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Abstract: Chronic hepatitis C (CHC) patients often stop pursuing interferon-alfa and ribavi-

rin (IFN-alfa/RBV) treatment because of the high cost and associated adverse effects. It is 

highly desirable, both clinically and economically, to establish tools to distinguish respond-

ers from nonresponders and to predict possible outcomes of the IFN-alfa/RBV treatments. 

Single nucleotide polymorphisms (SNPs) can be used to understand the relationship between 

genetic inheritance and IFN-alfa/RBV therapeutic response. The aim in this study was to 

establish a predictive model based on a pharmacogenomic approach. Our study population 

comprised Taiwanese patients with CHC who were recruited from multiple sites in Taiwan. 

The genotyping data was generated in the high-throughput genomics lab of Vita Genomics, 

Inc. With the wrapper-based feature selection approach, we employed multilayer feedforward 

neural network (MFNN) and logistic regression as a basis for comparisons. Our data revealed 

that the MFNN models were superior to the logistic regression model. The MFNN approach 

provides an efficient way to develop a tool for distinguishing responders from nonresponders 

prior to treatments. Our preliminary results demonstrated that the MFNN algorithm is effective 

for deriving models for pharmacogenomics studies and for providing the link from clinical 

factors such as SNPs to the responsiveness of IFN-alfa/RBV in clinical association studies in 

pharmacogenomics.

Keywords: chronic hepatitis C, artificial neural networks, interferon, pharmacogenomics, 
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Chronic hepatitis C (CHC) affects more than 170 million individuals worldwide and is 

a chronic liver disease characterized by infection with the hepatitis C virus persisting 

for more than six months.1,2 Combination therapy with interferon-alfa and ribavirin 

(IFN-alfa/RBV) has been the preferred treatment for CHC patients,1,2 however, due 

to the high cost and significant adverse reactions, patients often stop pursuing the 

treatment.1,2 Consequently, it would be highly desirable to establish models that dis-

tinguish responders from nonresponders (NRs) and predict the possible outcome of 

the IFN-alfa/RBV treatment.3,4

The efficacy of IFN-alfa/RBV is likely influenced by the combined effects of a 

number of genetic variants.3–5 Accumulating evidence reveals that single nucleotide 

polymorphisms (SNPs) could be used as genetic markers to predict IFN-alfa/RBV treat-

ment outcome in CHC.3–5 Results of several studies6–8 in different populations support 

the implication that the effects of IFN-alfa/RBV are associated with genetic variants. 

In addition, the genetic differences have been analyzed and found to be associated 

with IFN-alfa/RBV responses using a multiple logistic regression method.3
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Artificial neural network (ANN) algorithms are generally 

adopted for complex classification applications because of 

the advantages of ANN algorithms, such as nonlinearity, 

fault tolerance, universality, and real-time operation.9,10 ANN 

algorithms have been employed to build a prediction model 

for the drug efficacy of IFN-alfa/RBV in CHC patients based 

on SNPs and other clinical factors.4,5 Moreover, the possible 

nonlinear relationships between genetic variants and antide-

pressant response have been explored using ANN algorithms 

in pharmacogenomics studies.11,12

The previous researchers3–5 mainly reported modeling 

IFN-alfa/RBV treatment response by using logistic regression 

or ANN methods without feature selection. In this work, we 

extended the previous research and applied both ANN algo-

rithms and logistic regression with feature selection to predict 

IFN-alfa/RBV treatment outcomes using genetic factors.

