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Background: Epithelial ovarian cancer (EOC) is a female malignant tumor. Bioinformatics 

has been widely utilized to analyze genes related to cancer progression. Targeted therapy for 

specific biological factors has become more valuable.

Materials and methods: Gene expression profiles of GSE18520 and GSE27651 were down-

loaded from Gene Expression Omnibus. We used the “limma” package to screen differentially 

expressed genes (DEGs) between EOC and normal ovarian tissue samples and then used 

Clusterprofiler to do functional and pathway enrichment analyses. We utilized Search Tool for 

the Retrieval of Interacting Genes Database to assess protein–protein interaction (PPI) informa-

tion and the plug-in Molecular Complex Detection to screen hub modules of PPI network in 

Cytoscape, and then performed functional analysis on the genes in the hub module. Next, we 

utilized the Weighted Gene Expression Network Analysis package to establish a co-expression 

network. Validation of the key genes in databases and Gene Expression Profiling Interactive 

Analysis (GEPIA) were completed. Finally, we used quantitative real-time PCR to validate hub 

gene expression in clinical tissue samples.

Results: We analyzed the DEGs (96 samples of EOC tissue and 16 samples of normal ovarian 

tissue) for functional analysis, which showed that upregulated DEGs were strikingly enriched 

in phosphate ion binding and the downregulated DEGs were significantly enriched in glycos-

aminoglycan binding. In the PPI network, CDK1 was screened as the most relevant protein. 

In the co-expression network, one EOC-related module was identified. For survival analysis, 

database and clinical sample validation of genes in the turquoise module, we found that ITLN1 

was positively correlated with EOC prognosis and had lower level in EOC than in normal tis-

sues, which was consistent with the results predicted in GEPIA.

Conclusion: In this study, we exhibited the key genes and pathways involved in EOC and 

speculated that ITLN1 was a tumor suppressor which could be used as a potential biomarker 

for treating EOC, Gene Expression Omnibus, prognosis. 

Keywords: bioinformatics analysis, epithelial ovarian cancer, PPI, WGCNA, ITLN1

Introduction
Epithelial ovarian cancer (EOC) is a female malignant tumor with a high mortality 

rate. In recent years, its incidence has been soaring worldwide.1 EOC lacks significant 

symptoms in the early stage, leading to poor prognosis, so the biggest challenge of 

curing EOC is early diagnosis.2 Surgical and adjuvant therapies have limited function 

in improving the prognosis for advanced EOC, and there is growing evidence that 

targeted therapy for specific biological factors has greater value.3
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Gene expression profiling has been widely applied 

to screen and analyze genes in linkage to various types 

of cancer progression,4,5 and researchers have used a 

comprehensive approach to further explore the changes 

in biological factors in the development of EOC.6 Many 

genes with similar expression patterns affect each other 

and even have a regulatory relationship.7 Most studies only 

focus on the differential expression of genes, but ignore 

the connection between genes. Weighted Gene Expression 

Network Analysis (WGCNA) is a systematic biological 

method which is utilized to describe the pattern of gene 

association between different samples.7,8 It can be used 

to identify highly synergistically altered gene sets and to 

identify candidate biomarker genes or therapeutic targets 

based on the association of gene sets and associations 

between gene sets and phenotypes. Recently, WGCNA has 

been comprehensively used in cancer-related research.9 

For instance, Zhou et al10 revealed that TOP2A might be 

used as a potential biological target for the prognosis and 

progression of pancreatic ductal adenocarcinoma. Wang 

et al12 found that the abnormal spindle-like microcephaly 

gene (ASPM), the human ortholog of the Drosophila 

melanogaster “abnormal spindle” gene (asp), encodes 

ASPM, a protein localized at the centrosome of apical 

neuroprogenitor cells and involved in spindle pole posi-

tioning during neurogenesis, and may cause cirrhosis, then 

further produce hepatocellular carcinoma. In this research, 

we first screened differentially expressed genes (DEGs) 

using WGCNA-based systems biology methods, and then 

constructed a protein–protein interaction (PPI) network 

and a co-expression network of genes, to discover the 

essential genes and pathways involved in the carcinogenic 

mechanism of EOC.13

Materials and methods
Data collection
We downloaded the gene expression profile from the Gene 

