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Abstract: Lung cancer is the most prevalent and deadly malignancy. Radiotherapy is

a major treatment modality for lung cancer. Nevertheless, radioresistance poses a daunting

challenge that largely limits the efficacy of radiotherapy. There is a pressing need for

deciphering molecular mechanisms underlying radioresistance and elucidating novel ther-

apeutic targets for individualized radiotherapy. MicroRNAs are categorized as small non-

coding RNAs that modulate target-gene expression posttranscriptionally and are implicated

in carcinogenesis and cancer resistance to treatment. Overwhelming evidence has unraveled

that tissue-specific miRNAs are essential for regulation of the radiosensitivity in lung cancer

cells through a complex interaction with multiple biological processes and radiation-induced

pathways. Moreover, exosome-derived miRNAs are a novel horizon in lung cancer treatment

in which exosomal miRNAs act as potential diagnostic and therapeutic biomarkers of

radiotherapy. In the present review, we discuss the mediation of key biological processes

and signaling pathways by tissue-specific miRNAs in lung cancer radiotherapy. Additionally,

we provide new insight into the potential significance of exosomal miRNAs in radiation

response. Lastly, we highlight miRNAs as promising predictors and therapeutic targets to

tailor personalized lung cancer radiotherapy.
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Introduction
Lung cancer is a cardinal cause of fatal malignancy, with 234,030 new cases and

154,050 deaths estimated to have occurred in the US in 2018.1 It can be subdivided

into two types: small-cell lung cancer (SCLC) and non-SCLC (NSCLC). Clinically,

NSCLC is the most frequent subtype, making up 85% of diagnosed cases.2

Radiotherapy (RT) is a major treatment modality and sometimes curative in lung

cancer patients.3 Nevertheless, radioresistance poses a daunting impediment, which

largely undermines the efficacy of RT.4 The 5-year overall survival of lung cancer

remains poor (18%), owing to local recurrence and distant metastasis.1,5 Therefore,

it is imperative to decipher key mechanisms underlying radioresistance and identify

novel therapeutic targets for individualized RT.

miRNAs, an abundant family of short (19–25 nucleotides) noncoding RNAs, can

negatively modulate gene expression upon binding to target mRNAs. Aberrant

expression of miRNAs can regulate diverse cellular processes, including cell devel-

opment, migration, and apoptosis.6 In recent years, accumulating evidence has

revealed that miRNAs can influence radiation response remarkably (Figure 1).7
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Additionally, miRNA profiling in tumor tissue or circulating

body fluid is recognized to correlate with radiosensitivity,

holding considerable promise to predict clinical response.8

Of note, exosome-derived miRNAs have offered an

amazing outlook in radiation research.9 Exosomes are

small membrane-derived vesicles (50–150 nm) released by

multiple cell types, including cancer cells. Exosomes convey

different cargoes containing miRNAs, mRNAs, and proteins

specializing in intercellular communication.10 It is increas-

ingly evident that exosomal miRNA profiles can be altered

in radiation response.9 Radiation-related miRNAs are possi-

bly transported by exosomes, influencing the proliferation

and radiosensitivity of lung cancer cells.11

In this work, we discuss the modulation of key biolo-

gical processes and signaling pathways by tissue-specific

miRNAs in lung cancer RT. Furthermore, we present

a new insight into the significance of exosomal miRNAs

in radiation response. Finally, we emphasize miRNAs as

promising predictors and therapeutic targets to tailor per-

sonalized RT.

Regulatory roles of tissue-specific
miRNAs in lung cancer
radiosensitivity
DNA-damage response
RTutilizes ionizing radiation (IR) to generate free radicals and

intermediate ions,which damage tumor cells at different levels,

especially cellularDNA. It results inDNAsingle-strand breaks

or double-strand breaks (DSBs), initiating diverse signaling

networks to repair.12 DNA- damage response (DDR) is

a pivotal biological process affecting radiosensitivity, in

which DSB repairs are themost widespread events, containing

homologous recombination (HR) and nonhomologous end

joining.12 Numerous molecules exert remarkable effects dur-

ing DDR, including sensors (eg, H2AX), signal transducers

(eg, ATM), and effectors (eg, theDNA-dependent PK catalytic

subunits [PKcs], RAD51 and BRCA1/BRCA2).13

Several well-established miRNAs interfere with IR-

induced DNA-damage sensing or repair, via complex inter-

play with DDR components (Figure 2). miR328-3p can
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Figure 1 An overview of tissue-specific miRNAs in the regulation of lung cancer radiosensitivity.

