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Background: Chrysin is a natural flavonoid which has been identified as a candidate

anti-cancer agent due to its inhibitory effect on a variety of cancer cells, including

targeted inhibition of sphere formation in hepatocellular carcinoma (HCC) cell lines.

However, the mechanism by which chrysin modulates HCC spheres remains unclear.

Materials and methods: In this study, we investigate the effect of chrysin on the regula-

tion of SHP-1 and its downstream signal molecule STAT3 to explain the mechanism by

which chrysin inhibits sphere formation of HCC cell lines.

Results: Here, we found that SHP-1 protein expression was markedly down-regulated

in the spheres from both SMMC-7721 and MHCC97H cells. Chrysin significantly

inhibited sphere formation and upregulated the expression of SHP-1 protein in both

SMMC-7721 and MHCC97H cells, as well as reduced p-STAT3 and Twist1 expres-

sions in SMMC-7721 cells. Furthermore, knockdown of SHP-1 in SMMC-7721 cells

resulted in the induction of p-STAT3 and Twist1 protein expression and antagonizing

the inhibitory effect of chrysin on sphere formation in SMMC-7721 cells.

Conclusion: Overall, the study findings demonstrated that chrysin acts as a candidate for the

treatment of HCC through modulating SHP-1/STAT3 signaling pathway.
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Introduction
Hepatocellular carcinoma (HCC) is one of the most common digestive system

cancers, ranking as the fifth most common cause of cancer-related death

worldwide.1 Remarkably, HCC is the third for cancer mortality in China.2

Despite advances in both diagnosis and treatment, the incidence and mortality

of HCC continues to rise, thought to be caused by cancer stem cells (CSCs)

that have been reported to possess capabilities for self-renewal, invasion,

and tumorgenicity.3,4 Therefore, further investigation of biologic

properties for CSCs may help to develop a new therapeutic approach for

HCC patients.

Signal transducer and activator of transcription 3 (STAT3) is an oncogenic

transcription factor and its phosphorylation has been observed in various

malignancies, including prostate, liver, and colorectal cancers.5,6,7 STAT3

activation is involved in multiple cellular progress, such as proliferation,

apoptosis, and metastasis.8,9 It is worth noting that STAT3 plays an important

role in inducing characteristics of CSCs.10,11 Src homology region 2 domain
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containing phosphatase 1 (SHP-1) belongs to a family

of non-receptor protein tyrosine phosphatases (PTPs)

and expresses highly in normal lymphoid cells, but is

diminished in several of cancer cell lines.12 Several

evidences showed SHP-1 acts as a tumor

suppressor.13–15 and has been reported to catalyze

dephosphorylation of STAT3 at the tyrosine 705

(Tyr705) residue and to directly cause silencing of

STAT3.16,17 Accordingly, a loss of SHP-1 can result

in activation of STAT3, therefore SHP-1 adjustment to

STAT3 activation may be an appealing anti-cancer

strategy.

Chrysin (5, 7-dihydroxyflavone) is a natural flavone

widely found propolis and honey. Chrysin is well docu-

mented to possess multiple biological activities, such

as antioxidant, anti-inflammatory, especially anti-

cancer effects.18–20 Recently, a number of studies

have certified that chrysin played the inhibitory effects

in drug resistance, invasion, proliferation, and apopto-

sis in cancer.21–,24 Additionally Lirdprapamongkol

et al. found that chrysin overcame TRAIL resistance

of cancer cells mainly as blocking STAT3.25 Our recent

study demonstrated that chrysin inhibited the sphere

formation capability of SKOV3-derived ovarian cancer

stem-like cells (CSLCs),26 and 8-Bromo-7-methoxy-

chrysin, a synthetic analog of chrysin,27 reduced

sphere-forming rate of the spheres originated from

SMMC-7721 cells by blocking STAT3/Twist axis.28

However, the mechanisms underlying the regulation

of STAT3 activation by chrysin are also unclear. In

the present study, we explored whether chrysin can

inhibit sphere formation in SMMC-7721 cells through

modulation of the SHP-1/STAT3 signaling pathway.

Materials and methods
Regents and cell culture
Chrysin was obtained from Sigma–Aldrich (St. Louis,

MO, USA) and diluted with dimethyl sulfoxide to

a stock concentration of 10 mmol·L−1. Other media used

for cell culture were from GIBCO, Life Technologies

(Grand Island, NY, USA).

HCC cell lines SMMC-7721 cell and MHCC97H cell

were obtained from the Cell Bank of Chinese Academy of

Sciences (Shanghai, China), and cultured in DMEM med-

ium contained 10% FBS, 100 U/mL penicillin, and

100 U/mL streptomycin at 37°C and 5% CO2.

Sphere formation assay
SMMC-7721 cells and MHCC97H cells were har-

vested from normal culture and plated into ultra-low

attachment six-well plates (Corning Inc., Corning, NY,

USA, 5000 cells/well). These plates were incubated

with serum-free DMEM/F12 medium containing 20

ng/mL of hrbFGF and hrEGF, 5 μg/mL insulin, 0.4%

BSA, 0.2% B27, and 100 U/mL penicillin and strep-

tomycin at 37°C with 5% CO2. After incubation for 6

days, the spheres that exceed 20 cells were counted,

and the sphere formation efficiency was

calculated as (number of spheres formed/number of

cells seeded) ×100%.

