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Background: The combination of chemotherapy with radiotherapy serves as a common

therapeutic strategy in clinics. However, it is unsatisfactory due to its poor therapeutic

efficiency and severe side-effects originating from chemotherapy-exerted systemic toxicity

as well as radiation-induced injury.

Purpose: Hence, Berberine (Ber), an isoquinolin alkaloid with low toxicity and protective

effects against radiotherapy, was used as a novel chemotherapeutic agent for chemo-radio-

therapy of liver cancer.

Patients and methods: We preloaded Ber into folic acid targeting Janus gold mesoporous

silica nanocarriers (FA-JGMSNs) for overcoming the poor bioavailability of Ber.

Furthermore, FA-JGMSNs were not only employed as radiosensitizers for expanding radio-

therapeutic effect, but also used as photothermal agents for supplementing chemo-radio-

therapeutic effect by local photothermal therapy.

Results: In vitro and in vivo experiemtal results demonstrated the highly efficient anti-

tumor effect, good biosafety as well as the effective protection of normal tissue of this

nanoplatform.

Conclusion: Based on its superb performance, we believe our work provided a feasible

strategy for triple-therapies of liver cancer.

Keywords: Berberine, chemotherapy, radio-sensitization, Au MSNs, Janus, photothermal

therapy

Introduction
Liver cancer is considered to be one of the most common and formidable diseases.1–3

Chemotherapy and radiotherapy (RT) are standard therapeutic methods in clinic and

the combination of chemotherapy with radiotherapy has been demonstrated to exert

a synergistic anti-tumor effect.4,5 However, this combined chemo-radiotherapy in clinic

is unsatisfactory due to its severe side-effects and limited therapeutic outcomes.6–8

During RT, ionization radiation inevitably passes through peritumoral normal tissues,

generating a series of side-effects.9 Chemotherapeutic drugs further aggravate the

adverse effects due to their highly systemic toxicities and the lack of specificity.10,11

In addition, multi-drug resistance and radio-resistance also limit the outcomes of

chemo-radiotherapy.12 Hence, it is urgent to develop new chemo-radiotherapeutic

strategies for highly efficient and safe treatment of liver cancer.
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Berberine (Ber), an isoquinolin alkaloid isolated from nat-

ural herbs, has exhibited a remarkable anticancer activity in

recent researches.13,14 More importantly, Ber possesses fewer

side-effects and resistance compared with traditional che-

motherapeutic drugs and can significantly reduce radiation-

induced organic injury.15–17 Hence, Ber combined with RT

would surmount the severe side-effects of chemo-

radiotherapy. However, the application of Ber is limited

because of its poor aqueous solubility, leading to reduced

bioavailability.18–20 Moreover, this chemo-radiotherapy is

insufficient to eradicate tumor tissues. Utilizing high-Z nano-

materials as radiosensitizers can effectively impove ionizing

radiation delivery in the tumor site and achieve a higher radio-

therapeutic outcome.21–23 Additionally, employing photother-

mal therapy (PTT) as an adjuvant treatment of chemo-

radiotherapy has also attracted great attention owing to the

safe therapeutic modality of PTT and its excellent capacity to

potentiate chemotherapeutic and radiotherapeutic effects by

influencing cancer cell metabolism and changing the micro-

environment of tumor.24–27 Thus, the integration of Ber ther-

apy, radiotherapy sensitization and PTT would be a feasible

method for simultaneously achieving a powerful therapeutic

effect and low side-effects as well as a protective effect to

normal tissues. However, it still remains challenging to seek

a proper agent for synchronously driving the triple-modal

therapies.