Notes: MiRNAs exert essential function to regulate the radiosensitivity of lung cancer cells, through complex interaction with multiple biological processes including

DNA damage response, cell cycle and apoptosis, hypoxic tumor microenvironment, epithelial-mesenchymal transition, cancer stem cells and radiation-induced

signaling pathways.
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augment DSBs through upregulating H2AX, conducive to

radiosensitization.14 ATM is a determining factor in and

prime responder to DSBs, triggering IR-induced cellular

events after phosphorylation. ATF1, a mediator of phosphor-

ylation in the ATM pathway, serves as a direct target of

miR30a. It has been revealed that miR30a enhances radio-

sensitivity through reducing ATF1 activity and thus dimin-

ishing ATM phosphorylation.15 Ectopic miR101 expression

efficiently attenuates ATM and DNA-PKcs to repress DDR,

radiosensitizing cells with much higher endogenous

miR101.16 Preclinical data has suggested that miR1323 and

accumulation of DNA-PKcs are concomitantly increased

after radiation. Conversely, knockout of miR1323 is unable

to recruit DNA-PKcs in DDR.17 Moreover, RAD51 acts as

a critical player in HR, catalyzing new DNA transfer and

recombination within damaged areas. miR34a overexpres-

sion can negatively regulate HR by posttranscriptionally

suppressing RAD51.18 Thoroughly elucidating the regula-

tion of miRNAs in DDR will probably dig deeply into IR-

induced biological processes for overcoming radioresistance.

Cell cycle and apoptosis
As we know, the cell cycle contains four phases: G1, S, G2,

and M. Cells in the G2/M phase possess the highest sensitivity

to IR, whereas radiosensitivity reduces from the G1 to

S phase.19 Cyclins and CDKs are indispensable regulators in

cell-cycle transition from one phase to another. In radiation-

induced stress, cyclins and CDKs can be inhibited by the

checkpoints at the G1/S and G2/M interphases to arrest cell

progression and allow enough time for DDR (Figure 2).19 The

miR16 family directly represses cyclin D1, preventing cells

from proceeding into the S phase. Simultaneously, numerous

cell-cycle genes, such as CCND3, CCNE1, and CDK6, are

silenced by miR16, collectively triggering G1 arrest.20

Moreover, miR30a-expressing A549 cells specifically block

G2/M arrest, accompanied by inhibiting transcription factors

p53 and p21.15

If IR-induced DNA damage is too severe to repair,

cells will proceed to apoptosis or programmed cell death

(Figure 2).7 miRNAs modulate expression of the proapop-

totic factors p53, Bax, caspase3 and antiapoptotic factors
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Figure 2 miRNAs in DNA-damage response, cell cycle, and apoptosis.

Notes: Radiotherapy utilizes ionizing radiation to generate free radicals and intermediate ions, which damage tumor cells at different levels, especially with DNA double-strand breaks,

initiating diverse signaling pathways to repair. Cyclins and CDKs are indispensable regulators of cell-cycle transition, which can be suppressed by checkpoints at G1/S and G2/M

interphases, ultimately to arrest cell-cycle progression and allow enough time for DNA-damage repair. If DNA damage is too severe to repair, cells will proceed to apoptosis or

programmed cell death.