Expression Omnibus (GEO) database (http://www.ncbi.

nlm.nih.gov/geo/), Dataset GSE1852014 and GSE2765115 

(Table S1) were processed by Affymetrix Human Genome 

U133 Plus 2.0 Array [transcript (gene) version] (Affyme-

trix, Santa Clara, CA, USA).16 We used the processed data 

to filter DEGs, and set up PPI networks and co-expression 

networks in order to identify hub genes and pathways in this 

research. Dataset GSE18520 included 10 normal ovarian tis-

sue samples and 53 high-grade primary EOC tissue samples. 

Dataset GSE27651 included 6 normal ovarian tissue samples 

and 43 EOC tissue samples including 8 microdissected serous 

borderline ovarian tumor tissue samples, 13 low-grade serous 

ovarian carcinomas tissue samples and 22 high-grade serous 

ovarian carcinomas tissue samples. The genomic data and 

clinical data of EOC from The Cancer Genome Atlas (TCGA; 

https://cancergenome.nih.gov/) were also downloaded. 

These RNA sequencing data from Illumina HiSeq RNASeq 

 platform included 379 tumor sample specimens from patients 

with EOC. There were no normal ovarian tissue samples in 

the TCGA database.

Research design and data preprocessing
The research was designed according to the flowchart 

(Figure 1). These two datasets were chosen for integrated 

analysis because they have the same platform and are crucial 

for combining data from different datasets. The raw data for 

these two datasets were integrated for the analysis, including 

RMA background correction,17 log2 transformation, quantile 

normalization and median polish algorithm summarization 

by the “affy” R language package.18 The microarray data 

probe was transformed to gene symbols with Bioconductor 

Annotation Data software packages. If several probes were 

mapped to one gene symbol, the mean value was set as the 

final expression value of this gene. The combat function in the 

sva package was applied to remove the batch effects of these 

two datasets19 (Table S2). Microarray quality was evaluated 

by sample clustering in light of the distance between different 

Figure 1 Study design and data preprocessing.
Note: Flow diagram of study. 
Abbreviations: DEGs, differentially expressed genes; EOC, epithelial ovarian 
cancer; GEO, Gene Expression Omnibus; GEPIA, Gene Expression Profiling 
Interactive Analysis; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and 
Genomes; PPI, protein–protein interaction.
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samples in Pearson’ s correlation matrices.20 GSM461376 

were removed from subsequent analysis in the test dataset. 

(Figure S1).

Differentially expressed genes
We utilized the “limma” R language package21 to screen 

the DEGs between EOC samples and normal ovarian sam-

ples. The adjusted P<0.05 and |log2fold change (FC)|>1 

were chosen as the cutoff criteria. Adjusted P-value (adj. 

P) was applied to help correct false-positives. Drawing of 

heatmap was performed through the “heatmap” package 

in R 3.4.422

Gene ontology (GO) term and Kyoto 
Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis
The KEGG is a reference knowledge base involving systems 

information, genomic information and chemical information. 

GO is a framework for the model of biology, which describes 

gene functions and classifies. To further explore the biological 

significance of DEGs, we used a package called Clusterpro-

filer23 with the ability to analyze and visualize data to perform 

enrichment analysis of functions and pathways.23 P-value 

<0.05 was considered a significant enrichment.

Comprehensive analysis of PPI network 
and functional analysis
We used Search Tool for the Retrieval of Interacting Genes 

Database (STRING) (http://www.string-db.org/) to assess 

PPI information.24 In addition, in order to explore the rela-

tionship between DEGs, we used the STRING database for 

analysis, and visually converted the results using Cytoscape 

software. The “Experiments” and “Databases” sources have 

been used for building the network, and we have set the 

threshold for interaction score at 0.95, which indicated the 

highest confidence of two protein interaction occurrences. 