Materials and methods
Patients
The cohort of 523 CHC patients was original to the previous 

study by Lin and colleagues4 and is described in detail in the 

latter research.4 Briefly, blood samples were collected from 

523 CHC patients at National Taiwan University Hospital, 

Kaohsiung Medical University Hospital, Kaohsiung Chang-

Gung Memorial Hospital, and Tri-Service General Hospital 

in Taiwan from 2002 to 2004. Patients whose serum HCV 

RNA became negative and lasted for more than 6 months 

after the end of treatment were defined as sustained virologic 

responders (SVRs) of the treatment. Those who still remained 

viremic were defined as NRs. There were 523 participants, 

including 350 SVRs and 173 NRs.4 We further converted the 

clinical diagnostic data into numerical forms, that is, 1 for 

“SVR” and 0 for “NR”, respectively.

genotyping
Genomic DNAs were extracted from each of the blood 

samples by using QIAamp DNA Blood kit according to the 

manufacturer’s instructions as described in detail elsewhere.4,5 

The quality of the extracted genomic DNAs was checked 

by agarose gel electrophoresis analysis and stored at -80°C 

until use.

Furthermore, genomic DNA was amplified using a 

 commercially available INFor SNP detection kit (Vita 

Genomics, Inc., Taiwan) according to the manufacturer’s 

instructions as described in detail elsewhere.4,5 More specifi-

cally, fragments of target genes were amplified by the PCR 

reaction. Amplification was carried out using 2700 PCR 

machines (ABI, Foster City, USA) and the amplified products 

were purified by membrane ultra-filtration with MultiScreen 

PCR plate (Millipore, Billerica, USA) according to the 

manufacturer’s instructions. After the sequencing reaction, 

the reaction product was loaded onto an ABI 3700 Capillary 

Sequencer. Finally, the genotype of each tested individual 

was determined by computer software and was confirmed 

manually.

genetic factors
In the present study, we only focused on the 24 SNPs as 

described in the previous study.13 The rationale for selecting 

these SNPs is described in detail elsewhere.3–5 The SNPs 

genetic markers of the participants were generated at the 

high-throughput genomics lab of Vita Genomics, Inc.

Because there are three genotypes per locus, each SNP 

was coded as 0 for homozygote of the major allele, 1 for 

heterozygote, and 2 for homozygote of the minor allele, 

respectively.

Artificial neural network algorithms
In this study, we used two families of classification algo-

rithms, including multilayer feedforward neural network 

(MFNN) and logistic regression as a basis for comparisons. 

An MFNN is one type of ANN models where connections 

between the units do not form a directed cycle.14 These clas-

sifiers were performed using the Waikato Environment for 

Knowledge Analysis (WEKA) software.15

From an algorithmic point of view, the underlying process 

of this MFNN can be divided into the retrieving and learn-

ing phases.4,5 Let us assume an L-layer feedforward neural 

network (with N
l
 units at the l-th layer). In the retrieving 

phase, the MFNN iterates through all the layers to produce 

the retrieval response {a
i
(L), i = 1, …, N

L
} at the output layer 

based on the inputs of test patterns {a
i
(0), i = 1, …, N

0
}, the 

known weights w
ij
 of the network, and the nonlinear activa-

tion function f
i
 (for example, sigmoid function). In the learn-

ing phase of this MFNN, the back-propagation algorithm16 

is employed for the learning scheme. The back-propagation 

algorithm is a simple gradient descent approach. The weight 

updating process adopts the mechanism of back-propagated 

corrective signals from the output layer for the hidden layers. 

The goal is to iteratively select a set of weights w
ij
(l) for all 

layers such that the squared error function E can be mini-

mized by giving a pair of input training patterns {a
i
(0), i = 1, 

…, N
0
} and target training patterns {t

j
, j = 1, …, N

L
}.

Mathematically, the iterative gradient descent formulation 

for updating each specific weight w
ij
 (l) can be expressed as 

the following equation
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w l w l E
w lij ij

ij

( ) ( )
( )

⇐ - ∂
∂

η  (1)

where η is the learning rate and ∂E/∂w
ij
(l ) can be effec-

tively calculated through a numerical chain rule by back-

propagating the error signal from the output layer to the 

input layer.4

On the other hand, an MFNN is a spatial and iterative 

neural network which has several layers of hidden neuron 

units between the input and output neuron layers from a struc-

tural point of view.4,5 The basic function of each neuron is the 

linear basis function, and a nondecreasing and differentiable 

sigmoid function models the activation.16 In our approach, 

we employed an MFNN for modeling the responsiveness of 

IFN-alfa/RBV. Inputs contain the information about clinical 

factors such as SNPs for the CHC patients. Outputs contain 

the information about the responsiveness of IFN-alfa/RBV.