The thriving nanotechnology field has brought out new

opportunities for highly efficient, specific and personalized

cancer theranostics.28–30 Among them, gold-based nano-

platforms have drawn great attentions because of their out-

standing properties and applications such as tunable surface

plasmon resonance properties for PTT, strong X-ray

attenuation for computed tomography(CT) imaging con-

trasts as well as high Z number for radiotherapy

sensitization.31–33 Recently, gold mesoporous silica nano-

materials exhibited superior advantages on cancer multi-

model therapies owing to their good biocompatibilities,

high surface area, easily modified surface as well as multi-

ple physical and chemical properties.34–36 Our group pre-

viously designed uniform Janus gold mesoporous silica

nanocarriers (JGMSNs). These JGMSNs have been demon-

strated to be not only superior radiosensitizers and CT

imaging contrasts for CT imaging-mediated radiotherapy,

but also intriguing drug vehicles because of their strong

drug loading capacity and responsive drug release

properties.37 Additionally, JGMSNs also show high photo-

thermal conversion efficiency as photothermal agents for

local PTT. More importantly, the asymmetric structure of

JGMSNs facilitates them to harness multiple functionalities

without interference, thus exerting a maximal synergistic

effect.38 Hence, JGMSNs would be proper candidates for

loading Ber and realizing the triple-modal therapy of liver

cancer. Folic acid (FA) is one of the most effective targeting

ligands because excessive folate receptors exist on most of

the liver cancer membranes.39–43 Hence, in this present

study, FA was conjugated on the surface of JGMSNs (FA-

JGMSNs) for improving the target to liver cancer cells and

Ber was preloaded into FA-JGMSNs (FA-JGMSNs-Ber)

via surface-decorated carboxyl groups for tumor microen-

vironment-responsive release (Scheme 1). Then, we inves-

tigated the enhanced Ber therapy, radiation sensitization as

well as PTT of FA-JGMSNs-Ber and evaluated the com-

bined therapeutic effects and biosafety of this triple-model

therapy in vitro and in vivo experiments. More importantly,

the excellent protective effect of FA-JGMSNs-Ber against

radiation-induced injury was demonstrated. Our work

revealed the feasibility of these nanocarriers on the delivery

of Ber for achieving high-effcient and safe triple-modal

therapies of liver cancer.

Methods
Preparation of FA-JGMSNs-Ber and

characterization
JGMSNs were synthesized according to our previous

reports. The morphology of JGMSNs was characterized

by transmission electron microscopy (TEM, JEM-2100;

JEOL). To prepare FA-targeting JGMSNs, 2 mg of FA-

poly (ethylene glycol) (PEG)-N-hydroxy succinimide

(NHS) was added into 10 mL of the amino-modification

JGMSN solution (1 mg/mL). After ultrasonic treatment

and stirred overnight at room temperature, FA-JGMSNs

were obtained by centrifugation. The UV-visible (vis)-NIR

absorption spectra of free FA, gold nanorod, JGMSNs and

FA-JGMSNs were measured by a U-3310 spectrophot-

ometer (Hitachi, Tokyo, Japan). The size distribution of

JGMSNs and FA-JGMSNs were measured by a Nano ZS

90 Nano-sizer (Malvern Instruments Ltd., Malvern,

Worcestershire, UK). The mesoporous structure of FA-

JGMSNs were detected by the Brunauer-Emmett-Teller

(BET) method and the Barrett-Joyner-Halenda method.

To Preload Ber, we injected 10 mL alcohol solution of

Ber (0.5 mg/mL) into 10 mL of FA-JGMSNs solution

(1 mg/mL). Then, the mixture was stirred for 12 h and FA-

JGMSNs-Ber were collected and washed three times with

PBS. Next, we collected the supernatant and detected the
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quantity of Ber by UV-visible spectrophotometry of 480

nm. The Ber loading efficiency and Ber loading content

were calculated by the equations 1) Loading efficiency (%)

=mass of Ber in JGMSNs/initial mass of drug; and 2)

loading content (%)=mass of mass of Ber in JGMSNs/

mass of JGMSNs-Ber. To measure the release of Ber, 5 mg

of FA-JGMSNs-Ber were encapsulated into a dialysis bag

in the 10 mL of PBS solutions with different pH values

(pH 7.4 or 5.5). The release of Ber was measured by UV-

visible spectrophotometry.