The Cytoscape Molecular Complex Detection (MCODE) 

plug-in was used for searching clustered sub-networks.25 The 

default parameters were as follows: degree cutoff =5, node 

score cutoff =0.2, k-core =2, and max. depth =100. Next we 

used the Clusterprofiler to perform functional analysis of the 

genes in the hub module.

Co-expression network creation and 
module functional analysis
The first step was to test the expression data profile of the 

DEGs to see if they were suitable samples and genes. Next, 

we used the WGCNA11 package in the R language to create 

the co-expression network for DEGs.26,27 The Pearson’ s cor-

relation matrices were both functioned for all pair-wise genes. 

After that, a power function a
mn

 = |c
mn

|β (c
mn

 = Pearson’ s cor-

relation between gene m and gene n; a
mn

 = adjacency between 

gene m and gene n) was utilized to erect a weighted adjacency 

matrix. We used a soft-thresholding parameter β=15 (scale 

free R2=0.84) to emphasize strong correlations between 

genes and penalize weak correlations. Then, we converted the 

adjacency to topological overlap matrix (TOM) to measure 

network connectivity of a gene which was defined as the sum 

of its adjacency with all other genes for network generation. 

We created average linkage hierarchical clustering due to 

the TOM-based dissimilarity measure with a minimum size 

(gene group) of 20 for the gene dendrogram, thereby clas-

sifying genes with similar expression profiles into the same 

gene module. Eigengenes were the principal components 

of microarray gene expression data, which represented the 

oscillatory characteristics of gene expression patterns.28 We 

calculated the dissimilarity of module eigengenes, selected a 

cut line for module dendrogram, and merged some modules. 

In order to find relevant modules that have an impact on 

EOC, we further conducted functional enrichment analysis 

on these gene modules.

Validation of hub genes
The key genes were identified as the intersecting genes of the 

turquoise module in WGCNA and DEGs. Survival analysis 

was performed using a standard Kaplan–Meier univariate 

curve through the “survival” package in R 3.4.4. P-value 

<0.05 was considered as having statistical significance. The 

hub gene was finally validated in GEPIA (Gene Expression 

Profiling Interactive Analysis).29 GEPIA is a web-based 

tool to deliver fast and customizable functionalities based 

on TCGA and Genotype-Tissue Expression databases data.

Preparation for human EOC samples
During the course of the study, we received informed con-

sent for tissue sample analysis for each patient and were 

approved by the Institutional Review Board of Nanjing 

Medical University. Once the tissue of the EOC patient 

was removed, it was immediately stored at –80°C until 

use. From June 2017 to January 2018, the Department of 

Gynecology and Obstetrics, the First Affiliated Hospital of 

Nanjing Medical University, removed tissue samples from 

patients with informed consent, including 17 EOC tissues 

and 10 normal ovarian tissues.
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Quantitative real-time RT-PCR (qRT-PCR) 
analysis
We extracted total RNA from tissue samples using TRizol 

reagent (Thermo Fisher Scientific, Waltham, MA, USA). 

We used the Agilent Bioanalyzer 2,100 with RNA 6000 

Nano kit (Agilent Technologies, Santa Clara, CA, USA) 

to assess the integrity of the isolated RNA. We used the 

high-capacity cDNA reverse transcription kits (Thermo 

Fisher Scientific) to react RNA, synthesize single-stranded 

cDNA from RNA, and then perform real-time quantification 

using the SYBR Green PCR kit (Thermo Fisher Scientific). 

The cycle threshold (Ct) of each gene was recorded. The 

relative expression of ITLN1 was calculated using the 2−ΔΔCt 

method (ΔCt = Ct
target gene

 – Ct
internal control

). The forward primer 

of ITLN1 is  ACGTGCCCAATAAGTCCCC. The reverse 

primer of ITLN1 is CCGTTGTCAGTCCAACACTTTC. 

All procedures for qRT-PCR are performed according to the 

manufacturer’s protocol.