Abbreviations: IR, ionizing radiation; PKcs, PK catalytic subunits.
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Bcl2 and Mcl1.21 p21 is a p53-inducible factor, which

concomitantly abrogates the PCNA and cyclinD1–CDK4/

6 compounds, controlling cell-cycle progression.11

Induced by radiation, miR208a overexpression amplifies

cell survival and obstructs cycle distribution, with p21 as

the direct target. Nevertheless, depletion of miR208a pos-

sesses inverse radiosensitizing effects.11 miR25 overex-

pression can protect H226 NSCLC cells from IR-induced

apoptosis by impairing BTG2, an antiproliferation factor

in the p53 apoptotic pathway.22 Also, BCL2-family genes

(eg, BCL2, MCL1, BCL2L2, and BAX) are critical in the

intrinsic mitochondrial pathway, conducive to apoptosis as

well.23 Reestablishment of miR29c significantly dampens

Bcl2 and Mcl1, thus activating cell apoptosis.24 miR122

exerts radiosensitizing effects by reducing Bcl2l2, another

pro-survival modulator.25 Bax is an apoptosis activator in

the Bcl2 family and p53 pathway. miR30a upregulation

attenuates Bcl2 and Bax protein after irradiation, amplify-

ing apoptotic rates.15 Also, miR511 can enhance Bax to

block the growth of RT-resistant A549 cells.26 Knockdown

of miR95 speeds up IR-induced apoptosis, with an

increase in caspase 3/9 and reduction in Bcl2.27 Also,

there exist other mechanisms in miRNA-mediated apopto-

sis. miR124 decreases cell survival via inhibiting STAT3,

and miR198 exerts a similar effect by repressing the HGF–

cMet pathway.28,29

Hypoxic tumor microenvironment
The hypoxic microenvironment is a hot spot in cancer research

that strikingly facilitates tumor development, invasion, and

metastasis.30 It has been shown that HIF1, a pivotal transcrip-

tion factor, can help tumor cells adapt to hypoxic conditions.31

The precise roles of HIF1 in radiosensitivity are highly com-

plex: RT can speed up the activation of HIF1, and HIF1

conversely influences radiation response through multiple sig-

naling pathways.32 HIF1 upregulation triggers tumor angio-

genesis, enhances IR-induced reoxygenation, and lessens

glucose metabolism, collectively reducing RT efficacy.33 In

RT-resistant NSCLC cells, HIF1α is elevated by miR21, with

an increase of key enzymes in glycolysis, whereas,

blocking HIF1α impedes glycolysis and enhances cell

radiosensitization.34 Stable miR210 expression is implicated

in the stabilization of HIF and confers more glycolytic

properties, while inhibiting HIF1 effectively attenuates

radioresistance, confirming the strong link between miR210

and HIF1.35 Therefore, the intricate regulatory interfaces

between miRNA and the hypoxic tumor microenvironment

may provide new insight into radioresistance.

Epithelial–mesenchymal transition
Epithelial–mesenchymal transition (EMT) is a phenotypic

transition to enable epithelial tumor cells to acquire fibro-

blastoid-like morphology, contributing toward tumor inva-

sion and resistance to treatment.36 It has been shown that

miR124 can target PRRX1 in colorectal cancer cells and

induce EMT after radiation.37 Furthermore, miR148b upre-

gulation has been reported to suppress EMT by increasing

E-cadherin and decreasing N-cadherin and

vimentin. Contrastingly, downregulation of miR148b

inhibits E-cadherin but elevates N-cadherin and vimentin.38

In a panel of different cancer cells, miR200c mitigated EMT-

related processes, including vascular formation, invasion,

and migration, through complex signaling networks. In

response to radiation, miR200c remarkably repressed

E-cadherin and EphA2 and enhanced N-cadherin in A549

NSCLC and U251 glioblastoma cells.39 Nevertheless,

research on how miRNAs mediate RT-related EMT in lung

cancer is still largely in its infancy, and more studies are

needed to discover more about the mechanisms therein.

Cancer stem cells
Cancer stem cells (CSCs) possess high potential for self-

renewal and differentiation, and possibly display inherent

resistance to treatment, including RT.40 Despite limited

investigations in recent years, miRNAs have shown tanta-

lizing promise in modulating lung cancer radioresistance via

CSCs. In lung adenocarcinoma, miR145 suppresses the pro-

liferation of CSCs and improves radioresistance by inhibit-

ing the transcription factors OCT4, SOX2, and fascin 1,

which are crucial for maintaining cancer stemness.41

Moreover, miR21 and miR95 arere remarkably upregulated

in theALDH1+CD133+ subpopulation of lung CSCs, con-

ferring a radioresistant phenotype.42 Another observation

implied that miR18a-5p promotes the radiosensitivity of

CD133+ stem-like cells through reduction of ATM and

HIF1α at both mRNA and protein levels.43 The regulation

of miRNAs in CSCs remains an attractive research direction

for lung cancer radioresistance, and needs to be investigated

thoroughly for innovative therapies.

