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Purpose: Involvement of central nervous system in acute lymphoblastic leukemia (CNSL) 

remains one of the major causes of pediatric acute lymphoblastic leukemia (ALL) treatment 

failure. However, the current understanding of the pathological process of CNSL is still limited. 

This study aimed to better understand the protein expression in cerebrospinal fluid (CSF) of 

ALL and discover valuable prognostic biomarkers.

Materials and methods: CSF samples were obtained from ALL patients and healthy con-

trols. Comparative proteomic profiling using label-free liquid chromatography-tandem mass 

spectrometry was performed to detect differentially expressed proteins.

Results: In the present study, 51 differentially expressed proteins were found. Among them, 

two core clusters including ten proteins (TIMP1, LGALS3BP, A2M, FN1, AHSG, HRG, 

ITIH4, CF I, C2, and C4a) might be crucial for tumorigenesis and progression of ALL and can 

be potentially valuable indicators of CNSL.

Conclusion: These differentially expressed proteins of ALL children with central nervous 

system involvement and normal children may work as diagnostic and prognostic factors of 

ALL patients.

Keywords: ALL, central nervous system leukemia, CSF, mass spectrometry, proteomics

Introduction
Acute lymphoblastic leukemia (ALL) is a malignancy derived from the medullary or 

lymphocyte precursor cells.1 ALL is the most common cancer in children, accounting 

for 25%–35% of pediatric cancers.2,3 With the understanding of the pathogenesis of 

ALL and individualized stratified therapy, the clinical efficacy of children with ALL 

has been significantly improved.4–8 However, central nervous system (CNS) involve-

ment remains one of the major causes of ALL treatment failure.9–11 About 5% of newly 

diagnosed ALL children are found to be with CNS infiltration.9,12 Without specific 

treatment for these children, the prevalence rate of central nervous system leukemia 

(CNSL) will increase to 50%–70% during the whole disease process.13–15 Currently, 

the mechanism of CNSL is still not clear, and therefore, more molecular level-based 

research studies are needed to clarify the development and treatment of CNSL.

Proteomic technology enables people to observe the development and progression 

of diseases dynamically and to carry out quantitative analysis.16–18 Proteomic analysis 

of biological fluids has been widely used to screen and identify disease markers.19 

Recently, various groups have attempted to discover potential protein biomarkers 

of pediatric leukemia.18–21 One study applied surface-enhanced laser desorption/
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ionization time-of-flight mass spectrometry (SELDI-TOF 

MS) to analyze the proteomes of cell lysates from childhood 

leukemia cell lines and childhood leukemia bone marrow 

samples of different subtypes.22 To discover potential protein 

biomarkers for pediatric ALL, research groups measured 

serum proteomic profiles between pediatric ALL patients 

and healthy controls by using SELDI-TOF-MS. In addition, 

they identified candidate protein biomarkers by using liquid 

chromatography-tandem mass spectrometry (LC-MS/MS). 

Notably, the obtained data revealed platelet factor, connec-

tive tissue activating peptide III, and two fragments of C3a 

as potential biomarkers to distinguish pediatric ALL patients 

from healthy controls and pediatric AML patients.23

Cerebrospinal fluid (CSF) analysis provides important 

and valuable information about process occurring in the CNS. 

CSF proteomics has been applied to identify biomarkers of 

various diseases. In normal physiological conditions, 80% 

of the protein in the CSF is blood-borne.24,25 The change of 

protein content in CSF provides a new approach to study 

malignant hematological disease. Researchers conducted 

quantitative CSF proteomic analysis in newly diagnosed 

pediatric ALL and lymphoblastic lymphoma (LL) patients. 

Notably, in this pilot study, the expression of antithrombin III 

and plasminogen decreased over time in one child who 

developed CNS thrombosis, compared to other subjects. The 

results of this study successfully demonstrated the feasibility 

of CSF quantitative proteomics in ALL and LL.26

However, to the best of our knowledge, the CSF pro-

teomic profiling of CNSL has not been reported. In this pro-

spective pilot study, we performed quantitative proteomics 

by using LC-MS/MS to discover differential expression of 

CSF protein in newly diagnosed pediatric CNSL patients and 

healthy controls to discover possible prognostic biomarkers.