Statistical analyses
All analyses were conducted three times and represent 

data from three separate experiments. Two-tailed Student’s 

t-test was utilized for significance of differences between 

subgroups. Statistical analysis processed via SPSS 16.0 

(SPSS Inc., Chicago, IL, USA) and R software 3.4.4 

(https://www.r-project.org/). Graphs were generated using 

Graph-Pad Prism 6.0 (GraphPad Software, Inc., La Jolla, 

CA, USA). Statistical significance was set at probability 

values of P<0.05.

Results
Identification of DEGs in EOC and the 
enrichment of these genes
After preprocessing and removing batch effects, we ana-

lyzed the DEGs of GSE18520 and GSE27651 using the 

limma package, using adjusted P<0.05 and |logFC| >1 as 

the cutoff criterion. We screened 1,700 DEGs, including 

943 upregulated genes and 757 downregulated genes in 

EOC samples compared to normal ovarian samples (Figure 

2A). We identified the top 100 DEGs according to |logFC| 

>1 and then displayed on a heatmap (Figure 2B, Table S3). 

The Clusterprofiler package was applied to compare gene 

clusters according to their enriched biological processes, 

with a cutoff criterion of P<0.05 on the 1,700 DEGs (Table 

S4). In GO analysis, the upregulated genes were mostly 

enriched in phosphate ion binding (Figure 2C), and the 

downregulated genes were highly enriched in glycosami-

noglycan binding, heparin binding and sulfur compound 

binding (Figure 2D). The KEGG is a reference knowledge 

base involving systems information, genomic information 

and chemical information. Using the Clusterprofiler pack-

age30 (http://bioconductor.org/packages/release/bioc/html/

clusterProfiler.html), KEGG pathway enrichment analyses 

were conducted separately for the DEGs. The upregulated 

genes were mostly enriched in oxidative phosphorylation 

and cell cycle (Figure 2E). The downregulated genes were 

mostly enriched in complement and coagulation cascades, 

proteoglycans in cancer, histidine metabolism, Staphylococ-

cus aureus infection, and tyrosine metabolism (Figure 2F). 

The above enrichment analysis results can help us further 

study the role of DEGs in EOC.

PPI network and cluster analysis
Via the STRING website, 1700 DEGs were screened into 

the DEGs PPI network complex, which contained 1467 

nodes and 185 edges (Figure 3A). With PPI analysis using 

STRING software, 10 prominent proteins were identified. 

In these identified proteins, CDK1 was considered to be the 

most important protein and contacted 11 nodes (Fig. 3B).

After that, we applied the MCODE, a plug-in using 

scoring and finding parameters that have been optimized 

to produce the best results for the network, to find clusters 

in the network. Seven clusters were calculated according 

to k-core =2. Among them, cluster 1 contained 7 nodes and 

21 edges and had the highest score in these clusters (Figure 

4A). This result may suggest that the above 7 DEGs play a 

critical role in EOC. Cluster 2, contained 5 nodes and 10 

edges and got the second highest score in these clusters 

(Figure 4B). The genes in cluster 2 may also be associated 

with EOC.

Plug-in MCODE was used for the top two significant 

modules of the PPI network. Because the number of genes in 

cluster 2 was too small, we only performed functional analysis 

on the genes in cluster 1. GO and KEGG analysis of module 

1 were performed by Clusterprofiler (Figure 5A and B).

Weighted co-expression network 
construction and analysis
As a result, the expression values of the 1,700 genes exhibit-

ing a 1-fold change in the 112 tissues samples were used to 

construct co-expression modules using the WGCNA algo-

rithms. Hierarchical clustering analysis was performed with 

the flashClust function and the results are presented in Figure 
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S1B. We found one obvious outlier (GSM461376) which was 

removed from the cohort. The remaining 111 samples were 

divided into two clusters including normal ovarian tissue 

samples and EOC tissue samples. GSM462643, GSM462644, 

GSM462645, GSM462646, GSM462647, GSM462648, 

GSM462649, GSM462650, GSM462651, GSM462652, 

GSM372258, GSM372259, GSM372260, GSM372261, 

GSM372262, and GSM372263 are normal ovarian tissue 

samples, the rest were EOC tissue samples (Figure 6A). 

