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Purpose: To investigate the effects of zinc oxide nanoparticles (ZnO NPs) on chloroquine

(CQ)-induced itching, and overall behavior of mice after oral administration of ZnO NPs of

various sizes and doses.

Background: With the wide-spread use of ZnO NPs in pharmaceuticals and cosmetics, con-

cerns about their safety and toxicity are also increasing. Multiple aspects of ZnO NPs regarding

cytotoxicity and tolerability are under investigation globally. Still, a clear conclusion about their

safety has not been reached. Chloroquine phosphate is an antimalarial with known side effects of

itching in humans and animals. In this study, CQ was used to induce itching in mice, and the

effects of ZnO NPs on scratching and other neurological behavior of mice were observed.

Methods: Female BALB/c mice were divided into eleven groups of six mice each. ZnO NPs

of various sizes and doses were administered orally 1 hour before CQ (32 mg/kg body

weight) was administered subcutaneously. The effect of ZnO NPs on CQ-induced pruritus

was observed for the next 30 minutes. Simultaneously, overall behavioral changes (socializa-

tion and locomotion) were also recorded using a video camera.

Results: A significant reduction (P˂0.001) in scratching bouts was observed at all three

doses of ZnO NPs (particle sizes 100, 30 nm, and green synthesized 30 nm). Locomotion

was reduced significantly (P˂0.001) in ZnO NPs-treated groups in comparison to normal

saline and CQ group, additionally, a significant increase in socialization (P˂0.05) was

observed in ZnO NP-treated groups as compared to CQ group.

Conclusion: ZnO NPs, instead of aggravating the dermatological condition, ameliorated the

pruritus. All sizes of ZnO NPs used significantly improved socialization among mice and

reduced locomotion activity.
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Introduction
Today, in the field of advanced research, nanotechnology is undergoing extensive

growth.1 Specifically, particles smaller than 100 nm are consistently reported to

exhibit diverse, therapeutic, and bio-imaging properties.2 Nanomaterials have

become more attractive since it was established that they can be used as a target-

specific carrier with some modification.3 Nano-sized particles have a higher surface

area to volume ratio.4 Their nano size imparts specific properties that have been

different from their bulk.5,6 Recently, some of the metallic nanomaterials including

gold, copper, aluminum, titanium, silver, and zinc oxide (ZnO) have been used in

textiles as embedding agents.7
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ZnO nanoparticles (NPs) have been investigated thor-