Materials and methods
sample collection
The CSF of six pediatric ALL with CNS involvement was 

obtained from inpatients of Cancer Center, and CSF samples 

of six controls were obtained from inpatients of pediatrics 

department, West China Hospital, Sichuan University (2015). 

All enrolled patients were at the age of 1–11 years. ALL 

patients with CNS involvement were confirmed by CSF 

examination. The control group consisted of children with 

suspected encephalitis, but CSF examination turned out nor-

mal. After standard laboratory checks, the CSF samples were 

centrifugated at 3,000× g at 4°C for 5 minutes to remove the 

cells, and then stored at −80°C immediately. Our study was 

approved by the Medical Ethics Committee of West China 

Hospital, Sichuan University. All patients’ legal guardians 

signed informed consent, and the study was conducted fol-

lowing the Declaration of Helsinki.

Protein digestion
After thawed at room temperature, a fixed volume of 30 µL 

CSF was slightly diluted in RIPA buffer (150 mm NaCl, 

50 mm Tris–HCl pH 7.61, NP-40, 1% deoxycholic acid) with 

protease and phosphatase inhibitor on ice for 10 min. Then 

the CSF samples were centrifugated at 2,000× g at 4°C for 

5 minutes. After that, the supernatant was determined by Brad-

ford protein assay. Buffer containing 100 mM NH
4
HCO

3
 was 

added to the centrifuged CSF to create an alkaline environ-

ment for trypsin digestion. Then 5 mM d,l-dithiothreitol was 

added to reduce disulfide bonds for 1 hour at 37°C, and 55 mM 

iodoacetamide (IAA) was used to alkylate the cysteines and 

reacted in the dark for 45 minutes. Finally, 30 mM l-cysteine 

was needed for the blockade of redundant IAA, and trypsin 

(Sequencing Grade Modified Trypsin; Promega Corporation, 

Fitchburg, WI, USA) was added for the digestion of protein 

samples overnight at a 1:50 (trypsin to protein) ratio and pH 

8.0 at 37°C. The samples were heated to 95°C for inactivat-

ing the enzyme, which stopped the digestion reaction. Before 

the LC-MS/MS analysis, the peptides were desalted by C18 

ZipTip (ZTC18S096; EMD Millipore, Billerica, MA, USA).

lc-Ms/Ms analysis
The procedure for LC-MS/MS analysis in the experiment 

is similar to that in the previous report, with only minor 

modifications.27 All peptide samples were lyophilized and 

suspended in buffer A (2% acetonitrile, 0.1% formic acid) 

before MS/MS. An EASY-nLC 1000 nanoflow LC instru-

ment coupled to a Q Exactive quadrupole-orbitrap mass 

spectrometer (Thermo Fisher Scientific, Waltham, MA, 

USA) was adopted for LC-MS/MS analysis. Magic C18 AQ 

resin (200A, 5 µm; Michrom Bioresources, San Diego, CA, 

USA) was filled with a 100 µm × 2 cm trap column and a 

75 µm × 12 cm analytical column. The mobile phases were 

composed of buffer A and buffer B (95% ACN, 0.1% for-

mic acid). LC gradient elution conditions initially lasted for 

3 minutes for 4% B, from 3 to 43 minutes for 22% B, followed 

by 8 minutes for 22%–30%, B to 90% for 52–60 minutes and 

lasted for the last 5 minutes at a flow rate of 300 nL/min. 

Data-dependent acquisition was conducted in positive ion 

mode. MS spectra were obtained from 350 to 1,800 m/z 

with a resolution of 70,000 at m/z =200. The automatic gain 

control (AGC) value was set to 3e6 with a maximum fill time 

of 20 ms. The top 20 most intense parent ions were selected 
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with a 1.6 m/z isolation window and fragmented normalized 

collision energy of 27%. The AGC value of MS/MS was set to 

the target value of 1e6 with a maximum filling time of 64 ms 

and resolution of 17,500. Fragmentation was performed with 

a high-energy collision induced dissociation collision cell 

(mass resolution 17,000 at m/z =200). After one repeat count, 

a dynamic exclusion lasting for 30 seconds was performed. 