We evaluated the quality for the expression data matrix of 

GSE18520 and GSE27651, and then used the WGCNA pack-

age in the R language to ensure a scalefree network (Figure 

S2). After removing the batch effect, we preprocessed the data 

and then further analyzed the modules with highly related 

genes, ten modules were excavated ( Figure 6B). We set the 

MEDissThres as 0.25 to merge similar modules (Figure 6C), 

and 7 modules were generated. The gray module was a col-

lection of genes that did not belong to any of the functional 

modules and therefore did not require analysis. Module black 

contained 161 genes, module blue contained 341 genes, mod-

ule brown contained 254 genes, module magenta contained 

29 genes, and module yellow contained 118 genes. Moreover, 

an intramodular analysis of GS and MM of the genes in the 

ten modules was followed. As GS and MM illustrated a very 

meaningful correlation, this finding indicated that among the 

top 6 modules, the 325 genes in the turquoise module tend to 

be remarkably correlated with tumor (Figure 6D). Defined 

by module connectivity, measured by absolute value of the 

Pearson’s correlation (cor.geneModuleMembership >0.85) 

and cancer trait relationship, measured by absolute value of 

Figure 2 Identification of DEGs in EOC and the enrichment of these genes.
Notes: (A) The volcano plot of all DEGs. (B) Heatmap of the top 100 DEGs according to the value of |logFC|. Drawing of heatmap was performed through the “heatmap” 
package in R 3.4.4. (C) In GO analysis of DEGs, upregulated DEGs with fold change >1. (D) In GO analysis of DEGs, downregulated DEGs with fold change >1. (E) In KEGG 
analysis of DEGs, upregulated DEGs with fold change >1. (F) In KEGG analysis of DEGs, downregulated DEGs with fold change >1.
Abbreviations: adj.P.val, adjusted P-value; DEGs, differentially expressed genes; FC, fold change; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; 
NoDEG, non-DEG.
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the Pearson’s correlation (cor.geneTraitSignificance >0.2). 

In the end, 40 hub genes belong to the turquoise module 

were selected for further research (Figure 7A). Among the 

modules, module turquoise has the highest negative correla-

tion with cancer traits, and all genes were identified for the 

heatmap (Figure 7B). The number of genes in each module 

is shown in Figure S3.

Interestingly, some of these gene modules had simi-

lar expression profiles. To find out the connections and 

 interactions among these top six co-expressed modules, we 

analyzed the connectivity of eigengenes. A cluster analysis 

was completed. In general, six clusters were classified into 

two clusters, and each contained three branches (Figure 7C). 

The top 3 relevant modules including the turquoise, brown 

and black modules were visualized by STRING database and 

Cytoscape with a combined score >0.4, which was considered 

to be meaningful (Figure 8A-C).

GO was performed on these modules in order to explore 

the potential biological pathway that is correlated to EOC 

(Table S5). In GO analysis, we found that DEGs in the tur-

quoise module were mostly enriched in collagen binding 

(Figure 9A). The DEGs in the black module were significantly 

enriched in SH3/SH2 adaptor activity and GTPase activator 

activity (Figure 9B). The DEGs in the brown module were 

Figure 3 Cluster analysis of the PPI network.
Notes: (A) 1,700 DEGs were filtered into the DEGs PPI network complex that contained 1,467 nodes and 185 edges. (B) Histogram of key proteins. The y-axis represents 
the name of genes, the x-axis represents the number of adjacent genes, and height is the number of gene connections. 
Abbreviations: DEGs, differentially expressed genes; PPI, protein–protein interaction.
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significantly enriched in anion channel activity (Figure 9C). 

In KEGG analysis, we found that DEGs in turquoise module 

were significantly enriched in retinol metabolism, tyrosine 

metabolism and drug metabolism (Figure 9D). The DEGs in 

the black module were significantly enriched in adrenergic 

signaling in cardiomyocytes (Figure 9E). The DEGs in the 

brown module were significantly enriched in NOD-like recep-

tor signaling pathway and tryptophan metabolism (Figure 9F).

