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Background: The liver coordinates a series of metabolic adaptations to maintain the energy

balance of the system and provide adequate nutrients to key organs, tissues and cells during

starvation. However, the mediators and underlying molecular mechanisms that mediate these

fasting-induced adaptive responses remain unclear.

Materials and methods: Male wild-type C57BL/6J littermates (8-weeks-old) were intra-

peritoneally injected with MCC950 or vehicle, and then randomly divided into three groups:

fed, fasted, and refed. Plasma IL1β and insulin levels were detected by ELISA kits. Plasma

and hepatic metabolites were determined using commercial assay kits. HepaRG cell line was

applied to verify the regulation of NLRP3 on lipogenesis.

Results: NOD-like receptor protein 3 (NLRP3) and its downstream inflammatory cytokines

were significantly suppressed after 24 h fasting and recovered upon 6 h refeeding in plasma

and liver tissues of mice. Moreover, fasting-induced hepatic steatosis and accompanied liver

injury were ameliorated when mice were intraperitoneally injected with MCC950 (a selective

NLRP3 inhibitor). Further study revealed that MCC950 suppressed sterol regulatory ele-

ment-binding protein-1c (SREBP-1c) expression and transcriptional activity, thus inhibited

lipogenesis in the liver, which may explain its role in stabilizing lipid metabolism.

Conclusion: The NLRP3 inhibitor-MCC950 protects against fasting-induced hepatic stea-

tosis. The novel and critical role of NLRP3 in lipogenesis may explain its importance in

regulating the adaptive responses of the liver upon starvation stress and may provide

therapeutic value.
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Introduction
The deregulation of metabolic homeostasis leads to metabolic disorders such as

fatty liver disease, obesity and diabetes.1,2 The liver functions as a major meta-

bolic regulator for maintaining metabolic homeostasis, allowing extrahepatic

tissues such as adipose and muscle to function normally under overnutrition or

starvation.3–5 During starvation, the liver coordinates a series of metabolic

adaptations to maintain the energy balance of the system and provide adequate

nutrients to key organs, tissues and cells.6,7 These regulatory mechanisms in the

liver include supplying glucose to the circulation, initially from hepatic glycogen

and then by gluconeogenesis produced from other non-carbohydrate materials.8

In a sustained fasting state, ketones are synthesized by the liver to provide an

energy source to replace glucose for high-oxygen consuming tissues.9,10 Fatty

acid oxidation is considered to be critical for providing ATP and NADP to

facilitate glycogenesis and acetyl-CoA for ketogenesis.11,12 Accumulating studies
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have revealed that many molecules participate in regu-

lating hepatic metabolism during fasting or other phy-

siological states, including sterol regulatory element-

binding protein-1c (SREBP-1c),13 peroxisome prolifera-

tor-activated receptor-alpha,5,14 glucocorticoid receptor ,

cAMP responsive element binding protein 1, and

CCAAT/enhancer binding protein beta.15 It would be

valuable to discover novel mediator(s) to further under-

stand the regulation of liver function upon starvation

stress.

NOD-like receptor protein 3 (NLRP3)-inflammasomes,

composed of NLRP3, adapter protein ACS and pro-

caspase 1, is an important regulator of the activation of

caspase1 and the maturation of IL1β. It can be activated by

multiple mediators, including metabolic disturbance.16,17

Previous studies mainly discussed the function of NLRP3

in macrophages where it is abundantly expressed. During

the last few years, researchers indicated that NLRP3

inflammasome is closely related to the pathogenesis of

most acute and chronic liver injuries,18,19 increased

expression of hepatic NLRP3, ACS and caspase-1 accom-

panies with liver inflammation in non-alcoholic fatty liver

disease and non-alcoholic steatohepatitis, which suggests

a strong link between NLRP3 inflammasomes and hepatic

dysfunction. Although NLRP3 inflammasome is highly

expressed in liver, the regulatory mechanism of NLRP3

inflammasome on lipid synthesis, fatty acid oxidation, and

transport in hepatocytes remains unknown.

In the present study, we discovered that the NLRP3 is

involved in the regulation of fasting-induced hepatic stea-

tosis and hepatic lipogenesis in hepatocytes. Its inhibitor

MCC950 restrained SREBP-1c expression and transcrip-

tional activation and reduced lipogenesis-associated gene

expression, which suggests that NLRP3 is a critical reg-

ulator of metabolic homeostasis upon starvation stress.