oughly due to their distinctive features. They have good

stability and are capable of being used as a diagnostic tool

in cancer diagnosis and therapy.8 Globally, a lot of

research is underway to explore their potential candidacy

as drug delivery tool and behavior toward biological

systems.9–14

Topical applications with ZnO as active moiety have

been reported for their various antibacterial, anti-

inflammatory, and astringent properties.15–17 These wide-

spread application trends gave rise to safety concerns

about ZnO NPs, and toxicity studies have been carried

out in response. In vivo testing has been carried out in

animals at doses ranging from 250–2,000 mg/kg body

weight. Chronic exposure at 250 mg/kg affected body

weight and serum glutamic-pyruvic transaminase

activity.18 ZnO NPs at oral doses of 300 and 2,000 mg/

kg (short-term exposure) in Swiss mice resulted in reduced

sperm count, aberrant morphology, and genotoxicity in

a dose-dependent manner,19 while in basal diet they

caused developmental toxicity at 5,000 mg/kg.20

Generally, shape and size are considered determinant

factors in the toxicity of ZnO NPs,21 while their composi-

tion affects stability and biocompatibility.22 It has already

been documented that these NPs are capable of reaching

various organs after oral administration.23 Mechanistically,

ZnO NPs impart their toxic effects due to generation of Zn2

+ ions and free radicals after dissolution.24 In animal stu-

dies, ZnO NPs have exhibited their toxic effects on all

organs including the nervous system, GIT, lungs, cardiovas-

cular system, genitourinary system, and blood (in mice).25

Shrivastava et al, in 2014, reported neurotoxic effects of

ZnO NPs upon oral administration, which resulted in an

upsurge of norepinephrine and dopamine in the cerebral

cortex.26 Although zinc, in trace amounts, has a positive

impact on overall central nervous system functioning,27 in

higher concentrations, it leads to oxidative stress and

chronic exposure resulting in a higher level of

malondialdehyde.28 Chronic exposure leads to a decline in

cognitive performance by enhancing, mainly, apoptosis of

pyramidal neurons.29,30 Additionally, it has also been estab-

lished that ZnO NPs induced synaptic plasticity by enhan-

cing neuronal excitability in an animal model of mood

disorder.31 Currently, researchers are trying to diminish the

toxic effects of NPs through coating,32 simultaneously,

green synthesis is another approach to combat toxic effects

of the chemicals involved in production of NPs.33 Now,

chemical methods are being replaced by eco-friendly and

cost-effective green synthesis techniques3 providing a wide

range of sizes and shapes.34 ZnO NPs have successfully

been synthesized using various plant extracts as reducing

agents.35 Yet, toxicities and bio-hazards of ZnO NPs are

conflicting.36

Chloroquine phosphate (CQ) is primarily used for treat-

ing malaria, rheumatoid arthritis, systemic lupus erythema-

tosus, and some viral infections. One of the side effects

associated with CQ use in humans is pruritus.37 CQ-induced

pruritus is a “sharp biting” sensation which is observed after

CQ administration.37–39 As pruritus is one of the symptoms

of dermatological malfunctioning,40 this side effect of CQ

has been used to study pruritus in mice.37,38

The current study was designed to explore the toxic

effects, as well as other behavioral parameters of chemi-

cally and green synthesized ZnO NPs on CQ-induced

pruritus using a murine model.

Material and methods
Animals
Female BALB/c mice with weight range 20–30 g were pur-

chased from National Institute of Health, Islamabad,

Pakistan. Animals were kept under controlled temperature

ranging from 22ºC–25ºC, were provided with hygienic envir-

onment with saw bedding (which was changed on alternative

days), and 12/12 hour light-dark cycles starting from 08:00

am to 08:00 pm. Animals were provided free access to food

and water ad libitum. All the experimental protocols and

animal handling procedures were carried out according to

regulations guided by the UK 1986 Animals (scientific pro-

cedures) Act.43 Ethical approval for the work was obtained

from Research Ethics Committee COMSATS University

Islamabad, Abbottabad Campus, Abbottabad, Pakistan

under the certificate number PHM.Eth/CS-M01/18–002.

Chemicals
Chemicals used were ZnONPs (100 nm) (Sigma-Aldrich Co.,

St Louis,MO,USA), ZnONPs (20–30 nm) (AlfaAesarUSA),

ZnO NPs (25–30 nm, green synthesized in the lab using Aloe

vera extract),44 and chloroquine phosphate ampule

(322.5 mg/5 mL) (Shanxi Shuguang Pharma Pvt. Ltd, China).

Characterization of ZnO NPs
Scanning electron microscopy (SEM) was carried out to

observe the surface morphology of ZnO NPs (purchased

and green synthesized ZnO NPs) using JSM-IT100 scan-

ning electron microscope. The size and crystallinity of all
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the samples were evaluated using X-ray powder diffraction

(XRD) (JDX 3532, JEOL, Tokyo, Japan) technique at

CuKa (1.5418Å) and 2 theta-range was 20–70°.

Drug administration
For pruritus induction, CQ was diluted to 3.2 mg/mL with

saline and administered subcutaneously (SC) at a dose of

32 mg/kg body weight. Samples of ZnO NPs were dis-

persed in saline. They were sonicated for 30 minutes and

properly vortexed each time before use. ZnO NPs were

administered orally (PO) at a dose of 250, 500, and

750 mg/kg body weight.18–20

Behavioral experiments
Animals (according to each size and dose of ZnO NPs)

were divided into eleven groups of six mice each. These

were: control (normal saline), CQ-treated animals, ZnO NP-

treated (250 mg/kg), ZnO NP-treated (500 mg/kg), and ZnO

NP-treated (750 mg/kg). ZnO NPs were administered orally

to the mice. After 1 hour of ZnO NPs' administration,

pruritus was induced using CQ (32 mg/kg) in 0.3 mL SC

injection at the nape of the neck of the mouse to observe the

scratching behavior.45 Each mouse was used once.