Cell uptake of nanocarriers and

intracellular Ber release
SMMC-7721 cells and HL-7702 cells were cultured in

a 24-well plate (2×104 cells per well). Then, FITC-

labeled FA-JGMSNs or JGMSNs (10 μg/mL) were added

into these cells and co-incubated for 3 hours. In the free

FA block group, 1 Mm FA was co-incubated with FA-

JGMSNs. Next, these cells were washed, trypsinized and

resuspended for flow cytometry measurements (FACS; BD

Biosciences, Franklin Lakes, NJ, USA). To measure the

intracellular Ber release of DOX, 12.5 μg/mL of FA-

JGMSNs-Ber or JGMSNs-Ber or equal amount of Ber

(2.5 μg/mL) were co-incubated with these cells. After 3

hours, we stained the nuclei with Hoechst 33,258 for 5

minutes and detected the Ber using the CLSM (Olympus

FV1000, Tokyo, Japan). We also incubated FA-JGMSNs-

Ber or JGMSNs-Ber with SMMC-7721 cells for 3, 6 or 12

hours. Then, these cells were washed with PBS twice and

allowed to excrete Ber for another 6 or 12 hours. Next,

these cells were washed again and the intracellular Ber

were measured by FACS.

Cytotoxicity assessment
Human liver cancer cell line SMMC-7721 cells and human

normal liver cell line HL-7702 cells were cultured into a 96-

well plates (5×103cells per well) overnight. No ethics com-

mittee permission was required for the use of SMMC-7721

cells and HL-7702 cells because only certificated cell lines

provided by ATCC were used. Then, FA-JGMSNs-Ber,

JGMSNs-Ber, FA-JGMSNs, JGMSNs or Ber at various

concentration were respectively co-incubated with these

cells for 24 hours. In the same parallel groups, the dose of

free Ber was equal to the weight of Ber in FA-JGMSNs-Ber

or JGMSNs-Ber. Moreover, the dose of FA-JGMSNs or

JGMSNs was equal to the weight of FA-JGMSNs-Ber or

JGMSNs-Ber removing the weight of Ber in nanocarriers.

The weight of Ber in nanocarriers were calculated by the Ber

loading content of these nanocarriers. Then, the cell
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Scheme 1 Janus gold mesoporous silica nanocarriers loading Berberine for chemo/radio/photothermal therapy of liver cancer and radiation-induced injury inhibition.
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viabilities were measured by traditional SRB assays. To

detect the radiation sensitization and chem-radiotherapies,

5 Gy of X-ray irradiation (1 Gy/min) was used to irradiate

cells after various treatments. The radiation was carried out

by 6 MV irradiation beams (TrueBeam; Varian Medical

System, Palo Alto, CA, USA). To measure the photothermal

effect, the NIR-treated groups were exposed under an 808

nm laser for 5 minutes (1 W cm−2) after various treatments.

In vivo antitumor effect and safety

assessments
Approximately 20 g of male nude mice were purchased

from the Experimental Animal Center of Jilin University

and were maintained in a conventional animal housing

facility. All animal experimental protocols were approved

by the Ethics Committee for the Use of Experimental

Animals of Jilin University. The experimental manipulation

of mice was conducted in accordance with the National

Institute of Health Guide for the Care and Use of

Laboratory Animals and the approval of the Scientific

Investigation Board of Science and Technology of Jilin

Province (Changchun, People's Republic of China). These

mice were injected with 5×106 SMMC-7721 cells in the

right shoulder to establish xenografts models. When the

tumor volumes reached to approximately 80−100 mm3,

these mice were randomly divided into eights groups

(n=3/group). PBS, FA-JGMSNs (20 mg/kg), JGMSNs-Ber

(25 mg/kg) and FA-JGMSNs-Ber (25 mg/kg) were intrave-

nously injected and free Ber (5 mg/kg) was intraperitoneally

injected into the mice every 3 days. In X-ray irradiation

groups, 1 Gy/min of X-ray radiation with a 1.5 cm×1.5 cm

radiation field was used to irradiate the entire tumor for 5

minutes after 1 day of post-injections. In NIR irradiation

groups, these tumor sites of the mice were exposed under an

808 nm laser (1 Wcm−2) for 5 minutes at 24-hour and 48-

hour administration. The tumor volume was measured and

calculated by an equation: volume=length×width2×0.52. At

23 days, all the mice were sacrificed. The tumor was

harvested to weigh and the serum was collected for detect-

ing the levels of alanine aminotransferase (ALT), aspartate

aminotransferase (AST), blood urea nitrogen (BUN), crea-

tinine (CRE).