Radioinduced signal-transduction pathways
Some well-delineated signaling pathways might be para-

mount in the modulation of radiosensitivity. For instance,

PI3K/Akt, NFκB, and MAPK are viewed as important sur-

vival pathways in radiation response.44 miRNAs can exert

effective function in modulation of the radioinduced
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signaling pathways. Evidence suggests that miR373 and

miR126 promote IR-induced apoptosis through the PI3K–

Akt pathway in lung cancer.45,46 PTEN is an inhibitory

modulator of Akt, and acts as a direct target of miR451.

miR451 overexpression has been reported to activate PTEN

posttranscriptionally after irradiation, amplify suppressive

impact, and facilitate A549-cell radiosensitization.47 As

a key downstream component of the PI3K–Akt pathway,

mTOR is directly mediated by miR99a. miR99a expression

is significantly upregulated in RT-sensitive cells, while

mTOR overexpression inversely diminishes cell apoptosis

and exacerbates radioresistance.48 miR21 triggers activation

of PI3K–Akt–mTOR signal cascades via deregulating

PDCD4. In addition, miR21 can mediate bystander effects

in unirradiated cells, through transformation of the

TGFβ1 pathway.49 Strikingly, there exist intricate

intersections among different signaling pathways. For exam-

ple, miR9 may simultaneously block VEGFR2–PI3K–NFκB
signaling.50 miR9 and let7 are able to target the NFκB1
transcript and blunt the antiapoptotic impacts of NFκB
signaling.51 Moreover, miR15a/16 exhibits similar effects

via direct modulation of TLR1–NFκB pathways.52

Analogous to the PI3K–Akt pathway, the MAPK path-

way has been reported to be mediated by miRNAs. The Ras

protein can transmit downstream signals of the MAPK path-

way. Let7a overexpression represses Kras, a member of Ras

family, leading to radiosensitivity of lung cancer cells.53

Additionally, miR155 stimulated downstream of p53 and

p38–MAPK pathways, functionally modulating IR-induced

senescence, partly via TP53INP1.54 miR214 deregulation

can effectively alter p38–MAPK and PI3K-signaling

networks.55 The engagement of miRNAs in proverbial onco-

genic pathways emphasizes the necessity to exploit biologi-

cal mechanisms of radioresistance (Table 1, Figure 1).

Circulating miRNAs and exosomal
miRNAs in lung cancer radiotherapy
Circulating miRNAs
Apart from tissue-specific miRNAs, more oncologists

have shifted their focus into circulating miRNAs, which

are present in such body fluids as serum, saliva, urine, and

bronchoalveolar lavage.56 miRNAs can be released from

parental cells under different conditions, such as apoptosis,

injury, or inflammation. During the process, microvesicle

secretion (eg, exosomes and shedding vesicles), can free

membrane-encapsulated cellular fragments containing

miRNAs from donor cells.57 It has been identified in

functional analysis that circulating miRNAs may evade

degradation, probably owing to the internalization of phos-

pholipid membrane–enclosed microvesicles or the pre-

sence of RNA-binding protein complexes.58

Circulating miRNAs and radiotherapy
Circulating miRNAs are utilized as important biomarkers

of tumor-radiation response and toxicity. It has been

underscored that the profiles of specific miRNAs in per-

ipheral blood are significantly correlated with radiation

type and dosimetry.59 They can be readily assessed by

way of noninvasive blood testing. In murine serum,

miRNA signatures are specifically changed following

whole-body radiation.60 Circulating miRNA expression

in human blood cells is induced upon irradiation, and can

accurately distinguish pre- and postradiation situations.61

In lung cancer, circulating miR1246 in non-exosome-

associated form was actively altered by radiation exposure.