The mice were taken out of the cage briefly for oral

gavage and injection, and returned to the same cage. The

behavior was recorded using a CAT-1 video camera. In order

to avoid any distraction, the camera was adjusted in an

unmanned condition.42 The number of scratching bouts near

the site of injection were then counted. Each bout

was instigated by moving paw to the site of injection and

ended when paw was returned back to the floor or mouth.37,41

After CQ administration the scratching bouts were counted

during 30 minutes and simultaneous behavioral changes like

socialization and locomotion were also monitored. The num-

ber of itching bouts the mouse experienced was revealed by

how frequently the mouse scratches itself.45–47 Locomotion

was evaluated by the number of lines crossed by the mice in

30 minutes in open field locomotion box.48

Results
Characterization
SEM results are shown in Figure 1A–C. From the images,

spherical appearance of NPs was confirmed. Standard XRD

pattern for ZnO according to the Joint Committee on Powder

Diffraction Standards (JCPDS) is shown in Figure 2A. The

peaks for ZnO NPs (100 nm), as shown in Figure 2B, were at

positions 31.85°, 34.40°, 36.50°, 47.60°, 56.65°, 63.00°,

68.05°, and 69.25° corresponding to (100), (002), (101),

(102), (110), (103), (112), and (201) planes respectively.

Similarly for ZnO (30 nm) (shown in Figure 2C) the peaks

at 2θ =31.67°, 34.28°, 36.36°, 47.80°, 56.63°, 63.13°, 68.06°,
and 69.10°, correspond to (100), (002), (101), (102), (110),

(103), (112), and (201). For green synthesized ZnO NPs

(Figure 2D) peaks were observed at 31.94°, 34.53°, 36.35°,

47.79°, 56.88°, 63.12°, 68.05°, and 69.10°, corresponding to

(100), (002), (101), (102), (110), (103), (112), and (201). The

relevance of sharp diffraction peaks for ZnONPs indicated the

purity of particles.49–52 Diameters of the ZnO NPs were eval-

uated using Debye-Scherrer formula.53,54

d = 0.89 λ/β cosθ

Where θ is the Bragg diffraction angle, β is full width at

half maximum of the diffraction peak, 0.89 is Scherrer’s

constant, and λ is the wavelength of X-rays. It was indi-

cated that the particles were in nanometer range confirm-

ing the average particle size of 100 nm, 30 nm, and 30 nm

respectively (green synthesized ZnO NPs).54

Figure 1 Characterization of ZnO NPs by SEM. (A) ZnO NPs (100 nm), (B) ZnO NPs (30 nm) and (C) ZnO NPs (G 30 nm).

Abbreviations: ZnO NPs, Zinc oxide nanoparticles;G, Green synthesized.
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Scratching bouts
Scratching bouts were recorded in animals of all groups. In

normal saline group, animals lacked itching. Onset of scratch-

ing was within 5 minutes of SC injection and lasted for almost

30 minutes. There were 133 scratching bouts recorded during

30 minutes in CQ-treated mice. When ZnO NPs were PO

administered before SC injection of CQ, it was observed that

the number of scratching bouts significantly reduced to 14,

nine, and three as a result of ZnO NPs (100 nm) at doses of

250, 500, and 750 mg/kg body weight (Figure 3).

Figure 2 XRD pattern of ZnO NPs (A) Standerd XRD pattern for ZnO (B) ZnO NPs (100 nm) (C) ZnO NPs (30 nm) (D) ZnO NPs (G 30 nm).

Abbreviations: JCPDSG, Joint Committee on Powder Diffraction Standards; ZnO NPs, Zinc oxide nanoparticles; G, Green synthesized.

Figure 3 Scratching bouts/30 minutes with CQ and effect of ZnO NPs (100, 30 nm and G 30 nm)

Abbreviations: N/S; normal saline, CQ, Chloroquine; ZnO NPs, Zinc oxide nanoparticles; G, Green synthesized.
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There was a further reduction in number of scratching

bouts to nine, nine, and eight as a result of ZnO NPs (30

nm) at respective doses of 250, 500, and 750 mg/kg body

weight (Figure 3). Furthermore, the experiment was

repeated at the same PO doses of ZnO NPs (green synthe-

sized 30 nm). Observations were recorded and showed

four, three, and three scratching bouts respectively for

doses of 250, 500, and 750 mg/kg body weight (Figure 3).