Hub genes validation
Using the WGCNA package, we found that the turquoise 

module had the highest correlation and negative cor-

relation with EOC. We speculated that the genes in the 

turquoise module may act as tumor suppressors. Defined 

by module connectivity, measured by absolute value of 

the Pearson’s correlation (cor.geneModuleMembership 

>0.85) and defined by tumor trait relationship, measured by 

absolute value of the Pearson’s correlation (cor.geneTrait-

Significance >0.2), we found 40 hub genes belong to tur-

quoise module. Next we combined survival analysis (Table 

S6) and found that expression levels of ADH1C, SNCA, 

ITLN1, PRSS35, and OGN were significantly related to 

the overall survival of patients with EOC (P<0.05) (Figure 

S4). Furthermore, we found that patients with higher levels 

Figure 5 Determination of soft-thresholding power in WGCNA.
Notes: (A) GO enrichment analysis of module rank 1, (B) KEGG analysis of module rank 1.
Abbreviations: GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; WGCNA, Weighted Gene Expression Network Analysis.
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of ITLN1 expression in vivo had longer overall survival 

than patients with lower expression levels (Figure 10A). 

Among the above five genes, only ITLN1 was consistent 

with our speculation. Finally, we used qRT-PCR to perform 

the ITLN1 validation. We found ITLN1 was downregulated 

in EOC tissues that was compared with the normal ovarian 

tissues (Figure 10B).

Two other datasets and GEPIA were utilized to validate 

the expression of this gene. The results showed that ITLN1 

expression was strikingly higher in normal tissues compared 

to that of EOC tissues (P<0.05) (Figure 10C–E).

Discussion
EOC is a malignant tumor with high malignancy and extremely 

high mortality. Its progression and development have complex 

mechanisms. Little is known about it. Surgery and adjuvant 

therapy have limited prognosis for advanced EOC. Targeted 

therapy has become the most promising treatment for EOC. 

Therefore, it is very important to study biomarkers and related 

regulatory pathways that affect the development of EOC. 

In this research, we examined the gene expression profile 

of GSE18520 and GSE27651 that contained 96 samples of 

EOC tissue and 16 samples of normal ovarian tissue samples 

Figure 6 Hub module selection.
Notes: (A) Samples clustering of GSE18520 and GSE27651. The clustering was based on the expression data of differentially expressed genes between tumor samples and 
normal samples in EOC. The color intensity was proportional to tumor samples and normal samples. (B) Dendrogram of all differentially expressed genes clustered based 
on a dissimilarity measure (1-TOM). (C) Dendrogram of consensus module eigengenes obtained by WGCNA on the consensus correlation. The red line was the merging 
threshold, and groups of eigengenes below the threshold represent modules whose expressions profiles should be merged due to their similarity. (D) Correlation between 
modules and traits. The upper number in each cell referred to the correlation coefficient of each module in the trait, and the lower number was the corresponding P-value. 
Among them, the turquoise module was the most relevant module with cancer traits. 
Abbreviation: TOM, topological overlap matrix. 
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to identify the molecular mechanism of EOC and seek some 

biomarkers. Bioinformatics analysis of these biological factors 

is used to seek genes that are beneficial to treatment.

In these findings, we identified 1,700 DEGs associated 

with EOC, including 943 upregulated genes and 757 downreg-

ulated genes using P<0.05 and |logFC|≥1 as the cutoff criteria, 

as shown in the volcano map (Figure 2A). We identified the 

top 100 DEGs according to |logFC|≥1 and then displayed on 

a heatmap. In GO analysis, the upregulated genes were mostly 

enriched in phosphate ion binding, the downregulated genes 

were highly enriched in glycosaminoglycan binding, heparin 

binding and sulfur compound binding. In the KEGG analy-

sis, the upregulated genes were mostly enriched in oxidative 

phosphorylation and cell cycle. The downregulated genes were 

mostly enriched in complement and coagulation cascades, 

and proteoglycans in cancer. The above enrichment analysis 

results can help us further study the role of DEGs in EOC.