In summary, the MFNN is trained first by repeatedly 

providing input-output training pairs and executing the back-

propagation learning algorithm.4,5 After this training process, 

the MFNN is tested by giving the inputs of testing data (that 

is, clinical factors) to the network. The forward propagation of 

the MFNN furnishes us with the responsiveness of IFN-alfa/

RBV for a particular patient, indicating a means of inference 

from cause to effect.

Here, we used WEKA’s default parameters, such as the 

learning rate = 0.3 and the momentum variable = 0.2.

Feature selection
To identify a subset of clinical factors that maximize the 

performance of the prediction model, we employed the 

wrapper-based feature selection approach, where the feature 

selection algorithm acts as a wrapper around the classification 

algorithm.17 The wrapper-based approach conducts best-first 

search for a good subset and uses the classification algorithm 

itself as part of the function for evaluating feature subsets.18 

The best-first search starts with an empty set of clinical 

factors and searches forward to choose possible subsets of 

clinical factors by greedy hill-climbing augmented with a 

backtracking technique.15 As shown in Figure 1, we applied 

MFNN and logistic regression with the wrapper-based 

approach, respectively.

evaluation of the predictive performance
To investigate the generalization of the prediction models 

produced by the above algorithms, we utilized the repeated 

10-fold cross-validation method.17 First, the whole dataset 

was randomly divided into 10 distinct parts. Second, the 

model was trained by nine-tenths of the data and tested by 

the remaining tenth of data to estimate the predictive perfor-

mance. Then, the above procedure was repeated nine more 

times by leaving out a different tenth of data as testing data 

and different nine-tenths of the data as training data. Finally, 

the average estimate over all runs was reported by running 

the above regular 10-fold cross-validation for 100 times with 

different splits of data.

To measure the performance of prediction models, we 

defined the accuracy as the proportion of true predicted 

participants of all tested participants.4,5 In addition, we used 

the receiver operating characteristic (ROC) methodology 

and calculated the area under the ROC curve (AUC).13,17 

Most researchers have now adopted AUC for evaluating 

predictive ability of classifiers owing to the fact that AUC 

is a better performance metric than accuracy.19 The AUC of 

Clinical factors MFNN

Clinical factors 
Wrapper-based
feature selection

Logistic 
regression

Wrapper-based
feature selection

Figure 1 in the wrapper-based feature selection approach, clinical factors are evaluated independently of the classification algorithms, such as multilayer feedforward neural 
network (MFnn) and logistic regression.
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a  classifier can be interpreted as the probability that the clas-

sifier will rank a randomly chosen positive example higher 

than a randomly chosen negative one.19 The higher the AUC, 

the better the learner.20 In this study, AUC was used as a 

value to compare the performance of different prediction 

models on a dataset.

Results
Table 1 summarizes the results of repeated 10-fold cross-

validation experiments using the MFNN algorithm and 

logistic regression with the wrapper-based feature selection 

method. First, the input-output training data pairs were used 

to train the MFNN models. There were 24 genetic factors, 

that is, 24 SNPs. Using this information, the MFNN models 

were trained with 1-4 hidden layers using the wrapper-

based feature selection method. These trained MFNNs 

approximate the model of the responsiveness of IFN-alfa/

RBV among CHC patients. After the networks were trained, 

we used the trained networks to find the responsiveness 

condition corresponding to the testing set with the 10-fold 

cross-validation method. We calculated accuracy and AUC 

for the 10-fold cross-validation experiments. As indicated 

in Table 1, the average values of accuracy for the MFNN 

prediction models with 1-4 layers were 80.4%, 80.4%, 

80.0%, and 79.7%, respectively. Of all the MFNN models, 

MFNN with one layer and MFNN with two layers per-

formed best, outperforming the other two MFNN models 

in terms of accuracy and AUC. For the MFNN models with 

the wrapper-based approach, only 4 factors out of 24 were 

identified.