Western blot
Western blot was performed as described previously.7 For

total protein extraction, cells were incubated in RIPA

buffer containing 1% PMSF on ice for 30 mins.

Samples were then separated by SDS-PAGE. Anti-STAT

3 (Abcam, Cambridge, MA, USA, cat no: ab119352,

dilute at 1:1000), p-STAT3 (Abcam, Cambridge, MA,

USA, cat no: ab76315, dilute at 1:1000), SHP-1 (Cell

signaling, USA, cat no: 3759, dilute at 1:1000), TWIST1

(Abcam, Cambridge, MA, USA, cat no: 46702, dilute at

1:1000), were used as primary antibodies and β-actin
(Cell signaling, USA, cat no:4970, dilute at 1:1000) was

used as a control.

SHP-1 knockdown
The siRNA components used in experiments, control

(sc-37007) and SHP-1 (sc-44101 primers: sense-GCAGGAG

UCCGAGGAUACATT, antisense-UGUACCUCGGACUC

CUGCTT)) were purchased from Santa Cruz Biotechnology

(Santa Cruz, MO, USA). These siRNA were subsequently

transfected into cells using the Lipofectamine2000 reagent

(Invitrogen, Grand Island, NY, USA) according to the manu-

facturer’s instructions.

Statistical analysis
All experimental data are presented as mean ± SD. All

quantitative results were entered into SPSS 16.0

(SPSS Inc, Chicago, IL, USA) to perform statistical ana-

lysis. Student’s t-test and one-way ANOVA were used for

data analysis. p<0.05 was considered statistically

significant. All experiments were repeated three times.
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Results
Expressions of SHP-1 in spheres as well

as a monolayer of HCC cell lines
It has been reported that SHP-1 plays an important role

in cancer progression.12 In order to assess SHP-1 protein

expression in HCC-derived spheres, expressions of

SHP-1 in both the spheres and monolayer of SMMC-

7721 cell line or MHCC97H cell line were analyzed

using western blot. We find that SHP-1 protein expres-

sion is down-regulated in the spheres compared to the

monolayer of both SMMC-7721 (Figure 1A) and

MHCC97H cell line (Figure 1B), suggesting that SHP-

1 may be a potential target for inhibition of sphere

formation in HCC cells.

Effect of chrysin on sphere formation in

HCC cell lines
To evaluate whether chrysin suppressed the self-

renewal capability of HCC cells, SMMC-7721 cells

and MHCC97H cells were treated with chrysin (0.0,

10.0, 20.0, 40.0 μM) for 24 hrs and then cultured

using sphere-forming culture. Figure 2 indicates that

chrysin dose-dependently decreased the sphere forma-

tion rate in both SMMC-7721 cells and MHCC97H

cells.

Effects of chrysin on SHP-1 expression in

HCC cells
To investigate the underlining mechanism of chrysin,

SMMC-7721 cells and MHCC97H cells were treated

with or without chrysin for 24 hrs or 48 hrs, and then the

SHP-1 expression was detected by western blot.

Interestingly, Figure 3 shows that SHP-1 expressions are

elevated with increasing drug concentration in both

SMMC-7721 cells and MHCC97H cells.

Effect of chrysin on the expressions of

p-STAT3 and Twist1 in SMMC-7721 cells
Previous study demonstrated that 8-Bromo-7-methoxy-

chrysin could inhibit the stemness of CSLCs derived

from SMMC-7721 cells by blocking the STAT3/Twist

axis.28 Many studies have found that SHP-1 tumor sup-

pression may result from its direct downregulating of

p-STAT3 Tyr705. To explain the potential mechanism

by which chrysin inhibits sphere formation of HCC

cells, the expression levels of p-STAT3 and Twist1 in

SMMC-7721 cells treated with or without chrysin were

determined. We observe drastically down-regulated

p-STAT3 (Figure 4A) and Twist1 (Figure 4B) expression

in chrysin-treated SMMC-7721 cells. These results sug-

gest that chrysin-associated inhibition of sphere
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Figure 1 Comparison of SHP-1 expressions in spheres than a monolayer of SMMC-7721 cells and MHCC97H cells. Western blot was performed to assess SHP-1

protein levels in both monolayer cells and spheres derived from SMMC-7721 cells (A) and MHCC97H cells (B), with β-actin as a loading control. *p<0.05 vs

monolayer of SMMC-7721 cells and MHCC97H cells.
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formation was related to the downregulation of STAT3

signaling in SMMC-7721 cells.