The protective effect against

radiation-induced intestinal injury
Approximately 20 g of nude mice bearing SMMC-7721

xenograft were randomized into five groups and treated

with PBS, free Ber (5 mg/kg), FA-JGMSN (20 mg/kg) and

FA-JGMSNs-Ber (25 mg/kg) every 3 days. Then, 1 Gy/

min of X-ray radiation was used to irradiate the entire

tumor for 0, 5, 10 minutes after 1 day of post-injections.

After 3 times RT, the body weight and the average intake

of food were measured. Then, the serum was collected and

intestinal fatty acid-binding protein (iFABP), and diamine

oxidase (DAO) were measured by an assay kit.

Statistical analyses
All the data represented three separate experiments and pre-

sented as the mean ± SD. The different groups were analyzed

by a one-way analysis of variance. Bonferroni post hoc test

was implemented for the analyses of different groups.

P<0.05 represented a statistically significant difference.

Results and discussions
JGMSNs were synthesized by a modified sol−gel method

as previous reports.44 As shown in Figure 1A, JGMSNs

exhibited an asymmetric structure, which consist of a gold

nanorod with dimensions of 50–60/10–15 nm and a silica

stick with dimensions of 200–250/100–120 nm. To

improve the stability of these JGMSNs and endow them

with liver cancer-targeting capability, JGMSNs was func-

tionalized by carboxyl groups and then FA-PEG was con-

jugated on the surface of JGMSNs to form FA-JGMSNs.

The FT-IR spectra in Figure S1 exhibited that the charac-

teristic adsorption peaks of FA-PEG-NH2 at 1335−1 and

1100 cm−1 appeared in the FA-JGMSNs group, while

a new adsorption peaks of the amide carbonyl groups at

1640−1 and 1540 cm−1 were also observed in the FA-

JGMSNs group, demonstrating that FA was conjugated

on the surface of these nanoparticles. Furthermore, The

UV−visible spectra in Figure 1B showed an absorption

peak of approximately 280 nm which was consistent

with the characteristic absorption peak of FA was located

in the FA- JGMSNs, also confirming the successful con-

jugation of the FA. Additionally, FA-JGMSNs possessed

an absorption peak of 740 nm, which was a slight red shift

in comparison to that of Au rods, suggesting that the FA-

JGMSNs preserved the optical properties of Au rods.

Furthermore, the particle sizes of FA-JGMSNs remained

constant for 5 days, whereas JGMSNs aggregated, sug-

gesting that PEGylation process improved the long-term

stability of JGMSNs (Figure S2). Then, we investigated

the mesoporous structure of FA-JGMSNs by BET method

and BJH method. The N2 adsorption−desorption isotherms

in Figure 1C showed type IV curves, confirming the
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existence of mesopores. The average mesopore size of FA-

JGMSNs was 2.2 nm (Figure S3), and its BET surface area

and total pore volume were 723.6 m2/g and 0.46 cm3/g,

respectively. The excellent mesoporous properties of FA-

JGMSNs indicated their high Ber loading capacity. For

Ber loading, we dissolved Ber into dimethyl sulphoxide

(DMSO) for increasing its solubility. Then, Ber was pre-

loaded into the silica body of FA-JGMSNs via the charge

interaction. Figure S4 showed the Zeta potentials of +23.2,

−14.2, −16.2, 5.9, −22.8, −10.9 and +4.7 mV, for Au

nanorods, JGMSNs, JGMSNs (CTAB free), JGMSNs-

NH2, JGMSNs -COOH, FA-JGMSNs and FA-JGMSNs-

Ber respectively. The Ber loading efficiency and the Ber

loading content on JGMSNs were respectively 47.4% and

19.1%. These FA-JGMSNs-Ber exhibited no obvious

change in size and PDI (Figure S5) after 1-week storage

period in water. Then, we investigated the Ber release

behavior of Ber-loaded FA-JGMSNs (FA-JGMSNs-Ber)

in PBS at different pH values (7.4 and 5.5). As shown in

Figure 1D, JGMSNs-Ber exhibited a pH-responsive drug

release fashion. The cumulative content of releasing Ber

was less than 7% at pH 7.4 after 96 hours, whereas 50% of

Ber was released after 96 hours at pH 5.5. This pH-

responsive Ber release property, which resulted from the

protonation and dissociation in acidic environments, was

favorable for Ber release in tumor tissues rather than

normal tissues since both the microenvironments of extra-

cellular tumor tissue and intracellular endo/lysosomes

were acidic.