This extracellular miR1246 could conntribute to the radia-

tion-induced bystander effect.62 Moreover, it can enhance

cell radioresistance and survival through directly suppres-

sing DR5.63 In the circulation of NSCLC patients under-

going thoracic RT, miR29a and miR150 ae related to

delivered radiation dose, and may eventually help predict

the toxicity of RT. Moreover, the downregulation of

miR29a was able to specifically reflect a profibrotic or

adaptive situation in the human lung.64

Exosomes and exosomal miRNAs in lung

cancer
Exosomal miRNAs serve as the pivotal model of circulating

miRNAs existing stably in the extracellular environment.

Exosomes are small membrane-derived vesicles (50–150

nm) in eukaryotic fluids, and are released by multiple cell

types.10 Overwhelming evidence indicates that exosomes

originate from intraluminal endosomal vesicles inside mul-

tivesicular bodies. Fusion with the plasma membrane leads

to extravasation of exosomes.65 Exosomes are pivotal in

intracellular communication via transporting diverse mole-

cular constitutuents.10 Exosomal cargoes are mainly small

regulatory molecules, including miRNAs, mRNAs, and

proteins (Figure 3).9 Among these, exosomal miRNAs dis-

play oncogenic or tumor-suppression activity in carcinogen-

esis, and potentially serve as biomarkers in clinical utility,

having recently garnered enormous interest.66

In preclinical studies, how exosomal miRNAs mediate

tumorigenesis and metastasis has been investigated
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(Table 2). Exosomal miR21, miR23a, and miR210 have

been discovered to facilitate the development of tumor

angiogenesis.67–69 In addition, exosomal miR23 was

implicated in EMT, due to its significantly increased

expression after mesenchymal transition.70 Exosomal

miRNAs may also be potent regulators of chemoresis-

tance. Evidence has demonstrated that exosomal miR96

elevates tumor resistance to cisplatin.71 By acting as tumor

suppressors, exosome-derived miR512, miR373, and

miR146a-5p are closely correlated with increased sensitiv-

ity to cisplatin.72,73

In clinical research, exosomal miRNAs can be consid-

ered important biomarkers for prediction, diagnosis, and

prognosis by way of liquid biopsy. miR21 and miR155

have been suggested to predict recurrence and inimical

outcomes in lung cancer.74 Exosomal miRNAs are

Table 1 Roles of tissue-specific miRNAs in regulating lung cancer radiosensitivity

miRNA Target Effect Response Reference

miR208a p21 Decreases cell apoptosis Radioresistant 11

miR328-3p γH2AX Inhibits survival, predicts poor outcome of NSCLC patients Radiosensitive 14

miR30a ATF1 Inhibits DNA-damage repair, blocks G2/M arrest, and enhances radia-

tion-induced apoptosis

Radiosensitive 15

miR101 ATM and DNA-

PKcs

Inhibits DNA repair Radiosensitive 16

miR1323 PRKDC Enhances DNA-damage repair Radioresistant 17

miR34a RAD51 Regulates HR, inhibits DSB repair, miR34a delivery (MRX34) plus RT

show therapeutic potential

Radiosensitive 18

miR25 BTG2 Increases apoptosis Radiosensitive 22

miR29c Bcl2 and Mcl1 Increases apoptosis, longer relapse-free survival of patients Radiosensitive 24

miR122 IGF1R Enhances DSBs, apoptosis, and anchorage-independent growth inhibi-

tion induced by IR

Radiosensitive 25

miR511 TRIB2 Inhibits cell growth, increased apoptosis and triggers Bax activation Radiosensitive 26

miR95 SNX1 Decreases apoptosis Radioresistant 27

miR124 STAT3 Enhances radiation-induced apoptosis Radiosensitive 28

miR-198 MET Inhibits HGF–cMet signaling pathway, induces apoptosis Radiosensitive 29

miR21 PDCD4 Decreases cell apoptosis, activates PI3K–Akt–mTOR pathway, shorter

median survival time

Radioresistant 34,49

miR210 — Promotes hypoxic phenotype and DSB repair Radioresistant 35

miR148b ROCK1 Inhibits proliferation and EMT and promotes cell apoptosis Radiosensitive 38

miR200c — Activates EGFR-associated signaling, increases cell killing, and

regulatesEMT

Radiosensitive 39

miR145 OCT4, SOX2, and

Fascin 1

suppressed the proliferation of CSCs and improved radioresistance Radiosensitive 41