The raw files were acquired using the Q-Exactive plus and 

then searched and analyzed using Maxquant v1.3. Searches 

were based on the SwissProt human database. The peptide 

false discovery rate (FDR) was calculated, and peptide with a 

value 1% FDR was chosen for subsequent data processing.

statistical analyses
Multiple comparisons between two groups were performed 

using a paired t-test. P-values were calculated based on the 

Mann–Whitney U-test for nonparametric data or two-tailed 

independent sample t-test for parametric data. A P-value 

of 0.05 was considered statistically significant.

Proteomic analysis
Gene Ontology (GO) and REACTOME functional enrich-

ment for differentially expressed genes identified were 

performed using DAVID 6.8 (https://david-d.ncifcrf.gov/). 

Hierarchical clustering in Mev software was utilized for 

presenting global protein expression. Protein–protein 

interaction (PPI) network analysis was performed using the 

online Search Tool for the Retrieval of Interacting Genes 

database (STRING) (http://string-db.org). Interactions with 

a combined score 0.4 were considered significant. Further, 

MCODE was used to discover the core module in the PPI 

network. Finally, GO and REACTOME pathway analyses 

of proteins in the core module were done online.

Results
CSF protein profiles and differential 
protein expression
All CSF protein samples were collected from six selected 

pediatric ALL patients and six healthy pediatric controls in 

2015 from pediatrics department of West China Hospital. 

Age and gender distributions were similar in the two groups. 

After LC-MS/MS experiments, 455 non-redundant proteins 

were identified. All the proteins were statistically tested for 

differential expression. Fifty-one differentially expressed 

proteins with statistical significance (P0.05) were found. 

Among them, 32 proteins were upregulated, and 19 proteins 

were downregulated. Furthermore, hierarchical clustering 

was utilized to present protein expression profiles (Figure 1). 

Figure 1 hierarchical clustering of global proteins.
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Patients’ detailed information were shown in Table S1 and 

all identified proteins by LC-MS/MS analysis were shown 

in Table S2.

gO and reacTOMe pathway analyses
To further explore the function of the obtained proteins, 

GO and REACTOME pathway analyses were performed. 

A total of 49 gene IDs were found in DAVID. The results 

of the GO analysis showed that 47 differentially expressed 

genes were related to 57 terms on the category of “Biologi-

cal Process.” Among biological processes, the overrepre-

sented terms include cell adhesion (13 genes, P=2.53e−09), 

negative regulation of endopeptidase activity (10 genes, 

P=3.41e−11), platelet degranulation (8 genes, P=1.17e−08), 

signal transduction (8 genes, P=0.0373), receptor-mediated 

endocytosis (7 genes, P=1.10e−05), regulation of comple-

ment activation (6 genes, P=1.67e−08), CNS development 

(5 genes, P=3.21e−04), regulation of cell growth (4 genes, 

P=0.0014), complement activation, classical pathway 

(4 genes, P=0.0025), and axon guidance (4 genes, P=0.0094). 

The results indicated that platelet degranulation, regulation 

of immunity, cell growth, and CNS might play an important 

role in the development of pediatric ALL. Top ten biological 

processes obtained from GO analysis of all differentially 

expressed proteins were shown on Figure 2A.

As REACTOME pathway analysis revealed, the differ-

entially expressed genes were associated with a total of 189 

pathways. The most representative pathways were immune 

system (17 genes, P=0.0419), post-translational protein 

modification (12 genes, P=0.0241), regulation of insulin-

like growth factor (IGF) transport and uptake by insulin-

like growth factor binding proteins (IGFBPs) (10 genes, 

P=1.55e−10), hemostasis (10 genes, P=0.0017), innate 

immune system (10 genes, P=0.042), post-translational 

protein phosphorylation (9 genes, P=9.17e−10), platelet 

degranulation (8 genes, P=1.19e−7), response to elevated 

platelet cytosolic Ca2+ (8 genes, P=1.73e−7), platelet acti-

vation, signaling, and aggregation (8 genes, P=4.15e−5). 

The results indicated that the immune system, cell growth, 

and platelet function might be essential for the develop-

ment of pediatric ALL. Top ten pathways obtained from 

REACTOME pathway analysis of all differentially expressed 

proteins are shown on Figure 2B.

PPi network analysis
To examine the interaction between these differentially 

expressed genes, we used the STRING database to perform 

PPI network analysis. The results revealed that an interac-

tion network comprising 31 genes and 64 gene interaction 

relations was found (Figure 3C).