Most of the above GO terms and pathways had a certain 

relationship with ovarian function. Li et al31 found that sphin-

gosine-1-phosphate could prevent chemotherapy-induced 

human primordial follicle death. Giordano et al32 performed 

the evaluation of endometrial sulfate glycosaminoglycans in 

patients with polycystic ovary syndrome and found that they 

were closely related. Cree-Green et al33 found that peripheral 

Figure 7 Select hub genes in hub modules.
Notes: (A) A scatter plot of GS for epithelial ovarian cancer vs the MM in the turquoise module. Intramodular analysis of the genes found in the turquoise module, which 
contained genes that had a high correlation with epithelial ovarian cancer, with P<1.5e–125 and correlation =0.91. (B) A heatmap of all genes. The intensity of the red color 
indicated the strength of the correlation between pairs of modules on a linear scale. (C) Dendrogram of merged module eigengenes obtained by WGCNA. Heatmap plot of 
the adjacencies of modules. Red represented high adjacency (positive correlation) and blue represented low adjacency (negative correlation). 
Abbreviations: GS, gene significance; MM, module membership; WGCNA, Weighted Gene Expression Network Analysis.
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insulin resistance in obese girls with hyperandrogenism was 

related to oxidative phosphorylation and elevated serum free 

fatty acids. As is known, obesity and elevated androgen are 

also the causes of weakening ovarian function. Oxidative 

metabolism and oxidative damage were widely considered 

as significant pathways in cancers, including EOC.34 Chen 

et al35 found that chemically modified heparin inhibited in 

vitro L-selectin-mediated human ovarian carcinoma cell 

adhesion. And the change of cell cycle was one of the factors 

that induced the occurrence of ovarian cancer. Many studies 

were also aimed at the cell cycle to find ways to treat ovar-

ian cancer, for instance, Xiong et al36 found that ferruginol 

exhibited anticancer effects in OVCAR-3 human ovary cancer 

cells by inducing apoptosis, inhibition of cancer cell migra-

tion and G2/M phase cell cycle arrest.

We utilized PPI network analysis and WGCNA analysis 

to select PPI and gene co-expression modules that are linked 

to the clinical development of EOC. The PPI network was 

built on the DEGs that is analyzed by STRING website and 

Cytoscape software. Referring to cutoff of a k-core of 2, we 

found 7 clusters, among which cluster 1 had the highest score, 

and included 7 nodes and 21 edges in this subnetwork. Ten 

prominent proteins were also identified, among which CDK1 

was considered to be the most important protein.

WGCNA analysis showed that three modules possessed 

exceedingly relevant expression pattern. For each module, 

GO and KEGG analysis were used to explore the biological 

process and pathway. The most relevant turquoise module 

contains 40 key genes. Through GO analysis, they were 

mainly enriched in collagen binding. In KEGG analysis, 

we found that DEGs in the turquoise module were highly 

enriched in retinol metabolism, tyrosine metabolism and 

drug metabolism. We performed further survival analysis and 

database validation of these genes. Interestingly, ITLN1 was 

positively associated with the prognosis of EOC. We further 

performed the validation in the clinical tissues samples, and 

then found the expression level of ITLN1 was lower in EOC 

tissues, consistent with the results predicted in GEPIA.

Our research found that CDK1 has 94 nodes in the 

PPI network, and ranked first. Cdk1 (cyclin-dependent 

Figure 8 PPI network of genes in the top three modules.
Notes: The turquoise nodes represent the genes in turquoise module. The black nodes represent the genes in black module. The brown nodes represent the genes in brown 
module. Red words represent upregulated genes and blue words represent downregulated genes. The network was constructed using Cytoscape 3.4 software.
Abbreviation: PPI, protein–protein interaction.
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kinase 1) is essential regulator of the G2-M checkpoint. 