To verify the FA-targeting capacity of FA-JGMSNs on

liver cancer cells, JGMSNs and FA-JGMSNs were respec-

tively labeled with the fluorescence marker FITC and their

cellular internalization were quantified by flow cytometry. As

shown in Figure 2A, the fluorescence intensity in FA-JGMSNs

-treated group was significantly higher than that in JGMSNs-

treated group in FA receptor-positive SMMC-7721 cells.

Moreover, preincubating free FA could effectively reduce the

fluorescence sign of FA-JGMSNs due to the competitive

blocking of the FA receptor. On the contrary, FA-JGMSNs

and JGMSNs showed similar cellular internalization in the

HL-7702 cells and both of their uptake in HL-7702 cells were

lower than that in SMMC-7721 cells. Additionally, there was
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no significant influence on the uptake of FA-JGMSNs in HL-

7702 cells when free FA was applied. These results demon-

strated the FA-targeted endocytosis of FA-JGMSNs in liver

cancer cells. Then, we explored the targeted delivery of Ber

capacity by observing intracellular distribution of Ber in

SMMC-7721 cells and HL-7702 cells. CLSM imaging in

Figure 2C and D showed that more fluorescence signals

from Ber were observed in SMMC-7721 cells after being

treated with JGMSNs-Ber than those treated with free Ber

for 3 hours, which implied that JGMSNs-Ber could deliver

Ber into cells and release Ber to the cytoplasm. Additionally,

the FA-JGMSNs-Ber group exhibited the most yellow fluor-

escence signals in the cytoplasm of SMMC-7721 cells, which

was due to the enhanced cell internalization by FA-targeted

endocytosis. On the contrary, there was no obvious difference

of fluorescence signals between the FA-JGMSNs-Ber group

and the JGMSNs-Ber group in HL-7702 cells. Both of the

yellow fluorescence intensities in the HL-7702 cells were

remarkably weaker than those in SMMC-7721 cells. These

selective distributions of Ber in cancer cells and normal cells

originated from selective endocytosis as well as pH-

responsive drug release, which were conducive to achieving

an improved therapeutic effect of Ber. Considering that the

main factor of chemotherapeutic resistance is the rapid pump-

out by p-glycoprotein,45,46 we quantified the distribution of

Ber in SMMC-7721 cells after different incubation times and

evaluated the efflux of Ber after another 6 or 12 hours by flow

cytometry. As shown in Figure 2B, FA-JGMSNs-Ber and

JGMSNs-Ber could effectively enhance the Ber accumulation

compared with free Ber in SMMC-7721 cells and FA-

JGMSNs-Ber showed better performance than JGMSNs-Ber,

which were in line with CLSM results. Then, the cells were

washed and allowed to excrete Ber for another 6 or 12 hours.

The mount of Ber in the free Ber-treated group drastically

decreased after 6 hours efflux and were negligible after 12

hours efflux. Interestingly, the fluorescence signals of Ber
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could still be detected in both the FA-JGMSNs-Ber-treated

group and the JGMSNs-Ber-treated group after 12 hours

efflux, indicating these nanocarriers could increase Ber reten-

tion in cancer cells. The FA-JGMSNs could effectively sur-

mount the chemotherapeutic resistance of pump efflux, which

contributed to further improving the chemotherapeutic effect.

To verify the therapeutic effect of FA-JGMSNs-Ber,

SMMC-7721 cells and HL-7702 cells were co-incubated

with JGMSNs, FA-JGMSNs, free Ber, JGMSNs-Ber or

FA-JGMSNs-Ber for 24 hours and their cytotoxicity was

measured by SRB assay. As illustrated in Figure 3A and B,

the cell viability was still above 90% in the FA-JGMSNs-

treated group or the JGMSNs-treated group when the

concentration of nanoparticles reached 10 μg/mL, indicat-

ing that these nanocarriers possessed excellent biocompat-

ibility. Free Ber, JGMSNs-Ber and FA-JGMSNs-Ber all

exhibited the dose-dependent cytotoxicity towards

SMMC-7721 cells and HL-7702 cells. JGMSNs-Ber killed

more SMMC-7721 cells than the equal dose of free Ber

and FA-JGMSNs-Ber showed the best anti-cancer effect.