Effect of knocking down of SHP-1 on

levels of p-STAT3 and Twist1 in

SMMC-7721 cells
Next, in order to understand the relationship between

SHP-1 and STAT3/Twist1 signal axis, we knocked-down

expression of SHP-1 in SMMC-7721 cells using transfec-

tion with SHP-1 siRNA, and then detected the protein

expressions of SHP-1, p-STAT3, and Twist1 by western

blot analysis. Indeed, SHP-1-knockdown cells show rela-

tively lower SHP-1 protein expression (Figure 5A and B)

but display an increase in p-STAT3 (Figure 5C and D) and

Twist1 (Figure 5E and F) expressions, compared with the

untreated cells or the control siRNA-transfected cells.

Together, these results demonstrate that SHP-1 affects

STAT3 activation and Twist1 protein expression.

SHP-1 siRNA transfection reverses the

inhibitory effect of chrysin on sphere

formation and SHP-1/STAT3 signaling in

SMMC-7721 cells
In order to further demonstrate that the inhibitory effect of

chrysin on sphere forming capability of SMMC-7721 cells

involved the SHP-1/STAT3 signaling pathway, SMMC-

7721 cells were treated with SHP-1 siRNA or chrysin

alone and in combination. It is noteworthy that SHP-1

knockdown abolishes the decrease in sphere-formation

induced by chrysin treatment (Figure 6A and B).

Notably, SHP-1 knockdown also abrogate upregulation of

SHP-1 protein expression (Figure 6C and D) and down-

regulate the expressions of p-STAT3 (Figure 6E and F) and

Twist1 (Figure 6G and H) in response to chrysin treatment.

These results suggest that SHP-1/STAT3 is crucial for

chrysin-induced sphere formation inhibition in SMMC-

7721 cells.

Discussion
Here, we demonstrated, for the first time, that chrysin

could inhibit sphere formation in HCC cells by suppres-

sing STAT3 activation through upregulation of SHP-1

expression. This novel mechanism of chrysin suggests

new insights for the design of HCC-associated targeted

therapy.

Various studies have shown that chrysin exhibits anti-

tumor activities in solid tumors. For example, inhibition of

proliferation and promotion of apoptosis in human ovarian

cancer cells via modulation of mitochondrial

dysfunction,29 suppression of prostate cancer cell prolif-

eration via cell cycle arrest,30 and induction of apoptosis in

HCC cell lines.31,32 Similarly, we found that chrysin sig-

nificantly inhibited sphere formation in SMMC-7721 cells.

Given that sphere formation capability reflects the self-

renewal properties of CSCs,33 chrysin might possess the

potential to target inhibition of CSCs in HCC.

To the best of our knowledge, this is the first time that

chrysin induced the expression of SHP-1 protein expres-

sion, indicating that SHP-1 may be a pivotal target mole-

cule for the antitumor activity of chrysin. SHP-1 is known

to be a negative regulator of STAT3 that participates in
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Figure 2 Chrysin suppresses sphere formation in SMMC-7721 cells and

MHCC97H cells. (A) Representative image of sphere formation under a phase

contrast microscope for SMMC-7721 cells treated with or without chrysin (×10).

*p<0.05 vs 0.0 μM chrysin group; # p<0.05 vs 10.0 μM chrysin group (B)
Representative image of sphere formation under phase contrast microscope for

MHCC97H cells treated with or without chrysin (×10). *p<0.05 vs 0.0 μM chrysin

group; # p<0.05 vs 10.0 μM chrysin group.
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tumor progression.34 Reports have shown that chrysin

suppressed angiogenesis and overcomed TRAIL resistance

in HCC via STAT3 singling.25,35 It was also reported that

SHP-1 functions as a suppressor of TGF-β1-triggered
EMT and metastasis via targeting p-STAT3 in

HCC.13SPH-1/STAT3 signaling pathway was also

involved in inducing autophagy in HCC cell lines.36 And

it was critically associated with the radiosensitivity of

HCC cells. In this study, the first time, we determined

that the inhibitory effects of chrysin on HCC involved in
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Figure 3 Chrysin induces SHP-1 protein expression in SMMC-7721 cells and MHCC97H cells. Western blot was used to detect the SHP-1expression in SMMC-7721 cells
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the up-regulation of SHP-1 protein via suppressing STAT3

being activated.

Our work demonstrated that SHP-1 expressions in

spheres derived from SMMC-7721 cells, and MHCC97H

cells are higher than in their parental cells. Chrysin

induces the expression of SHP-1 and reduces STAT3

phosphorylation and Twist1 expression. Remarkably, we

observe that SPH-1 siRNA transfection significantly abro-

gated the inhibitiory effect of chrysin on sphere formation.

Together, these findings strongly indicate that SHP-1 is

a gene that can repress self-renewal, and its activity can be

mechanistically enhanced by chrysin. Finally, the elevated

expression of SPH-1 is known to be an important inhibitor

of p-STAT3 and Twist1 and may affect tumor development

directly or indirectly.

In summary, our findings demonstrate that chrysin

effectively inhibit sphere formation in HCC cells.

Additionally, SHP-1 is shown to act as a key molecu-

lar mechanism of chrysin-inhibited self-renewal cap-

ability in HCC cells through its tyrosine phosphatase

activity that negatively targets p-STAT3. Suppression

of SHP-1/STAT3 signaling axis, therefore, might

serve as a powerful potential therapeutic target for

human HCC.
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