Socialization
Socialization with each other was observed after adminis-

tration of ZnO NPs as compared with normal saline and

CQ-treated group (Figure 4). All animals showed

improved socialization behavior after ZnO NPs' adminis-

tration. The effect persisted even after CQ was adminis-

tered to the mice.

Locomotion
Locomotion was significantly decreased in ZnO NP (100

and 30 nm)-treated mice as compared to normal saline and

CQ treated mice. Locomotion was enhanced in mice admi-

nistered green synthesized ZnO NPs as compared to com-

mercially available ZnO NPs of 100 and 30 nm sizes

(Figure 5).

Discussion
Data obtained from XRD analysis were in agreement with

the JCPDS PDF no 36–1451 for the standard hexagonal

polycrystalline structure of ZnO.55 The results for green

synthesized ZnO NPs were in good agreement with com-

mercially available ZnO NPs (30 nm). When scratching

behavior was evaluated for these NPs, a significant

(P≤0.001) decrease in intensity of bouts was observed

after PO administration of ZnO NPs in all doses and

particle sizes (as shown in Figure 3). When the decrease

in itching was recorded among different particle sizes and

doses, it was observed that there was no significant differ-

ence among ZnO NPs of 100 nm and 30 nm, chemically

and green synthesized.

The induction of itching by using CQ (32 mg/kg) was

consistent with previous studies.56 CQ is known to activate

Mrgpr A3 receptors (G protein-coupled receptors), that pri-

marily contribute to scratching desire.41 These acute scratch-

ing bouts can be inhibited by blockers (eg, anti-depressants,

nalfurafin, and N-methyl-D-aspartate receptor antagonist) of

TRPA1/TRPV1.57 However, CQ-induced pruritus is also

mediated by increased production of NO (linked to

cGMP).41 In in vivo studies, ZnO NPs have been reported

to reduce NO level.36,41 Here, the reduction in scratching

intensity could be attributed to the ZnO NPs’ NO lowering

property. ZnO NPs are reported to induce toxicological

response systemically, but in this study it was observed that

CQ-induced itching was relieved by ZnO NPs.

ZnO NPs were previously reported to improve memory

impairment, anxiety, and oxidative stress in mice.58 In this

study, it was established that ZnO NPs significantly

improved socialization in mice as compared to the control

group. Earlier, Sultana and Najam (2012) reported that

Aloe vera caused reduction in locomotion and sedation

when independently tested PO for depression, locomotion,

and anxiety in mice.59,60 ZnO NPs induced improved

socialization further need neuro-endocrine profiling. In

Figure 4 Socialization response of mice with CQ and effect of ZnO NPs (100, 30 nm and G 30 nm) at various oral doses.

Abbreviations: N/S; normal saline, CQ, Chloroquine; ZnO NPs, Zinc oxide nanoparticles; G, Green synthesized.
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this study, administration of ZnO NPs had a calming effect

in comparison to the CQ group. However, mice that were

given green synthesized ZnO NPs showed significantly

(P˂0.001) improved locomotion in comparison to 100

and 30 nm (commercially available) ZnO NPs. Aloe vera

has already been reported to have an anti-depressive

effect.60 The results of this study support the concept

that green synthesis successfully ameliorates the harmful

effects of intervening chemicals used during synthesis.61,62

Here, the effect of green synthesized NPs could have been

related to the synthesis method of ZnO NPs. This aspect of

green synthesis might be a contributing factor to the

improved locomotion in mice observed with green synthe-

sized ZnO NPs. More studies are warranted to explore

ZnO NPs' effect on the role of gender, as this study was

conducted using female mice only.

Conclusion
Instead of aggravating the dermatologic condition, ZnO

NPs, overall, imparted a significant protective effect in

a murine model of CQ-induced pruritus. Additionally,

socialization was improved significantly at a lower dose

(250 mg/kg) with green synthesized NPs, which showed

a less depressive effect, unlike commercially available

ZnO NPs. Studies using non-toxic doses of ZnO NPs are

warranted to explore their effect on CQ-induced pruritus,

socialization, and locomotion.
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