miR21/95 — Inhibit PTEN, SNX1, and SGPP1 expression and elevates Akt

phosphorylation

Radioresistant 42

miR18a-5p ATM and HIF1α Inhibits DNA repair; predicts radiosensitivity Radiosensitive 43

miR373 TIMP2 Regulates PI3K–Akt and Smad signaling pathways Radioresistant 45

miR126 — Promotes apoptosis Radiosensitive 46

miR451 — Enhances apoptosis, activates PTEN Radiosensitive 47

miR99a mTOR Induces G1 arrest and apoptosis Radiosensitive 48

miR9 NRP1 Regulates PI3K–Akt, MARK/RK, and NFκB pathways, and inhibits

apoptosis

Radioresistant 50

miR9 and let-7 — Suppresses NFκB1 Radiosensitive 51

miR15a/16 TLR1 TLR1–NFκB pathway, increases apoptosis Radiosensitive 52

let-7a — Attenuates Kras expression Radiosensitive 53

miR155 TP53INP1 Enhances IR-induced senescence and cell killing, regulates p53 and p38

MAPK pathways

Radiosensitive 54

miR214 FoxO4 Inhibits apoptosis and senescence and regulates p38 MAPK Radioresistant 55

Abbreviations: NSCLC, non-small-cell lung cancer; RT, radiotherapy; IR, ionizing radiation; PKcs, PK catalytic subunits; HR, homologous recombination; DSBs, double-

strand breaks; EMT, epithelial–mesenchymal transition.
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proficient at distinguishing lung cancer patients from

healthy subjects. In contemporary research, investigators

have isolated exosomes to evaluate expression profiles of

12 tumor-related miRNAs. Interestingly, average expres-

sion of exosomal miRNAs was upregulated dramatically

in lung cancer cases compared with low expression in

healthy individuals.75 Further, early diagnosis is necessary

to decrease lung cancer mortality. Exosomal miRNA-seq

uencing analysis was performed among 46 patients with

stage I NSCLC and 42 controls.76 Using a four-marker

panel (let7b-5p, let7e-5p, miR23a-3p, and miR486-5p),

early-stage lung cancer was able to be detected in time,

with satisfactory diagnostic performance (AUC 0.899,

sensitivity 80.25%, specificity 92.31%). Meanwhile, the

Blood
vessel

RT

DNA

mRNA

miRNA

Protein

Exosome

Endothelium

Lung cancer
cells

Circulating
body fluid

Exosome and exosomal miRNAs in lung cancer therapy

Circulating lung 
cancer cell

Figure 3 Exosomes and exosomal miRNAs in lung cancer therapy.

Notes: Exosomes are small membrane–derived vesicles in circulating body fluids that are released by multiple cell types, including tumor cells and normal cells. Exosomes

specialize in intracellular communication, via transporting diverse molecular constitutes. Exosomal cargoes are mainly small regulatory molecules, including miRNAs,

mRNAs, DNA, and proteins. Among them, exosomal miRNAs may be promising in regulating cellular radiosensitivity and monitoring radiotherapy effectiveness.

Table 2 Exosomal miRNAs in lung cancer

Exosomal miRNA Target Effect Ref.

miR208a P21 Promotes cell proliferation, induces radioresistance, activates Akt–mTOR

pathway

11

miR21 STAT3 Promotes angiogenesis, transforms human bronchial epithelium 61

miR23a PHD1/2, ZO1 protein Increases angiogenesis, vascular permeability, and cancer transendothelial

migration in hypoxic microenvironment

62

miR210 FGFRL1, E2F3, VMP1,

RAD52, SDHD

Increases angiogenesis by promoting tube-formation activity of umbilical

vein endothelial cell

63

miR96 LMO7 Enhances cell viability, migration, and cisplatin resistance 65

miR512-5p TEAD4 Reduces cisplatin-induced apoptosis, cell migration, and cell proliferation 66

miR373 RelA, PIK3CA Reduces cisplatin-induced apoptosis and cell migration 66

miR146a-5p Atg12 Decreases resistance to cisplatin and recurrence rates of patients 67