Next, we employed logistic regression with the wrapper-

based approach for comparisons. As shown in Table 1, the 

average value of accuracy for the logistic regression predic-

tion model with the wrapper-based approach was 75.3%. 

Among all f ive predictive models, the MFNN models 

were superior to the logistic regression model in terms of 

 accuracy. In addition, MFNN with one layer and MFNN 

with two layers were better than logistic regression in terms 

of AUC.  Moreover, logistic regression with the wrapper-

based approach selected 5 out of 24 factors.

Finally, the performance of logistic regression with the 

same four factors as the selected MFNN was at an accuracy 

of 72.1% and an AUC of 0.67, respectively.

Discussion
To the best of our knowledge, this is the first study that 

proposes the use of MFNN and logistic regression with the 

wrapper-based feature selection method to model the drug 

responding status in CHC patients using genetic factors. We 

developed a pharmacogenomics methodology to predict the 

drug efficacy of IFN-alfa/RBV in CHC patients based on 

genetic factors such as SNPs. Our results demonstrated that a 

trained MFNN model is a promising method for providing the 

inference from genetic factors, such as SNPs, to the respon-

siveness of IFN-alfa/RBV. Our findings suggest that our tool 

may provide the medical reference prior to treatment based on 

the information of genetic factors such as SNP genotypes.

A similar study by Lin and colleagues4 has been reported 

to utilize the MFNN algorithms to evaluate the possible 

nonlinear interactions between IFN-alfa/RBV response and 

factors such as seven SNPs, viral genotype, viral load, age, 

and gender. The same cohort of 523 patients with CHC was 

used in their and our studies. They reported that an MFNN 

network with one hidden layer had an accuracy of 77.4%.4 

The difference between our study and theirs was that in the 

present study we used 24 SNPs instead of only seven poly-

morphisms. Moreover, the wrapper-based feature selection 

method was not utilized in the previous study. As shown in our 

simulation results, our MFNN prediction model performed 

better than theirs in terms of accuracy. These preliminary 

results suggest that an MFNN model may be considered 

as a good method to deal with the complex nonlinear rela-

tionship between clinical factors and the responsiveness of 

IFN-alfa/RBV.

In the wrapper-based approach, no knowledge of the 

classification algorithm is needed for the feature selection 

Table 1 The results of repeated 10-fold cross-validation experiments using multilayer feedforward neural network (MFnn) and 
logistic regression with the wrapper-based feature selection method

Algorithm Accuracy (%) Accuracy, 95%  
confidence interval (%)

AUC AUC, 95%  
confidence interval (%)

Number of  
factors

MFnn with 1 hidden layer 80.4 79.4, 81.4 0.72 0.71, 0.73 4
MFnn with 2 hidden layers 80.4 79.4, 81.4 0.72 0.71, 0.73 4
MFnn with 3 hidden layers 80.0 79.0, 81.0 0.66 0.65, 0.67 4
MFnn with 4 hidden layers 79.7 78.7, 80.7 0.68 0.67, 0.69 4
Logistic regression 75.30 74.2, 76.3 0.69 0.68, 0.71 5

Abbreviation: AUC, the area under the receiver operating characteristic curve.
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process, which f inds optimal features by using the 

 classification algorithm as part of the evaluation function.17,18 

In addition, the wrapper-based method has the advantage 

that it includes the interaction between feature subset search 

and the classification model.17 However, the wrapper-based 

method may have a risk of over-fitting.17,21 In a recent study, 

Huang and colleagues applied three classification algorithms 

including naive Bayes, the support vector machine algorithm, 

and the C4.5 decision tree algorithm with two feature selec-

tion methods to identify a subset of influential SNPs.17 They 

utilized the wrapper-based feature selection method and the 

hybrid feature selection approach combining the chi-squared 

and information-gain methods. Their results suggested that 

the naive Bayes model with the wrapper-based approach 

performed maximally among predictive models to infer the 

disease susceptibility dealing with the complex relationship 

between chronic fatigue syndrome and SNPs.17

The MFNN and logistic regression models are currently 

the most widely used pattern recognition techniques. In this 

study, our MFNN model achieved a higher successful rate 

of prediction than the traditional logistic regression model. 

