 

development of HCC.

Discussion
E2Fs have been reported to take part in a variety of cancer 

types because they can regulate many cellular functions 

related to cell cycle progression.21,34,35 Although some E2F 

family members have been confirmed to play promising 

roles in HCC, the distinct roles of E2Fs in the development, 

progression, and metastasis of HCC remain to be elucidated. 

In the present study, the expression, mutation, and prognostic 

values of different E2Fs in HCC patients were analyzed.

E2F1, the classic E2F member, is the most well-studied 

member of the E2F family. Significant overexpression 

of E2F1 has been found in HCC tissues compared with 

nontumorous liver tissues, and high E2F1 immunoexpres-

sion was found to be predictive of a poor OS rate in HCC 

patients. In addition, E2F1 can promote the proliferation 

of HCC cell lines through activation of B-Myb, stathmin 

1, BRCA1, and dbp1, which promote the initiation or pro-

gression of HCC.36–39 E2F1 is also regulated by Sirtuin 5 

(SIRT5) and miR-17-5 p to promote cell proliferation and 

invasion in HCC cell lines, and knockdown of E2F1 in HCC 

cells partially reversed the effect of SIRT5 on promoting 

cell proliferation and invasion.40,41 E2F1 transcription is 

upregulated by hepatitis B virus (HBV) core promoter muta-

tions, which in turn activates SKP2 transcription, leading 

to downregulation of cell cycle inhibitors and proliferation 

of HCC.42 Moreover, E2F1 has been found to play a critical 

antiapoptotic role in both human and rodent liver cancer via 

counteraction of c-myc-mediated apoptosis and activation 

of the PIK3CA/Akt/mTOR and c-Myb/COX-2 pathways.43 

Paradoxically, E2F1 has also shown tumor-suppressing activ-

ity in HCC. Baiz et al observed that nuclear E2F1 expression 

determined by immunohistochemistry was inversely related 

to phospho-pRb expression and positively related to the 

tumor apoptotic index.17 Choi et al found that E2F1 could 

inhibit HBV life cycle and HBV-mediated HCC by interfer-

ing with the control of HBx on the p53 promoter and direct 

activation of the p53 promoter through its binding site.44 

Furthermore, in animal models, the TFDP3/E2F1 pathway 

was found to promote HCC cell apoptosis by positive regu-

lation of HIF-2α, and the decreased level of HIF-2α was 

associated with lower OS of HCC patients.45 In view of the 

above arguments, Farra et al indicated in their review that 

the proliferative and apoptotic functions of E2F1 in HCC 

may coexist but the proliferative effect seems to be more 

pronounced than the apoptotic one.46 However, in our study, 

higher E2F1 expression was significantly related to tumor 

stage and poor survival of HCC patients, which indicated 

that E2F1 may play a tumor promoting role in HCC from 

the view of prognosis. More studies are needed to further 

verify the exact role of E2F1 in HCC.

Overexpression of E2F2 has been observed during hepa-

tocarcinogenesis, and disruption of the pRb/E2F pathway 

and inhibition of apoptosis are major oncogenic events in 

c-myc/TGFalpha transgenic mice.47 Huang et al found that 

ANCCA/PRO2000 promoted the growth and invasion of 

HCC cells in vitro and enhanced the tumorigenicity of HCC 

cells in vivo via upregulation of E2F2, and miR-520a was an 

intermediate regulator between ANCCA/PRO2000 and E2F. 

A regulatory loop formed by ANCCA/PRO2000, miR-520a, 

and E2F2 is a driving force for HCC development.48 Dong et 

al observed that overexpression of miR-218 can inhibit HCC 

cell proliferation and induce cell cycle arrest at the G0/G1 

phase checkpoint by downregulating E2F2 via direct binding 

to its 3’-UTR.49 Consistent with these findings, significant 

overexpression of E2F2 was found in liver cancer tissues 

compared with normal tissues and was associated with a poor 

survival time in all liver cancer patients who were followed 

up for 120 months in our study.

Significant upregulation of E2F3 was observed in HCC 

tissues compared with normal controls and was associated 

with poor prognosis in HCC patients.50,51 Kent et al found that 
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copy number gains in E2F3b resulted in dosage-dependent 

spontaneous HCC in mice without the involvement of addi-

tional organs. Conversely, germ-line loss of E2F3b protected 

mice against HCC, suggesting that E2F3 is associated with 

development and progression of HCC.52 Similarly, in the 

present study, we demonstrated that significantly higher 

E2F3 expression was present in HCC tissues and was related 

to tumor stage and worse OS in patients with liver cancer. 