Materials and methods
Animals and treatment
Male wild-type C57BL/6J littermates (8-weeks-old) were

randomly divided into three groups: fed, fasted, and refed,

as described previously.20 The fed group was fed a normal

chow diet; the fasted group was fasted for 24 hrs; and the

refed group was fasted for 24 hrs, followed by 6 hrs of

refeeding prior to the end of the experiment. MCC950 or

vehicle was administered intraperitoneally at a dose of

10 mg/kg prior to diet deprivation or refeeding. The ani-

mals were housed in standard cages at 22°C in a 12/12-hrs

light/dark cycle. When the mice were sacrificed, blood

samples were collected, and tissues were taken rapidly

and fixed or stored in liquid nitrogen. All animal experi-

ments were conducted in accordance with the National

Institutes of Health Guide for the Care and Use of

Laboratory Animals and approved by the Ethical

Committee of Huazhong University of Science and

Technology.

Western blot analysis
Tissue samples were lysed at 4°C with RIPA buffer con-

taining protease and phosphatase inhibitors. Forty micro-

grams of protein, as measured by a standard bicinchoninic

acid assay (BSA) kit, were loaded onto 10% SDS-

polyacrylamide gels for electrophoresis. Then, proteins

were transferred to polyvinylidene difluoride membranes

and blocked with 5% dry milk for 2 hrs at room tempera-

ture. Next, the membranes were probed with primary

antibodies overnight at 4°C and incubated with secondary

horseradish peroxidase antibodies for 1 hrs. Subsequently,

the proteins were detected with a Bio-Rad (Hercules, CA,

USA) imaging system. The following antibodies were

used: β-tubulin (1:1,000 dilution, ab6046, Abcam),

NLRP3 (1:1,000 dilution, 15101, Cell Signaling

Technology), Caspase1 (1:1,000 dilution, NBP1-45433,

Novus), IL1β (1:1,000 dilution, 12242, Cell Signaling

Technology), FASN (1:1,000 dilution, 3180, Cell

Signaling Technology), ACC1 (1:1,000 dilution, 4190,

Cell Signaling Technology), and SREBP-1c (1:1,000 dilu-

tion, ab28481, Abcam).

ELISA
The concentration of IL1β in plasma was measured by

ELISA kits (MLB00C, R&D Systems, Minneapolis, MN,

USA), according to the manufacturer’s instructions.

Absorbance at 450 nm was measured using a microplate

reader (Thermo Fisher Scientific), and the 450 nm absor-

bance values were corrected by subtracting the reading at

570 nm.

Measurement of plasma and hepatic

metabolites
Blood glucose concentrations were determined using

a glucometer. Mouse plasma insulin was measured with

an ultrasensitive mouse insulin ELISA kit (Millipore,

Billerica, MA, USA). Liver lipid contents were extracted

as previously described;21 Plasma and liver triglyceride
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and cholesterol levels were detected using commercial

assay kits [290–63,701 and 294–65,801 for triglyceride

and cholesterol, respectively; Wako, Osaka, Japan] accord-

ing to the manufacturer’s instructions.

Oil red O staining
Livers were immersed in OCT and kept at −80°C until use.

After 5 mins of drying, frozen sections were incubated with

oil red O, washed with 60% isopropanol, and counterstained

with Mayer’s hematoxylin and saturated lithium carbonate.

The images were captured on a light microscope.

Quantitative real-time qPCR
Tissue samples were homogenized with TRIzol reagent

(Invitrogen, USA); total RNA was isolated and treated with

RNase-free DNase to remove genomic DNA, and then reverse

transcribed into cDNA by using a PrimeScript RT reagent kit

(Takara, China). Real-time qPCR was performed using an

ABI 7500 real-time PCR system and SYBR Green PCR

Master Mix (Takara, China) in duplicate. StepOne Software

v2.3 (Applied Biosystems, Waltham, MA, USA) was used to

analyze the results with the 2−△△CT-method after normal-

ization to β-actin levels (18s was used to determine that β-actin
does not change between groups; Figure S1).

The primers applied to real-time qPCR were as

follows:

18S-Forward: 5‘-TTGACGGAAGGGCACCACCAG-

3ʹ; 18S-Reverse: 5ʹ-GCACCACCACCCACGGAATCG-3ʹ;

β-actin-Forward: 5ʹ-AACAGTCCGCCTAGAAGCAC-3ʹ;

β-actin-Reverse: 5ʹ-CGTTGACATCCGTAAAGACC-3ʹ;

IL1β-Forward: 5ʹ-GAAATGCCACCTTTTGACAGTG-3ʹ;

IL1β-Reverse: 5ʹ-TGGATGCTCTCATCAGGACAG-3ʹ;