Conversely, more HL-7702 cells lived when treated with

JGMSNs-Ber or FA-JGMSNs-Ber compared with those

treated with free Ber. The selective kill effect was consis-

tent with Ber intracellular distributions. Encouraged by the

excellent chemotherapeutic effect of FA-JGMSNs-Ber, we

further investigated the combined chemo-radiotherapeutic

effect based on FA-JGMSNs-Ber. As illustrated in Figure

3C, the radiotherapeutic effect to SMMC-7721 cells was

substantially improved after being treated with FA-

JGMSNs or JGMSNs compared with those without any

treatment of nanoparticles, demonstrating the radio-

sensitization of these nanoparticles, which was in line

with our previous reports.31 Additionally, JGMSNs-Ber

with X-ray irradiation killed more SMMC-7721 cells
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cells (B) at various concentrations for 24 hours. (NPs represent JGMSNs and FA-JGMSNs; NPs-Ber represent JGMSNs-Ber and FA-JGMSNs-Ber). The data were three

separate experiments. Mean values ± SD, and *P<0.05 represented the tagged group vs the control group, #P<0.05 represents the Ber group vs the JGMSNs-Ber group, and
&P<0.05 represents the JGMSNs-Ber group vs the FA-JGMSNs-Ber group. The cell viabilities of SMMC-7721 cells (C) and HL-7702 cells (D) after being treated with PBS,

JGMSNs, FA-JGMSNs, free Ber, JGMSNs-Ber or FA-JGMSNs-Ber with or without NIR and the absence or presence of RT. *P<0.05 represents the tagged group vs the control

group, #P<0.05 represents the “with the X-ray” group vs “with the X-ray and NIR” group, and &P<0.05 represents the “with the NIR” group vs “with the X-ray and NIR”

group.

Dovepress Li et al

International Journal of Nanomedicine 2019:14 submit your manuscript | www.dovepress.com

DovePress
3973

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


than either JGMSNs-Ber without RT or JGMSNs with RT

and FA-JGMSNs-Ber with RT showed better therapeutic

effect than JGMSNs-Ber with RT. Some reports have

revealed that the combination of chemotherapy with RT

could exert excellent synergistic therapeutic effect because

chemotherapy could effectively inhibit the repair of radia-

tion-induced DNA damage as well as arrest cell cycle in

the radiosensitive G2/M phase.47,48 Moreover, the combi-

nation of chemotherapy with RT could lead to an endo-

plasmic reticulum stress in tumor tissues, which induced

the autophagy and apoptosis of cancer cells and the release

of ATP and high mobility group box 1 (HMGB1) as well

as the intratumoral accumulation of dendritic cells, γδ
T cells and CD8+ T lymphocytes, resulting in an immune

response for enduring the powerful anti-tumor effect.49

Our results confirmed the high efficiency of chemora-

diotherapy by FA-JGMSNs-Ber, which were consistent

with previously reported applications of nanoparticles for

combined chemoradiotherapy.50,51 Notably, FA-JGMSNs-

Ber combining with RT didn’t obviously increase the

mortality of HL-7702 cells compared with RT (Figure

3D). It was due to the weak uptake of FA-JGMSNs-Ber

and selective response Ber release as well as the low

toxicity of Ber.

For further expanding the anti-tumor effect, PTT was

combined with chemo-radiotherapy. We firstly explored the

photothermal conversion efficiency of FA-JGMSNs-Ber in

culture medium. As shown in Figure S6, only a 5°C

increase was measured in pure water and free Ber solution

as well as the cell medium under the near infrared (NIR)

irradiation, whereas the temperature increases of FA-

JGMSNs-Ber solution exhibited a time- and concentration-

dependent fashion. The temperature reached 43°C when the

concentration of FA-JGMSNs-Ber was 12.5 μg/mL under

the NIR irradiation of less than 5 minutes, which was up to

the criteria of inducing cancer cells death. Then, we

explored the localized photothermal effect and evaluated

the triple-model therapies in vitro. As shown in Figure

3C, the viability of SMMC-7721 cells only under NIR

irradiation without any treatment was reduced by <5%,

indicating the NIR irradiation was safe for the

SMMC7721 cells. When pre-treated with JGMSNs or FA-

JGMSNs, the NIR irradiation led to a substantial toxicity

towards SMMC7721 cells, demonstrating the effectiveness

of PTT by these nanoparticles. Interestingly, the NIR irra-

diation combining with X-ray irradiation caused more

deaths of cells than either NIR irradiation or X-ray irradia-

tion after treatment with JGMSNs or FA-JGMSNs.