Recently, targeting of E2F3 by a variety of microRNAs, 

including miR-144, miR-503, miR-424, miR-214, and 

miR-363, has been found to inhibit the growth, migration, 

and invasion of HCC cells, suggesting that E2F3 may be 

exploited as a novel and promising therapeutic target for 

HCC treatment.53–57
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As an E2F repressor, E2F4 has also been found to be 

significantly associated with HCC. Park et al found that 

both microsatellite instability and E2F4 mutations occurred 

commonly in HCC as well as in colon and gastric cancers, 

indicating that E2F4 may play a significant role in HCC.58 

Yoshida et al observed that gnidimacrin, which exhibits 

significant antiproliferation activity, could cause G2-phase 

arrest in human hepatoma HLE cells by repression of cdc2 

via induction of p21 and promotion of E2F4 translocation 

to the nucleus.59 To the best of our knowledge, to date, no 

studies have reported the expression pattern or prognostic 

value of E2F4 in HCC. Thus, our study is the first to report 

significant overexpression of E2F4 in HCC tissues relative 

to that in normal tissues and to propose that this higher E2F4 

expression is significantly correlated with tumor stage and 

poor survival in HCC patients, in accordance with the other 

research.

E2F5 had been found to play a potential oncogenic role 

in HCC. The results from the study of Jiang et al showed that 

E2F5 was markedly upregulated in primary HCC compared 

with normal liver tissues, and knockdown of E2F5 in HCC 

cells reduced their proliferation and metastasis by promoting 

G0/G1 arrest.19 Similarly, Sun et al found that the transcrip-

tion factor FOXN3 could inhibit HCC cell proliferation 

through downregulation of E2F5 expression.60 However, Zou 

et al demonstrated that HBV could upregulate miR-181a 

expression, and overexpression of miR-181a in hepatoma 

cells promoted cell growth in vitro and tumor formation in 

vivo by targeting E2F5. Conversely, inhibition of miR-181a 

suppressed the proliferation of SMMC-7721 cells, and E2F5 

inhibition induced cell growth and rescued the suppressive 

effect of the miR-181a inhibitor on SMMC-7721 cell prolif-

eration,61 suggesting that E2F5 may play a complicated role in 

HCC, similar to that of E2F1. In the present study, we found 

that E2F5 expression in HCC tissue was higher than that in 

normal liver tissue and related to tumor stage. Moreover, high 

E2F5 expression was markedly associated with worse OS in 

all the liver cancer patients, which supported the notion that 

E2F5 plays an oncogenic role in HCC, but the exact role 

played by E2F5 in HCC should be further evaluated.

Higher E2F6 expression has been found in many 

malignancies, including non-small-cell lung cancer and 

acute lymphoblastic leukemia.62,63 However, evidence of 

the relationship between E2F6 expression and its prognosis 

value in HCC patients has rarely been reported. Similarly, 

in our present study, the expression of E2F6 in HCC tis-

sues was found for the first time to be higher than that in 

normal tissues, and this expression was associated with 

tumor stage in patients with HCC. HCC patients with higher 

E2F6 expression had a worse OS than patients with lower 

E2F6 expression.

Similar to E2F6, research on the correlation of E2F7 with 

HCC has rarely been reported. However, E2F7 has organi-

zational and functional properties similar to those of E2F8, 

which is a tumor activator in HCC,20 and they share a variety 

of transcriptional targets via the formation of homodimers 

and heterodimers.64,65 Furthermore, E2F7 has been found 

to participate in the metabolism and proliferation involved 

in liver regeneration.66 All these studies indicate that E2F7 

may have a close relationship with HCC. Likewise, similar 

to E2F4 and E2F6, our study is the first to report that higher 

E2F7 expression is present in HCC tissues compared with 

normal liver tissues and is markedly related to tumor stage 

and poor OS in liver cancer patients.

As discussed above, E2F8 has been correlated with HCC 

development. Deng et al observed that overexpression of 

E2F8 promoted cell proliferation, colony formation, and 

tumorigenicity in different HCC cell lines by regulating 

cyclin D1 transcription and promoting the accumulation 

of S-phase cells, while knockdown of E2F8 reversed these 

phenotypes.20 Likewise, in our study, higher E2F8 expression 

was observed in HCC tissues and was significantly correlated 

with tumor stage and worse OS in liver cancer patients. 

Interestingly, Kent et al found a specific tumor suppressor 

role of E2F8 in HCC. They observed that overexpression of 

wild-type E2F8 but not a DNA binding defective mutant of 

E2F8 inhibited the proliferation of HepG2 cells. Moreover, 

specific deletion of E2F8 promoted DEN-induced HCC and 

in combination with loss of E2F7 led to spontaneous HCC 

formation in mice. Furthermore, inactivation of the E2F8 

DNA-binding activity in 8DBD mice was sufficient to promote 

HCC in vivo.67 Taken together, similar to E2F1 and E2F5, 

E2F8 can not only enhance cancer progression but can also 

protect against cancer initiation, which is dependent on the 

specific context.