Unlike logistic regression, MFNN has the ability to model 

the multidimensional and nonlinear relationships between the 

variables as found in complex medical applications.22,24 More-

over, the MFNN algorithms demonstrate robust  performance 

in dealing with noisy or incomplete data.22,24 It is difficult to 

interpret individual variables generated by the MFNN, while 

logistic regression analysis provides insightful information 

for the interpretation of model parameters.14,23 Therefore, 

logistic regression can be used as a complementary method 

to the MFNN approach.22

In this study, we found that the MFNN model with two 

layers performed the same as the MFNN with one hidden layer 

in terms of accuracy and AUC. It has been demonstrated that 

the MFNN with only one hidden layer should be adequate as 

a universal approximator of any nonlinear function, indicating 

that the MFNN with one hidden layer is always enough.4,25 

Thus, this implication was validated by our simulation results 

in the present study. When an approximation with one hidden 

layer would require an impractically large number of hidden 

units in solving some complex real world problems, multiple 

hidden layers may become necessary.4,26,27

Further direct experimentation is warranted to evaluate 

the impact of the proposed approach on patient outcomes in 

the context of computerized clinical decision support systems 

(CDSSs), which are information systems designed to aid 

clinicians in making clinical decisions.28 In general, CDSSs 

provide clinicians with information systems for  diagnosis, 

prevention, and disease management, as well as for drug 

dosing and drug prescribing,28 and CDSSs have shown great 

promise for reducing practice errors, improving patient 

care, and achieving lower costs.29 Furthermore, CDSSs 

are probably best introduced into healthcare organizations 

in two stages, basic stage (such as drug-allergy checking, 

basic dosing guidance, and drug-drug interaction checking) 

and advanced stage (including dosing support for geriatric 

patients, guidance for medication-related laboratory testing, 

and drug-pregnancy checking).30 In addition, Kawamoto 

and colleagues identified several features strongly associ-

ated with a CDSS’s ability to improve clinical practice and 

 suggested that the automatic provision of decision support 

as part of clinician workflow is the most important feature 

(p , 0.00001).29 This finding is consistent with one of the 

Ten Commandments for effective CDSSs published by 

Bates and colleagues, that is, implementing CDSSs should 

fit into the user’s work flow and integrate suggestions with 

clinical practice.31

There were several limitations to this study as follows. 

First, the small size of the sample does not allow definite 

conclusions to be drawn. In addition, the contributions of 

other genetic markers as well as demographic and clinical 

factors should be further examined. It would seem that SNPs 

are inadequate as the only variable. Other data, especially 

from the clinical records and laboratory values of patients, 

could be included to improve model performance as a further 

development of the method. In future work, large prospective 

clinical trials are necessary in order to answer whether these 

genetic and clinical factors are reproducibly associated with 

IFN-alfa/RBV treatment response.

Conclusions
In this study, we developed an ANN methodology with the 

wrapper-based feature selection method to predict the drug 

efficacy of IFN-alfa/RBV in CHC patients based on clinical 

factors such as SNPs. We demonstrated that a trained MFNN 

model is a promising method for providing the inference from 

genetic factors to the responsiveness of IFN-alfa/RBV.

Our findings suggested that our tool may allow patients 

and doctors to make more informed decisions based on 

clinical factors such as SNP genotyping data. Over the next 

few years, genetic tests for the pretreatment prediction may 

become a reality in patient care after prospective large clini-

cal trials to validate clinical factors and genetic markers.4,5 

It may also provide potential drug targets for the development 

of alternative therapeutic agents to treat CHC patients, 

 especially for those NRs.4,5
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