Additionally, JGMSNs-Ber or FA-JGMSNs-Ber with NIR

irradiation showed stronger killing effects in comparison to

those without NIR irradiation. These results indicated the

anticancer effects of the combination treatment of RT with

PTT or chemotherapy with PTT were better than single

PTT, RT or chemotherapy. As we expected, triple-model

therapies based on FA-JGMSNs-Ber exhibited the best ther-

apeutic effect. The synergistic effect probably originated

from the increased temperatures improving the sensitivity

of the cancer cells to RT and chemotherapy. Furthermore,

over 90% of HL-7702 cells survived after treatment with

nanoparticles under NIR owing to the better hyperthermia

tolerance of normal cells in Figure 3D. Notably, chemo/

radio/photothermal therapeutics didn’t cause the amounts of

deaths of HL-7702 cells, indicating an excellent biosafety of

the triple-model therapy.

To further verify the triple-model therapy in vivo, nude

mice SMMC-7721 xenograft models were established.

Then, PBS, free Ber, FA-JGMSNs, JGMSNs-Ber and FA-

JGMSNs-Ber were respectively administered into the mice

every 3 days. In X-ray irradiation groups (RT, FA-

JGMSNs + RT, FA-JGMSNs-Ber + RT, JGMSNs-Ber +

RT + NIR, FA-JGMSNs-Ber + RT+NIR), the mice

received 5 Gy of X-ray radiation. In the NIR irradiation

groups (JGMSNs-Ber + RT + NIR, FA-JGMSNs-Ber + RT

+ NIR), the tumor sites were exposed under an 808 nm

laser for 5 minutes. As illustrated in Figure 4A–C, free Ber

couldn’t inhibit tumor growth compared with the PBS

group due to its poor bioavailability. FA-JGMSNs-Ber

exhibited a substantial anti-tumor effect, indicating that

FA-JGMSNs were effective nanocarriers for improving

therapeutic effect of Ber. Additionally, FA-JGMSNs +

RT performed better than RT, demonstrating that FA-

JGMSNs were also effective radiosensitizers.

Furthermore, FA-JGMSNs-Ber combining with RT dis-

played higher tumor inhibition rates than FA-JGMSNs-

Ber or FA-JGMSNs with RT, confirming the combined

effect by FA-JGMSNs-Ber. As we expected, when NIR

was administrated, the therapeutic efficiency of FA-

JGMSNs-Ber with RT were remarkably enhanced.

Moreover, FA-JGMSNs-Ber + RT + NIR showed the

higher level of tumor-growth inhibition than JGMSNs-

Ber + RT + NIR. These findings revealed the excellent

anti-tumor effect of the triple-model therapy by FA-

JGMSNs-Ber. To further detect the systemic toxicity of

FA-JGMSNs-Ber, we measured the blood chemistry

indexes (liver function indexes: ALT, AST and kidney

function indexes: CRE, BUN) after various treatments.
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As illustrated in Figure 5A–D, the levels of ALT, AST,

CRE, and BUN were not significantly changed in all the

groups compared with control groups. The good liver and

kidney functions indicated an excellent biosafety of FA-

JGMSNs-Ber.