miR29a-3p, miR150-5p — Radiation dose–related 75
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researchers clarified four adenocarcinoma-specific and

three squamous carcinoma–specific exosomal miRNAs,

potentially differentiating NSCLC subtypes.76

Exosomes and exosomal miRNAs in

radiotherapy
Exosomes have become a horizon in RT, as cellular com-

munication potentially affects cells exposed to

irradiation.77 Exosomes specialize in modification of

radiobiological impact between irradiated cells and unirra-

diated cells, such as genomic instability and RT-induced

bystander effects. In breast cancer, the interaction between

stromal and tumor cells can make use of paracrine and

juxtacrine pathways for driving radioresistance through

RNA contained within exosomes.78 Furthermore, release

of exosomes from irradiated glioblastoma cells is upregu-

lated after radiation, effectively promoting the migration

of receiving cells via altering molecular constitutents. In

radiation-exposed head-and-neck cancer cells, exosomes

trigger the enhancement of antiapoptotic factors and parti-

cipate in DDR via transferal of cargoes.77 In addition,

exosomal miR7 in irradiated brain cells can facilitate the

induction of distant bystander autophagy in unrradiated

lung tissue, by directly targeting Bcl2.79 Following lung

cancer RT, serum miR208a is induced and

promotes radioresistance by affecting cell survival and

intricate signaling transduction. More importantly, isolated

exosomes have been found to contain RT-induced

miR208a in patients with lung cancer and were also incor-

porated into recipient cells and subsequently modulated

radioresistance.11 Other reports have discovered dose-

related effects of exosomal miRNAs during thoracic radia-

tion treatment. Researchers screened 752 exosome-derived

miRNAs of locally advanced NSCLC patients, showing

that increasing RT dosage reduced miR29a-3p and

miR150-5p expression.64 To conclude, exosomes contain-

ing miRNAs can be considered a promising vehicle to

regulate cellular radiosensitivity and a plausible tool to

monitor RT efficacy.

Clinical implications of miRNAs in
personalized lung cancer radiotherapy
Potential role of miRNAs as biomarkers

for lung cancer–radiation response
Several studies have reported that miRNAs show potential

predictive utility in cancer treatment, including lung cancer

RT.44 By exploring whether miRNAs are suitable to be

candidate markers for radiosensitivity, investigators classi-

fied NSCLC patients receiving postoperative RT into RT-

sensitive and RT-resistant groups. By screening miRNA

profiles of two groups, they found 12 differentially

expressed miRNAs in RT-sensitive patients, indicating bet-

ter prognosis and lower cancer recurrence.46 Moreover,

combining eleven circulating miRNAs with clinicopatholo-

gical parameters generated a dose–response score that suc-

cessfully identified patients with better survival and

minimal treatment-related toxicity after high-dose RT.8

miR148b downregulation was strongly correlated with low

radiation response, advanced tumor stage, and distant

metastasis. In particular, miR148b was an independent pre-

dictor of impoverished survival.80 Accelerated reprolifera-

tion in the late phase of RT usually leads to the failure of

treatment. Serum let7 expression can reliably reflect tumor

proliferation like Ki67 in fractional RT courses and help

predict patient survival.81 Moreover, a multicenter con-

trolled clinical trial has started, exploring plasma miRNAs

that predict radiosensitivity in distinct fractionation regimes

of palliative RT for advanced NSCLC (ClinicalTrials.gov

NCT03074175).

In radiation research, miRNAs may act as biomarkers to

minimize unexpected radiation-linked side effects. Serum

miR29a-3p and miR150-5p show a dose-dependent expres-

sion pattern and might correlate with adverse events, such as

pulmonary fibrosis.64 Likewise, overexpression of serum

miR155 and miR221 predicts radiation esophagitis in

NSCLC patients with radiochemotherapy.82 Actually, the

assessment of miRNAs as a potential predictor of lung cancer

RT is under way, and more well-designed trials are required

to verify clinical utility.