Figure 2 Gene Ontology (GO) and REACTOME pathway analysis of quantified proteins. (A) Top ten biological processes obtained from gO analysis of all differentially 
expressed proteins. (B) Top ten pathways obtained from reacTOMe pathway analysis of all differentially expressed proteins. (C) Biological processes obtained from gO 
analysis of cluster 1 proteins. (D) Top ten pathways obtained from reacTOMe pathway analysis of cluster 1 proteins.
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Further, we used MCODE to discover core module in the 

PPI network. The results showed that two core clusters includ-

ing 10 genes were found. Cluster 1 contained seven genes 

with 21 gene interaction relations (MCODE score =5.25, 

node =7, edges =21). Proteins involved in cluster 1 were 

LGALS3BP, TIMP1, A2M, AHSG, FN1, HRG, and ITIH4 

(Figure 3A). Cluster 2 included 3 genes with 3 interaction 

relations (MCODE score =1.5, node =3, edges =3). Proteins 

involved in cluster 2 were CF I, C2, and C4A (Figure 3B).

gO function and reacTOMe pathway 
analysis of cluster proteins
For cluster 1 proteins, GO analysis revealed that seven terms 

were on the category of “Biological Process” (Figure 2C). 

Platelet degranulation (7 genes, P=4.60e−14), negative 

regulation of endopeptidase activity (5 genes, P=3.81e−8), 

acute-phase response (3 genes, P=7.84e−5), and extracellular 

matrix disassembly (3 genes, 3.00e−4) were the most repre-

sentative terms. REACTOME pathway analysis showed that 

Figure 3 Protein–protein interaction (PPi) and McODe analysis of differentially expressed proteins. (A) Proteins and interactions of cluster 1 identified by MCODE analysis. 
(B) Proteins and interactions of cluster 2 identified by MCODE analysis. (C) Proteins and interactions of PPi network.
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a total of 57 pathways were involved, with platelet degranu-

lation (7 genes, P=2.82e−14), response to elevated platelet 

cytosolic Ca2+ (7 genes, P=3.70e−14), platelet activation, 

signaling and aggregation (7 genes, P=6.60e−12), hemosta-

sis (7 genes, P=6.27e−9) as the most predominant. Notably, 

results of cluster 1 proteins were highly consistent with the 

results of all the differentially expressed proteins. Top 10 

pathways obtained from REACTOME pathway analysis of 

cluster 1 proteins are shown in Figure 2D.

Regarding cluster 2, CF I, C2, and C4A were all related 

to immune system especially the activity of complement 

according to GO and REACTOME pathway analysis.

Discussion
ALL is the main type of leukemia that causes CNSL.28 The 

incidence of CNSL in pediatric ALL patients is much higher 

than that in adults.28,29 CNSL is a special extramedullary 

infiltrating form of leukemia cells that invade the CNS.30 

Leukemia cells may enter the CNS (including the meninges) 

through direct dissemination or blood circulation.29–31 Few 

studies have investigated the molecular mechanisms and 

pathways for CNSL. Currently, a mechanism of ALL cell 

entry into the CNS by targeting VEGF signaling has been 

identified by animal model.32 However, the results still need 

more experiments for validation. In addition, irreversible 

damages to the CNS remain one of the major causes of 

ALL treatment failure.29 Once CNS infiltration occurs, it is 

extremely difficult to control with poor clinical outcomes. 

Therefore, there is an urgent demand to better understand the 

pathogenesis of CNSL and identify potential protein markers 

in the diagnosis and treatment of ALL with CNS infiltration.

CSF is an excellent indicator of brain activity and pro-

cesses.33 There is also a consensus that CSF is one of the 

most suitable proximal fluids for analysis of biomarkers in 

neurological disorders.34,35 It contains normal and disease-

related protein components which provide insight into the 

function of the brain. By analyzing the proteomics of the 

collected CSF, we were able to identify proteins that were 

significantly changed in ALL patients with CNS infiltration. 