 Cyclin-dependent kinase pathways are considered potential 

targets for cancer treatment.37,38 Sung et al39 found that high 

nuclear/cytoplasmic ratio of Cdk1 expression predicts poor 

prognosis in colorectal cancer patients. It also has been 

identified as a clinically functional prognostic biomarker in 

non-small-cell lung cancer and breast cancer.40–44 CDK1 has 

been shown to be involved in the development of EOC in 

multiple studies, and its high expression levels lead to poor 

prognosis45,46 and CDK1 affects drug resistance in EOC.47 

These results indicate that CDK1 may be an independent 

 biomarker for the diagnosis of EOC as well as a potential 

therapeutic target, and this result is consistent with our 

findings.

Intelectin 1 (ITLN1), a secretory lectin, is also a plasma 

adipokine that is synthesized in visceral adipose tissue. 

ITLN1 has anti-inflammatory, antiatherogenic, anti-cardio-

vascular disease and antidiabetic propertiesits.48 Plasma 

concentration changes in colorectal cancer and conditions 

associated with insulin resistance.49,50 Circulating ITLN1 

levels were negatively correlated with WHR and BMI and 

significantly decreased in renal cancer patients.51 It has 

Figure 9 GO and KEGG enrichment analysis of three genes modules.
Note: (A) GO analysis of turquoise module; (B) GO analysis of black module; (C) GO analysis of brown module; (D) KEGG analysis of turquoise module; (E) KEGG analysis 
of black module; (F) KEGG analysis of brown module.
Abbreviations: GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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been proved that circulating ITLN1 levels were elevated in 

patients with Prostate cancer.52 ITLN1 was demonstrated 

to be a tumor suppressor and is associated with improved 

survival in gastric cancer.53 Li et al54 illustrated that intelectin 

1 suppresses the growth, invasion and metastasis of neu-

roblastoma cells. Zhang and Zhou55 illustrated that ITLN1 

promotes apoptosis through regulating Sirt1-dependent p53 

deacetylation in hepatocellular carcinoma cells. Therefore, 

Szydło et al56 stated that it is reasonable to use ITLN1 as 

a biomarker for predicting individual conditions, such as 

obesity, type 2 diabetes, pancreatitis, gastric cancer, lung 

cancer or colon cancer. However, the role of ITLN1 in EOC 

has not been verified.

There were some limitations to this study. First, we did not 

analyze the detailed classification of tumors, such as tumor 

size, staging, grading, and prognosis. We will explore key 

genes and pathways in detail based on this clinical informa-

tion in future research.

Conclusion
Through a series of comprehensive analysis of bioinformat-

ics, we can roughly screen the hub genes and pathways related 

to the progression of EOC, and target therapy for the extracted 

hub gene ITLN1 and hub protein CDK1 which might greatly 

promote the prognosis of advanced EOC. However, these key 

genes and pathways still need to be tested in a large quantity 

of clinical specimens, and need to be analyzed and validated 

in combination with the individual conditions of clinical 

patients in order to finally determine the biological targets 

that are most beneficial to EOC.

Ethics approval and consent to 
participate
The study was approved by the Ethics Committee of the Nan-

jing Medical University. Samples were obtained with written

informed consent from all patients and the study was conducted 

in accordance with Declaration of Helsinki guidelines.

Figure 10 Validation of hub genes.
Notes: (A) Survival analysis indicated that ITLN1 was a positive prognosis factor in epithelial ovarian cancer, while patients with a higher expression of ITLN1 had significantly 
longer overall survival compared to those with higher expression (P=2.593e–02). (B) ITLN1 validation using qRT-PCR analysis. (C, D) Validation of ITLN1 expression from 
the GEO databases. Two datasets showed lower expression of ITLN1 in epithelial ovarian cancer tissues compared with normal ovarian tissues (P<0.001). (E) Validation of 
ITLN1 expression in GEPIA. Lower expression of ITLN1 in tumor tissues compared with normal ovarian tissues. ***P<0.001; **P<0.01; *P<0.05.
Abbreviations: GEO, Gene Expression Omnibus; GEPIA, Gene Expression Profiling Interactive Analysis; num(T), number of tumor sample, num(N), number of normal 
sample; OV, ovarian cancer; qRT-PCR, quantitative real-time RT-PCR.
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