As mentioned above, E2Fs are conventionally classified 

into the three categories based on their functional proper-

ties and structural features.8,68–70 Nevertheless, it should 

be emphasized that the basic classification of mammalian 

E2Fs is generally dependent on in vitro study and lack of 

in vivo identification, so the elegant classification may not 

be sufficient to highlight their sophisticated roles.10,68,71 For 

example, genome-wide expression approaches identify that 

E2F1–E2F3 could function as direct repressors of transcrip-

tion independent of pocket proteins72 and E2F7 and E2F8 

can form complex with the hypoxia-inducible factor 1 and 
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mediate angiogenesis through transcriptional activation of 

vascular endothelial growth factor.73 In our present paper, 

higher expressions of E2F6, E2F7, and E2F8 were observed 

in HCC tissues and were significantly correlated to tumor 

stages and worse OS in liver cancer patients, suggesting that 

they may play oncogenic role in HCC. Moreover, in vitro 

studies by Deng et al had demonstrated that overexpression 

of E2F8 promoted cell proliferation, colony formation, and 

tumorigenicity in different HCC cell lines by regulating 

transcription of cyclin D1 and promoting accumulation of 

S-phase cells, while knockdown of E2F8 reversed these 

phenotypes.20 Therefore, although there is a possibility that 

upregulation of “inhibitor” E2F members is reactive to the 

upregulation of the proliferative E2Fs, which is an attempt 

to downregulate cell proliferation, results from our paper 

indicated that “inhibitors” E2F members may play a role 

in promoting tumorigenesis as oncogenes in HCC. Further 

experiments should be done to evaluate the exact role played 

by “inhibitors” E2F members.

Our study has some limitations. First, we found that E2Fs 

may be exploited as promising diagnostic and prognostic 

markers in human HCC. HCC patients with cirrhosis are 

very common, and there is no doubt that a comparison of 

E2Fs between cirrhosis and HCC will increase the marker 

specificity of E2Fs. However, because all the data were 

retrieved from published literature (reported in the ONCO-

MINE, UALCAN, and c-BioPortal databases), we could not 

obtain more data showing E2F mRNA expression in patients 

with HCC and in patients with cirrhosis; thus, we cannot 

make this comparison based on the present data. Second, 

despite overexpressed mRNA levels of E2F1–E2F8 had 

been shown to be significantly related to shorter OS time 

of HCC patients by Kaplan–Meier plotter, results of multi-

variate analysis showed that only E2F5 and E2F6 served as 

independent factors and they may be a driver in the tumor 

progression (Table S1). However, multivariate analysis also 

revealed that other E2Fs may not be independent prognos-

tic factors, which indicated that these other E2Fs may be 

a passenger that altered with the change of stage/grade in 

tumor or expression of E2F5/E2F6. Therefore, we are not 

yet able to determine whether E2Fs are driving factors in 

tumorigenesis or just associated with the change in tumor 

stage/grade, and further experiments such as overexpression/

knockdown E2Fs on cell or animal models need to be done 

to reveal their roles during the HCC progression. Examining 

the E2F levels in the blood of HCC patients and demonstrat-

ing that the mRNA expression of E2Fs in the blood has the 

same predictive value as the mRNA expression of E2Fs in 

tissue will promote practical (clinical) use of our findings 

in the future. In fact, studies performed by Al Ahmed et 

al and Pipinikas et al have shown that blood E2F3 mRNA 

levels in lung cancer patients and prostate cancer patients 

can be measured by quantitative RT-PCR;74,75 based on their 

findings, it is reasonable to speculate that E2F levels in the 

blood of HCC patients can also be measured by quantitative 

RT-PCR, and the prediction values of blood E2F mRNA 

expression levels in HCC patients should be explored in 

future research.

In summary, the expression, mutation, and prognostic 

values of different E2Fs in HCC patients were systemically 

analyzed. Our results showed that all E2F family members 

were highly expressed in HCC and were associated with poor 

survival of HCC patients. Thus, E2Fs could be exploited as 

diagnostic molecular markers and prognostic markers in the 

management of HCC treatment.
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Supplementary materials

Table S1 Multivariate analysis of overall survival in 371 hCC 
specimens

Variables Multivariate analysis

HR 95% CI P-value

gender 2.087 0.929–4.688 0.075
age (years) 1.039 1.011–1.068 0.006*
Weight (kg)
Adjacent tissue inflammation
albumin (g/l)
Child-Pugh stage
Creatinine
aFP (ng/ml) 1.000 1.000–1.000 0.232
PlT (10e9/l)
Prothrombin time (seconds)
Total bilirubin (μmol/l) 0.076 0.006–0.989 0.049*
Cirrhosis
histologic grade 1.823 1.118–2.974 0.016*
Pathologic stage 2.215 1.477–3.322 0.000*
e2F5 (scores) 1.374 1.045–1.807 0.023*
e2F6 (scores) 2.074 1.128–3.815 0.019*

Notes: statistical analysis was performed by Cox test analysis. *P-values with 
significant difference.
Abbreviations: aFP, alpha fetoprotein; hCC, hepatocellular carcinoma; PlT, 
platelet.
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