In our current study, CSF protein samples were collected 

from six selected pediatric ALL patients and six control 

groups. Using LC-MS/MS, 51 proteins were identified to 

be significantly different between the two groups (P0.05) 

including 32 proteins upregulated and 19 proteins downregu-

lated. Out of these 51 genes, 49 were found in DAVID. Using 

GO analysis, 47 differentially expressed genes were related 

to 57 terms in the biological processes category. The results 

showed that the differentially expressed proteins were mainly 

grouped in platelet degranulation, regulation of immunity, 

cell growth, and CNS.

To better understand the interaction between these dif-

ferentially expressed proteins, we performed PPI analysis. 

Two different clusters were identified as shown in Figure 3. 

These results indicate that the proteins we have identified 

were not random; rather they have intricate interaction net-

works. More specifically, cluster 1 proteins including TIMP1, 

LGALS3BP, A2M, AHSG, FN1, HRG, and ITIH4 were all 

related to cancer.36–61 Cluster 2 proteins including CF I, C2, 

and C4A were all related to immune system especially the 

activity of complement.62–70

TIMP1 is a glycoprotein that inhibits the proteolytic activ-

ity of matrix metalloproteinases in the extracellular space.36 

Previous studies have reported that TIMP1 had a positive 

effect on tumor metastases and progression inhibition.37,38 

However, new pieces of evidence have indicated that the 

overexpression of TIMP1 was associated with poor prognosis 

in several tumors such as non-Hodgkin lymphomas,39 breast 

cancer,40,41 colorectal cancer, and papillary thyroid cancer.41 

Recently, increased TIMP1 expression has been associated 

with unfavorable clinical outcomes in children with ALL. 

The proposed mechanism is the anti-apoptotic function 

in different cancer cell lines of TIMP1 by activating the 

FAK/Akt axis and the Bcl-2 survival signaling pathway.42 In 

the present study, higher levels of TIMP1 expression were 

also detected. Therefore, we assumed TIMP1 might be a key 

factor involved in the pathogenesis of CNSL.

LGALS3BP is also known as galectin-3-binding protein, 

which modulates cell–cell and cell–matrix interactions.43 

LGALS3BP has been found to have a complex function in the 

development of human cancers. High LGALS3BP expres-

sion has been implicated with the presence of metastasis in 

some solid tumors such as non-small-cell lung cancer43,44 

and breast cancer.43 However, one study reported that the 

overexpression of the protein in a series of tumor-derived 

cell lines reduced tumorigenic potential in athymic mice.45 

To the best of our knowledge, literature evidence associated 

with ALL is limited. Further studies are needed to investigate 

the role of LGALS3BP in tumors.

As a protease inhibitor and cytokine transporter, alpha-

2-macroglobulin (A2M) was associated with inflamma-

tion and cancer.46,47 Previous study has reported that A2M 

was identified as a candidate biomarker for the diagnosis 

of B-ALL by serum proteomic analysis.48 In addition, 

altered expression of A2M and FN1 (fibronectin 1) showed 
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discriminating signatures in breast cancer subtypes.49 FN1 

is a glycoprotein present in the extracellular matrix and at 

the cell surface, which plays an important role in cancer 

progression by promoting cell adhesion and migration.50,51 In 

the present study, A2M and FN1 were also found to be dif-

ferentially expressed between the two groups which might be 

of potential diagnostic and prognostic significance for CNSL.

AHSG is a glycoprotein produced by hepatocytes, which 

has been reported to be downregulated in serum in certain 

solid tumors, as well as hematological malignancies includ-

ing acute lymphocytic, acute nonlymphocytic, chronic granu-

locytic, and chronic myelomonocytic leukemias.52,53 The 

reduction of AHSG is mainly considered to be caused by the 

infiltration of liver and increased consumption.52 Our study 

found that the concentration of AHSG in CSF decreased 

in ALL patients as compared to that in healthy controls. In 

addition, AHSG is found to be involved in brain develop-

ment, and it may function as a transforming growth factor-β 

(TGF-β) receptor analog.54 It is known that TFG-β regulates 

a wide range of physiological and pathological processes in 

the brain including brain inflammatory response and extra-

cellular matrix regulation.55 Therefore, the change of AHSG 

concentration might be a useful laboratory parameter for 

the assessment of ALL clinical status, especially for CNSL.