SREBP1c-Forward: 5ʹ-GCAGCCACCATCTAGCCTG-3ʹ;
SREBP1c-Reverse: 5ʹ-CAGCAGTGAGTCTGCCTTGAT-

3ʹ; FASN-Forward: 5ʹ-GGAGGTGGTGATAGCCGGTAT-

3ʹ; FASN-Reverse: 5ʹ-TGGGTAATCCATAGAGCCCAG-

3ʹ; ACC1-Forward: 5ʹ-ATGGGCGGAATGGTCTCTTTC-

3ʹ; ACC1-Reverse: 5ʹ-TGGGGACCTTGTCTTCATCAT-3ʹ;

ACOX-Forward: 5ʹ-TAACTTCCTCACTCGAAGCCA-3ʹ;

18S-Reverse: 5ʹ-AGTTCCATGACCCATCTCTGTC-3ʹ;

CPT1a-Forward: 5ʹ-TGGCATCATCACTGGTGTGTT-3ʹ;

18S-Reverse: 5ʹ-GTCTAGGGTCCGATTGATCTTTG-3ʹ;

MCAD-Forward: 5ʹ-AGGGTTTAGTTTTGAGTTGACG

G-3ʹ; 18S-Reverse: 5ʹ-CCCCGCTTTTGTCATATTCCG-3ʹ;

CD36-Forward: 5ʹ-ATGGGCTGTGATCGGAACTG-3ʹ;

18S-Reverse: 5ʹ-GTCTTCCCAATAAGCATGTCTCC-3ʹ;

FABP1-Forward: 5ʹ-ATGAACTTCTCCGGCAAGTACC-

3ʹ; 18S-Reverse: 5ʹ-CTGACACCCCCTTGATGTCC-3ʹ;

DGAT1-Forward: 5ʹ-TCCGTCCAGGGTGGTAGTG-3ʹ;

18S-Reverse: 5ʹ-TGAACAAAGAATCTTGCAGACGA-3ʹ;

Cell line and culture
HepaRG cells (HepaRGC10) were purchased from Gibco

(Thermo Fisher Scientific, Waltham, MA, USA) and cul-

tured as described in the manufacturer’s instructions. Cells

were cultured at 37°C with 5% CO2 in a humidified atmo-

sphere. After 24 hrs of serum starvation, the cells were

treated as described below.

Luciferase reporter assays
A human SREBP-1c promoter-driven luciferase plasmid

encoding a 5ʹ-flanking fragment of the SREBP-1c (−1005/
+24) promoter was described previously.22 Transfections

in HepaRG cells were performed in triplicate in 24-well

plates. After overnight starvation, 250 ng of SREBP-1c

promoter reporter plasmids or empty vector, together with

pRL-TK encoding Renilla luciferase, were co-transfected

by using Lipofectamine 2000. After transfection, cells

were treated with 250 µM BSA-conjugated palmitic acid

(P5585, Sigma, St Louis, MO, USA) or vehicle, in the

presence or absence of MCC950. Luciferase activity was

measured 24 hrs later using a Dual-Luciferase Reporter

Assay System (Promega, Fitchburg, WI, USA), and nor-

malized to Renilla luciferase activity.

Chromatin immunoprecipitation (ChIP)
Chromatin immunoprecipitation (ChIP) experiments were

performed exactly as described previously.23,24 Liver tissues

were subjected to cross-linking with 1% formaldehyde

before the preparation of nuclear extracts. Chromatin-

SREBP-1c complexes were immunoprecipitated with anti-

SREBP-1c or rabbit IgG (Cell Signaling Technology) by

incubation at 4°C overnight on a rocking platform, and

then were incubated with the beads from the ChIP kit at 4°

C for 2 hrs with gentle rocking. After washing sufficiently

with the washing buffer, the complexes were eluted with the

elution buffer from the beads, and the extracted DNA from

the final step was quantified by PCR to amplify the FASN

and ACC1 promoters. The primers were as follows: mouse

FASN: forward, 5′-TCACATCAGGGGACAGTTAG-3′;

reverse, 5′-TAAGCAAATAGAGAACTCCC-3′; mouse

ACC1: forward, 5′-GTCCCGCCTCCTCCAGT-3′; reverse,

5′-GACTTCAGAGCCCACCGAC-3′; The raw Ct values of

the ChIP samples were divided by the Ct values of the

Dovepress Liu et al

Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2019:12 submit your manuscript | www.dovepress.com

DovePress
803

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


relevant input samples, and the values were presented as the

percentage of the input values (% input).

