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Astragalus alters gut-microbiota composition in

type 2 diabetes mice: clues to its pharmacology
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Background: Astragalus possesses therapeutic effects for type 2 diabetes (T2D), while its action

mechanisms remain to be elucidated. In view of the pathogenic associations between gut micro-

biota and T2D, we explored the effect of astragalus on gut-microbiota composition of T2D mice.

Materials and methods: Modulation effects of astragalus on gut microbiota of T2D-model

mice were assessed by 16S rRNA gene sequencing.

Results: Inhibited blood-glucose and body-weight levels of T2D mice by astragalus were

accompanied by gut microbiota–composition alteration. Astragalus administration signifi-

cantly increased gut-microbiota richness and diversity in T2D mice and significantly altered

the abundance of several bacterial taxa, inducing increased abundance of Lactobacillus and

Bifidobacterium. PICRUSt software revealed the relationship between astragalus and T2D.

Conclusion: Due to previously reported decreased gut-microbiota richness and diversity and

reduced abundance of key species of Lactobacillus and Bifidobacterium, more studies are encour-

aged to explore the contribution of gut-microbiota alteration by astragalus to its anti-T2D effect.

Keywords: astragalus, type 2 diabetes, gut microbiota, alteration, 16S rRNA gene

sequencing

Introduction
Type 2 diabetes (T2D) is a chronic metabolic disease caused by the interaction of

inherited and environmental factors. It was estimated that almost 425 million adults

worldwide suffered from diabetes in 2017, and this number is projected to increase

to 628 million by 2045.1 The steadily increasing number of people living with T2D

has created a global economic burden.2 In addition, people with T2D are prone to

developing severe complications, such as cardiovascular disease, diabetic nephro-

pathy, diabetic neuropathy, and diabetic retinopathy.3–6 Therefore, there is an urgent

need for prevention and early intervention of T2D.

Astragalus has been used in traditional Chinese medicines for thousands of years

for its pharmacological effects. In the past decade, numerous studies on human and

animal models have shown that astragalus has an antidiabetic effect.7–9 Owing to the

poor bioavailability of the main active components of astragalus, such as saponins and

flavonoids, more effort is needed to explore its underlying action mechanisms.10–12

In recent years, many animal and humans studies have suggested that gut

microbiota may play an etiological role in T2D,13–16 and gut microbiota have

been proposed to be potential therapeutic targets of this disease. As such, it is

rational to hypothesize that astragalus may exert anti-T2D effects through altering

the composition of gut microbiota. This stimulated us to explore the effect of oral

administration of astragalus on gut microbiota of T2D-model mice by 16S rRNA
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gene sequencing, providing clues to understand the

mechanism of action of this natural agent.

Materials and methods
Astragalus in brown-yellow fine-powder form containing

70% astragalan and 10% total saponins, was purchased

from Huayue Chemical Products (Henan, China).

Carboxymethylcellulose sodium (CMC-Na) was obtained

from Sigma-Aldrich (St Louis, MO, USA). Accu-Chek

was purchased from Roche Diagnostics (Mannheim,

Germany). BKS.Cg-Dock7m +/+ Leprdb/Nju mice (5

weeks old) were purchased from the Model Animal

Research Center of Nanjing University (Nanjing, China).

Mice were housed one per cage in a specific pathogen–

free animal lab and maintained under standard conditions: a

12-hour light/dark cycle with room temperature at 22°C

±2°C and 50%±5% humidity, and with ad libitum access

to food and water. Ten mice were acclimatized to the

laboratory environment for 1 week before the experiment.

All mice were divided into two equal groups randomly: a

control group and an astragalus-administered group. The

astragalus-administered group received astragalus dissolved

in 0.5% CMC-Na by gavage at a dosage of 1g/kg body

weight per day, with mice fed a standard diet with 0.5%

CMC-Na buffer as the control group. Mice were treated for

15 days once daily. Animal experiments were approved by

the Animal Use Subcommittee of the Shandong University

of Technology. Our use of experimental animals was in

compliance with the Guide for the Care and Use of

Laboratory Animals. Blood samples were withdrawn from

an orbit vein after 12 hours' fasting. Blood was centrifuged

at 3,000 rpm for 10 minutes to obtain plasma. Fasting blood

glucose (FBG) was measured with the Accu-Chek accord-

ing to the manufacturer’s instructions.