Histidine-rich glycoprotein (HRG) is an abundant glyco-

protein with multidomain structure.56 It modulates various 

biological processes including cell adhesion, immunity, angio-

genesis, and coagulation, most of which involved in tumor 

metastasis and progression. Studies have suggested that HRG 

suppressed tumor metastasis and growth by promoting antitu-

mor immune response and tumor vasculature dysfunction.57 

In vivo, HRG was demonstrated to control tumor metastasis 

in mouse models of ductal adenocarcinoma, insulinoma, 

and fibrosarcoma.56–58 In the present study, the level of HRG 

decreased, which is consistent with the lowered expression 

of HRG in ovarian cancer and liver cancer. Based on this, 

we wondered HRG might be crucial for CNSL development.

ITIH4 is a glycoprotein secreted by liver in blood with the 

main function of regulating extracellular matrix.59 It has been 

found to be involved in genesis, metastasis, and development 

of several solid tumors.60 Research groups have observed 

the dynamic change of serum ITIH4 concentration in the 

developmental progress of HCC.61 It is confirmed that the 

decreased ITIH4 concentration was related to the genesis of 

HCC and high HCC risk.61 Declined ITIH4 expression was 

also detected in the present study. Hence, ITIH4 might serve 

as a warning marker of CNSL genesis.

The complement system consists of more than 30 soluble 

proteins and membrane binding proteins, which are widely 

involved in the body’s anti-microbial defense reaction 

and immune regulation, and can also mediate the damage 

response of immunopathology.62 The complement system has 

three activation pathways and eventually forms membrane 

attack complex (MAC). MAC can dissolve tumor cells and 

therefore inhibit tumor progress.63 Complement component 2  

(C2) is involved in the classical and lectin pathway of 

complement activation, and it is required for the forma-

tion of MAC.64 Complement activation product C4a can 

stimulate inflammatory reaction to eliminate pathogenic 

microorganisms.65 In the present study, the concentrations 

of C2 and C4a in CSF were decreased. The underlying 

mechanism might be the activation of the immune system by 

tumor cells leading to an increase in C2 and decrease in C4a.

Complement factor I (CFI) is of vital importance in the 

regulation of complement activation by cleaving C3b and 

C4b with cofactors complement receptor I (CD35), mem-

brane cofactor protein (CD46), and complement factor H  

(CFH).66 Expression of CFI has been observed in breast 

cancer cells,67 NSCSC cells,68 cutaneous squamous cell 

carcinoma (cSCC) cells,69 and glioma cells.70 Current evi-

dence suggested that CFI had an important role in promoting 

cSCC growth and invasion, possibly by using complement 

inhibitors for immune escape.69 In addition, high CFI 

expression has been reported to be positively correlated with 

breast cancer tumor size and associated with poor clinical 

outcomes.67 In the present study, we observed an elevated 

concentration of CFI. Therefore, CFI may participate in 

the development of CNSL and be a valuable indicator of 

CNSL diagnosis.

We have a few limitations in our current study. First, we 

have a relatively small sample size, so results showed in this 

study may or may not be a good representative of the whole. 

However, the 12 samples (2 groups of 6) that we obtained 

were relatively consistent in terms of analysis which gave us 

some confidence in our results. In addition, our results are 

consistent with published results in the literature.42,52,56,61,69 

Next, the goal of the current study is a pilot study, so the 

depth of is not great. But publishing our pilot results will 

allow other groups to analyze some of these specific targets 

in depth. We are also analyzing some of these proteins more 

specifically and in detail. Moreover, due to ethical concerns 

and difficulties in collecting pediatric samples, our study 

lacked the distinction between ALL with and without CNS 

involvement. But our study design was in accordance with 
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previous high-quality studies on CSF research, which was 

relatively rigorous. Finally, all our samples came from the 

Chinese Han population, which may or may not be a good 

representative for other ethnic groups. Due to the limitation 

to obtaining samples, Chinese Han population were the only 

samples that were available in our regions.

Conclusion
We have used CSF samples from six ALL patients and 

six normal individuals and discovered significant protein 

changes which may aid as potential biomarkers in the diag-

nosis and prognosis of childhood ALL with CNS infiltration. 

We hope our pilot study can provide an excellent foundation 

for the future investigators to further analyze these changes 

in proteins and identify their potential role in the etiology of 

ALL with CNS infiltration.
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