Statistical analysis
GraphPad Prism 5.0 software (GraphPad Software, Inc.,

La Jolla, CA, USA) was used for statistical analysis. Band

densitometry of the Western blot images was quantified

with ImageJ Software. All data are presented as the mean

± SEM. Comparisons between two groups were conducted

by Student’s t test, and one-way ANOVA was used to

assess the statistical significance among multiple groups.

P<0.05 was considered statistically significant. All data

are representative of three independent experiments.

Results
The NLRP3-inflammasome is inhibited by

nutrient deprivation and triggered by

refeeding
To investigate whether the NLRP3-inflammasome is involved

in fasting-induced hepatic steatosis, we measured hepatic

NLRP3, pro-casp1, active casp1, pro-IL1β and active IL1β

expression levels. We found that NLRP3, active casp1 and

IL1βwere decreased after 24 hrs of fasting and recovered upon
refeeding in mice (Figure 1A). Meanwhile, the mRNA and

plasma levels of IL1β showed a parallel change (Figure 1B-C).
These data indicate the potential role of the NLRP3-

inflammasome in fasting-induced hepatic steatosis.

MCC950 effectively inhibits IL1β
secretion and ameliorates fasting-induced

hepatic lipid deposition
To explore whether inhibition of the NLRP3-inflammasome

plays a role in fasting-induced lipid instability, we treated

mice with MCC950 prior to diet deprivation or refeeding. As

shown in Figure 2A, the circulating IL1β levels were

increased by refeeding and were significantly decreased by

MCC950 compared to that of vehicle. MCC950 administra-

tion increased blood glucose levels both in fasted mice and

refedmice, while without having an impact on plasma insulin

levels (Figure 2B). In the liver, fasting-induced lipid deposi-

tion was significantly ameliorated by administration of

MCC950, as confirmed by the macroscopic appearance of
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the liver and Oil red O staining (Figure 2C and D). Further

quantitative analysis revealed that MCC950 reduced the

triglyceride content in liver but not in plasma compared to

that of the vehicle (Figure 2E). However, there were no

significant changes in cholesterol levels between the different

groups (Figure 2F). The results show that the inhibition of

NLRP3 largely reduced hepatic lipid deposition.

MCC950 alters the expression of key

genes related to lipogenesis in the liver
To examine the latent mechanism of MCC950 on hepatic

steatosis, we examined metabolic-associated genes in the

liver. Real-time qPCR revealed that lipogenesis-related

genes (eg, SREBP-1c, FASN, and ACC1) were suppressed

in theMCC950 group compared to those of the vehicle group

both in fasted and refed mice (Figure 3A), while fatty acid

utilization-related genes (eg, ACOX, CPT1a, and MCAD)

were unaltered byMCC950 treatment (Figure 3B). However,

genes related to fatty acid transportation (eg, CD36, and

FABP1) or esterification (eg, DGAT1) showed no consistent

changes either in starvation or refeeding (Figure 3C-D).

Therefore, the improvement of MCC950 on fasting-induced

hepatic steatosis is mainly through the amelioration of intra-

hepatic lipogenesis.

MCC950 suppressed SREBP-1c

expression and its regulatory effect on

lipogenesis
To further delineate the mechanisms responsible for the phe-

notype in MCC950 challenged mice, the levels of proteins

involved in lipogenesis were examined. As shown in Figure

4A-B, the nuclear form and precursor of SREBP-1c were

increased upon refeeding, while MCC950 treatment remark-

ably inhibited the expression of the nuclear form and precursor
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of SREBP-1c both in fasted and refed state. Accordantly, the

target genes of SREBP-1c (eg, ACC1, and FASN) were also

attenuated by MCC950 treatment (Figure S2). In vitro,

NLRP3-inflammasome can be activated by PA and inhibited

by MCC950 (Figure S3). To further confirm the role of

MCC950 on SREBP-1c, we detected an effect of MCC950

on SREBP-1c transcriptional activity which was induced by

PA in HepaRG cells using a luciferase reporter gene assay. As

shown in Figure 4C, SREBP-1c promoter activity was inhib-

ited by MCC950 in a dose-dependent manner. In addition, the

binding of SREBP-1c to its target genes (eg, FASN and

ACC1) was slightly decreased during starvation, while promi-

nently reduced after refeeding, as analyzed by the ChIP assay

in the liver tissues of mice (Figure 4D). Collectively, these

results indicate that MCC950 inhibits SREBP-1c expression

and transcriptional activity, suppresses lipogenesis-related

genes expression, thus ameliorates nutrient instability-

induced steatosis.