Targeting miRNAs in lung cancer

radiotherapy
With a deep understanding of miRNAs, quintessential

miRNA-based therapies have come into the limelight of

cancer management. Generally, therapeutics targeting

miRNAs primarily comprise two approaches: miRNA-

inhibition therapy, which exploits miRNA antagonists or

inhibitors to repress excessive activity of oncogenic

miRNAs, and miRNA-replacement therapy, which

uses miRNA mimics to compensate for defective function

of tumor-suppressor miRNAs.83 The implementation of

miRNA-based therapies is either by directly inhibiting

miRNA sequences or by indirectly changing the coding

sequence. For the latter, siRNAs and shRNAs encoded by
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vectors are always utilized.84 As a synthetic miR34 mimic

delivered by liposomes, MRX34 is a pioneer miRNA

therapeutic to enter the clinical arena. It has been evalu-

ated in a phase I trial among patients with unresectable

liver cancer or other advanced malignancies, including

lung cancer (ClinicalTrials.gov NCT01829971).

Advances in miRNA-based therapies highlight an opti-

mistic outlook for RT. Imaginative modes of targeting

miRNAs in RT might contain the following steps: 1) before

RT, assessing the expression patterns of radiorelated

miRNAs to predict radiation response and subsequently tai-

loring personalized RT plans based on individual radiosensi-

tivity or tumor radioresistance; 2) during RT, altering the

expression of specific miRNAs to accomplish the expected

radiosensitizing effects, and analyzing liquid-biopsy sam-

ples, including exosomes, to capture dynamic characteristics

of each patient in the treatment course; and 3) after RT,

regularly tracking the expression of prognostic circulating

miRNAs or further exosomal miRNAs to monitor RT effi-

cacy and prevent cancer recurrence in timely fashion.

Conclusion
Lung cancer is the foremost deadly malignancy. RT is

a significant treatment option for lung cancer. However,

the existence of radioresistance largely limits the effective-

ness of RT. There is a pressing need to decipher molecular

mechanisms underlying radioresistance and elucidating

novel therapeutic targets for individualized RT. Several

studies have shown that tissue-specific miRNAs are extra-

ordinary players in regulating cell radiosensitivity via

intricate interplay with biological processes and radiation-

induced signaling pathways. More importantly, exosome-

derived miRNAs have garnered immense attention in lung

cancer treatment. Also, exosomal miRNAs are altered in

response to radiation and hold considerable promise as

diagnostic and therapeutic biomarkers. With advances

in the understanding of miRNAs, miRNA-based therapy

in conjunction with RT may be a promising strategy to

tailor personalized treatment. However, to strengthen

enthusiasm for targeting miRNAs in the clinic further,

there remain some important challenges.

Firstly, molecular elucidation of radiobiological

mechanisms and targets of miRNAs are fundamental for

future implementation of miRNA-based therapies. We are

also curious about the accurate roles of miRNAs in epige-

netic mechanisms, such as DNA methylation and N6-

methyladenosine. Thorough understanding of the intricate

interplay between miRNAs and radiation stress at different

levels is urgently needed to broaden new horizons in the

“mature” microRNA field. Additionally, the heterogeneity

of the tumor microenvironment may largely influence

miRNA signatures in radiation. Different patients with

distinct genetic backgrounds have heterogeneous

microenvironments and radiosensitivity. Moreover, tumor

development during RT is dynamic, with different

levels of miRNA expression. As such, future rigorous

clinical studies should carefully consider tumor-

microenvironment differences and keep constantly moni-

toring miRNAs during the whole period of RT. Thirdly,

harnessing the potential of exosomes using noninvasive

liquid biopsy is currently difficult. Despite considerable

efforts in standardization techniques, there is no clear

consensus on the best way to isolate and quantify exo-

somes. To date, exosomal miRNAs have displayed

restricted clinical applicability in RT, because their poten-

tial function has not yet been appropriately studied in

patient samples. More prospective investigations in

patients receiving RT are vital to validate clinical utility.

Last but not least, it appears that single miRNAs are

imperfect to predict clinical outcomes consistently,

whereas comprehensive analysis of miRNAs can improve

their performance. miRNA-expression signatures may be

combined with additional molecular, genetic, and clinico-

pathological information and noninvasive imaging

approaches aiming to optimize personalized management.

In future, addressing these critical questions may bring

great hope for radiation oncologists to tailor miRNA-based

applications in the clinical arena, as well as lead us toward

personalized lung cancer RT.
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