Fresh mice feces were collected into individual sterile

Ependorf tubes and then frozen immediately at −80°C
until DNA extraction. DNA extraction from each fecal

sample was conducted by phenol trichloromethane meth-

ods. The extracted DNA concentration was determined by

NanoDrop (Thermo Fisher Scientific). After DNA extrac-

tion from the feces samples, we used PCR amplification

and pyrosequenced the V3and V4 regions of the bacterial

16S ribosomal RNA gene. Amplicon-sequencing libraries

were sequenced using the Illumina Miseq platform for

paired-end reads of 300 bp. Several α-diversity indices

were analyzed to evaluate the effect of astragalus on gut-

microbiota richness and diversity of T2D mice. Dominant

bacterial community differences between groups were

detected employing linear discriminant analysis combined

with effect size measurements (LEfSe). LEfSe was used to

identify species most characteristic of different sample

types. LEfSe results were visualized using taxonomy bar-

chart and cladogram plots, as implemented on the LEfSe

website (http://huttenhower.sph.harvard.edu/galaxy).

Microbial functions were predicted with PICRUSt

software.17 Relevant predicted genes and their functions

were aligned with the Kyoto Encyclopedia of Gene and

Genomes (KEGG) database and differences among groups

compared with STAMP software.

FBG and body-weight parameters were analyzed with

SPSS 16.0. Data comparisons among different groups

were analyzed by ANOVA. Graphic presentations were

achieved with GraphPad Prism 6 (GraphPad Software,

San Diego, IL, USA).

Results
Effects on FBG and body-weight levels
The effect of astragalus administration on FBG and body-

weight levels was evaluated through comparison with the

control group. The results showed that astragalus admin-

istration for 15 days reduced FBG and body weight, as

shown in Figure 1.

Overall structural alteration of gut

microbiota
All fecal samples were examined using Illumina high-

throughput sequencing. A data set consisting of 462,040

total sequence-read counts was generated, and the average

number of sequences obtained was 46,204 for each sam-

ple. Altogether, 433 operational taxonomic units were

exhibited at a 97% similarity level. According to the

Venn diagram in Figure 2A, there were 247 shared opera-

tional taxonomic units between the two groups, with ele-

ven unique to the control group and 175 to the astragalus-

administered group. Rarefaction curves plateaued with the

current sequencing, indicating that most gut microbial

organisms in each sample were captured with the current

sequencing depth (Figure 2B).

To explore the effect of astragalus on the richness and

diversity of gut microbiota, we analyzed the α-diversity
metrics (including Chao1, PD_whole_tree, Shannon, and

Simpson) of the control and astragalus-administered

groups. It was found that astragalus administration signifi-

cantly increase gut-microbiota diversity and diversity of

T2D mice (see Table 1).
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Bacterial composition analysis
Bacterial composition in the astragalus-administered group

and control group was then compared. As illustrated in

Figure 3, A and B), Bacteroidetes, Firmicutes and

Proteobacteria were the three dominant phyla in all samples.

The 20 most abundant genera in the two groups are shown

in Figure 3C. A total of three genera exhibited significant

differences in abundance between the astragalus-adminis-

tered group and the control group (Figure 3D). Further

analysis found that the relative abundance of Oscillibacter

significantly increased from 0.13% to 1.05% (P<0.01) after

administration of astragalus.

Taxonomic analysis
LEfSe was used to explore significant changes and rela-

tive richness in the bacterial community in the control

and astragalus groups (Figure 4). LEfSe results were

visualized using taxonomy bar-chart and cladogram

plots. Three phylum (Firmicutes, Acidobacteria, and

Gemmatimonadetes) were enriched in the astragalus-

Table 1 Gut-microbiota diversity and richness indices of control and astragalus-administered groups

Chao1 PD_whole_tree Shannon Simpson

Control 142.0 9.8499 4.3877 0.9013

Astragalus 272.3 19.1878 5.4599 0.9560

P 0.0317 0.0317 0.0079 0.0556
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Figure 2 Evaluation of Illumina MiSeq data showing that astragalus altered the overall composition of gut microbiota in type 2 diabetes mice.