Discussion
Mammals have developed multiple mechanisms for accom-

modating changes in the environment, such as changes in

food availability.25 Liver, as the central organ in regulating

metabolism,4 plays an irreplaceable role in maintaining nutri-

ent stability during starvation and refeeding, and also is

subjected to various nutrient stress,26 such as lipotoxic,

inflammation.27 NLRP3 is a member of the NLR family,

activation of the NLRP3-inflammasome increases caspase1

activation and IL1β production, which indicate that NLRP3

is an important regulator of the inflammatory response.

Recent studies show that activation of the NLRP3-

inflammasome is associated with metabolic dysfunction,28
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which provides us with new insight into whether and how

NLRP3 can regulate lipid metabolism.

The NLRP3-inflammasome was suppressed during

starvation, but was rescued after refeeding, along with

the activation of caspase1 and increased maturation of

IL1β. When we intraperitoneally injected the mice with

the selective NLRP3 inhibitor MCC950, we observed the

amelioration of the fasting-induced liver lipid accumula-

tion, which demonstrated a novel role of NLRP3 in the

regulation of fasting-induced hepatic steatosis.

Additionally, we examined several pathways associated

with lipid metabolism (lipogenesis, fatty acid oxidation,

lipid transportation and esterification) and their effector

molecules. MCC950 significantly inhibited genes expres-

sion related to lipogenesis, while the genes involved in

fatty acid oxidation, including ACOX, CPT1α and MCAD

showed no obvious changes. This finding suggested that

the protective effects of MCC950 in fasting-induced hepa-

tic steatosis and the accompanying metabolic system

changes are mainly due to the inhibition of lipogenesis.

SREBP-1c is a master regulator of genes involved in

lipogenesis and plays an important regulatory role in lipid

metabolism. Further exploring the underlying the mechan-

ism of MCC950 in the regulation of hepatic lipogenesis,

we detected a reduction of mature form and precursors of

SREBP-1c in the liver when injected with MCC950. We
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Figure 4 MCC950 inhibits SREBP-1c expression and prevents its regulation on downstream target genes. (A) Metabolism-related signaling pathway was detected by

Western blot in fasted and refed mice challenged with MCC950 or vehicle, with β-tubulin as a loading control. (B) Quantitative results of the protein levels of mature or

precursors SREBP-1c, Casp1, IL1β. * P˂0.05, ** P˂0.01 and *** P˂0.001 compared to the fasted group treated with vehicle, # P˂0.05 and ### P˂0.001 compared to the

vehicle group under the same diet treatment. (C) Normalized activities of the luciferase reporters analyzing the effect of MCC950 on SREBP-1c promoter activation which
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stimulated lipid deposition in vitro using a HepaRG cell

line that was treated with palmitic acid29,30 and challenged

with MCC950, which resulted in the concentration-

dependent suppression of SREBP-1c promoter activity in

the luciferase assay. Chromatin immunoprecipitation

(ChIP) assays of liver tissue also showed that MCC950

remarkably attenuated the transcription of its downstream

target genes (FASN and ACC1).

The most important finding of our work is that NLRP3-

inflammasome accelerated lipogenesis in hepatocytes, for

its inhibitor MCC950 suppressed the transcription activity

of SREBP-1c and its target genes FASN and ACC1.

Intraperitoneal injection of MCC950 not only affected

the activity of NLRP3-inflammasome in hepatocytes, but

also inhibited the inflammatory response of kupffer cells

(KCs; macrophages in the liver), which is a limitation of

our study. Although we demonstrated that MCC950

reduced SREBP-1c transcription while inhibiting NLRP3-

inflammasome activation, we do not know whether KCs

are involved in this regulatory relationship. The crosstalk

between KCs and hepatocytes is worth exploring, and we

will do further researches in this field.

In conclusion, our findings establish a new role for

NLRP3 and its inhibitor MCC950 in the regulation of

lipogenesis and metabolic disorders after exposure to star-

vation or refeeding. The inhibition of NLRP3 could ame-

liorate lipid accumulation, liver injury and dyslipidemia,

which may prospect its importance in regulating the adap-

tive responses of the liver upon starvation stress, and

provide therapeutic value.
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Figure S1 β-Actin does not differ between groups. Real-time qPCR indicated that housekeeping gene 18S and β-actin do not differ between groups. n=8 per group.
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Figure S2 Inhibition of NLRP3-inflammasome reduced the protein level of lipogenesis-related genes. Densitometric analysis for FASN and ACC1 in fasted and refed mice
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Figure S3 The NLRP3-inflammasome can be activated by PA treatment and inhibited by MCC950 in a concentration-dependent way in HepaRG cell line. Western blot of

NLRP3 in HepaRG indicated that PA treatment activates NLRP3 inflammasome, which could be suppressed by MCC950.
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