Notes: (A) Venn diagram of shared operational taxonomic units in astragalus-administered and control groups; (B) rarefaction curves determined at the 97%
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adminisered group and none in the control group. One

genus and six genera were enriched in the control and

astragalus-administered group, respectively. Astragalus

administration significantly inhibited the growth of

Clostridium cluster XI, and increased the growth of

Lactobacillus and Bifidobacterium in T2D mice.

Metabolic function analysis
PICRUSt analysis was used to predict the metabolic

functions of gut microbiota influenced by astragalus

in T2D mice. The results revealed that 13 and 31

KEGG pathways were changed in the astragalus group

at levels 2 (Figure 5A) and 3 (Figure 5B), respectively,
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among which six were increased and seven decreased

in comparison with the control group at level 2.

In particular, we found several interesting changes

wherein 31 KEGG pathways at level 3 had changed.

Firstly, the biosynthesis processes of bacteria, such as

nucleotide metabolism, enzyme families, translation,

cell growth, death, replication, repair, and motility

(level 2) and nucleotide metabolism, including that of

pyrimidine and cytoskeleton proteins (level 3), had

increased in the astragalus group in comparison with

the control group. In addition, the metagenome of the

control group had been enriched in pathways related to

xenobiotic biodegradation and metabolism, including

styrene degradation, aminobenzoate degradation, capro-

lactam degradation, metabolism of xenobiotics by cyto-

chrome P450, drug metabolism with cytochrome P450,

and chlorocyclohexane and chlorobenzene degradation;

lipid metabolism, including arachidonic-acid metabo-

lism and fatty-acid metabolism; and animo-acid meta-

bolism, including phenylalanine metabolism, tyrosine

metabolism, lysine degradation, valine, leucine, and

isoleucine degradation, and tryptophan metabolism.

Discussion
In recent years, many traditional Chinese medicines have

been tried to treat T2D,18–20 among which astragalus is

considered a promising antidiabetic natural agent, but its

mechanism of action needs to be explored. Inspired by the

recent findings of gut-microbiota regulation in interpreting

the pharmacology of anti-T2D agents,21 the present work

studied alterations ingut microbiota of T2D mice through

astragalus administration. It was found that astragalus

prevented increases of FBG levels and body weight.

Characterization of gut microbiota showed that astragalus

administration significantly increased microbial diversity

and richness and altered the relative abundance of several

key bacterial species.

It has been reported that gut-microbiota diversity and

richness decrease in diabetic mice compared to controls.22

The “normalization” effect of astragalus observed in the

current study may make an important contribution to its

pharmacological effect. In addition, both human and ani-

mal studies have indicated that abundance of Lactobacillus

and Bifidobacterium decreases in diabetic rats and T2D

patients.23,24 Djurasevic et al found that virgin coconut oil
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Figure 5 Predicted functions for the altered metagenome of gut microbiota in each group shown with Kyoto Encyclopedia of Gene and Genomes pathways.
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Li et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2019:12776

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


affected some secondary parameters in diabetic rats and

significantly increased the abundance of probiotic bacteria,

such as Lactobacillus, Allobaculum, and Bifidobacterium

spp.25 Previous studies also found increased relative abun-

dance of Bifidobacterium in T2D patients after treatment

with metformin.26,27 Although no metabolic pathway asso-

ciated with differential bacteria was found in functional

prediction analysis, the biosynthesis processes of bacteria

was increased in the astragalus group compared to the

control group. This suggested that the addition of astraga-

lus promoted cellular processes, but the current findings

need to be further verified.

To summarize, the present findings indicated that inhibi-

tion of FBG and body-weight levels in T2D mice was asso-

ciated with alterations in gut-microbiota composition.

Increased gut-microbiota diversity and richness and regulation

of key bacterial species abundance may be involved in the

antidiabetic effect of astragalus. Further studies are needed to

evaluate the contribution of gut-microbiota alteration to the

anti-T2D activity of astragalus, which is important to under-

stand the pharmacology of this agent better.

Abbreviation list
T2D, type 2 diabetes; CMC-Na, carboxymethylcellulose

sodium.
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