Radiation-induced intestinal injury is a severe clinical

problem in patients after RT. The protective efficacy of

Ber against radiation-induced intestinal injury has been

demonstrated by several studies.52,53 Based on the higher

bioavailability of FA-JGMSNs-Ber, we deemed that FA-

JGMSNs-Ber could preferably attenuate the radiation-

induced intestinal syndrome. To validate our hypothesis,

we administrated the fractionated X-ray irradiation to the

xenografts of nude mice bearing SMMC-7721 cells after

treatments with PBS, FA-JGMSNs, free Ber or FA-

JGMSNs-Ber. After courses of treatment, we detected the

body weight and food intake of these mice. As shown in

Figure 6A and B, the decrease of body weights and aver-

age chow intake showed radiation dose-dependent in RT

groups and FA-JGMSNs+RT groups. When treated with

free Ber, the decrease of body weights and average chow

intake were relieved. More importantly, there was no

observable body weight losses or chow intake decrease

in the FA-JGMSNs-Ber + RT groups compared with the

PBS-treated groups, which was better performance than

that in free Ber groups. These results demonstrated that
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FA-JGMSNs-Ber possessed excellent capacities to main-

tain the body weight and food intake of the mice receiving

RT. Furthermore, we detected the level of iFABP and

DAO in the plasmid to evaluate the early phases of intest-

inal mucosal injury of these mice. As shown in Figure 6C

and D, the levels of iFABP and DAO in the plasmid were

very low without RT because iFABP and DAO were

limited in the intestine site. After the X-ray irradiation,

the level of iFABP and DAO in the PBS-treated, FA-

JGMSNs-treated and Ber-treated groups increased with

the improving of radiation dose, which was due to the

damage of intestinal mucosal by RT. Furthermore, Ber

significantly delayed the increasing of iFABP and DAO.

Encouragingly, FA-JGMSNs-Ber group exhibited the

lower level of iFABP and DAO compared with the free

Ber groups. These findings indicated that FA-JGMSNs-Ber

possessed an excellent efficacy to reduce radiation-induced

intestinal mucosal injury triggered by RT.

Conclusion
In summary, an FA-targeting Janus gold mesoporous silica

nanocarriers (FA-JGMSNs) were fabricated to preload Ber

for chemo-radio-photothermal therapy of liver cancer. On

one hand, FA-JGMSNs showed a high Ber loading capa-

city and a tumor microenvironment-responsive Ber release

behavior as well as a prolonged Ber intracellular retention,

thus improving the bioavailability of Ber and expanding its

therapeutic efficiency. On the other hand, FA-JGMSNs

were developed as dual-functional agents for radiation

sensitization and photothermal therapy. FA-JGMSNs-Ber

showed excellent anti-tumor efficacy of combination thera-

pies with less side-effects in in-vitro and in-vivo
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experiments. More importantly, FA-JGMSNs-Ber effec-

tively relieved radiation-induced intestinal injury. Hence,

we believed that FA-JGMSNs-Ber integrating highly effi-

cient treatment of cancer tissue with the protection of

normal tissue would be a promising candidate for multi-

dimensional therapies of liver cancer.
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Supplementary Materials
Tetrachloroauric acid (HAuCl4·3H2O), cetyltrimethyl

ammonium bromide (CTAB), tetraethyl orthosilicate

(TEOS), Sulforhodamine B (SRB), Hoechst 33,258,

3-Aminopropyltriethoxysilane (APS), sodium borohydride

(NaBH4), and fluorescein isothiocyanate (FITC) were

obtained from Sigma-Aldrich Inc (St. Louis, MO, USA).

Sodium hydroxide (NaOH), ammonium hydroxide (NH4

OH, 28%), ammonium Nitrate (NH4NO3), anhydrous etha-

nol, hydrochloric acid and succinic anhydride were

obtained from Beijing Chemical Reagent Co. (Beijing,

People's Republic of China). Bernerine (>99%) was pur-

chased from Shanghai Hualan Chemical Co. (Shanghai,

People's Republic of China). FA-PEG-NH2 (MW =3400)

were purchased from Xi’an Ruixi (Xi’an, China). RPMI-

1640 medium was purchased from GIBCO (Carlsbad, CA,

USA). Fetal bovine serum (FBS) were obtained from

Beyotime Institute of Biotechnology (Jiangsu, People's

Republic of China). Diagnostic kits for aspartate amino-

transferase (AST), alanine aminotransferase (ALT), blood

urea nitrogen (BUN), creatinine (CRE) were purchased

from Nanjing Jiancheng Bioengineering Institute

(Nanjing, People's Republic of China). DAO ELISA Kit

and iFABP ELISA Kit were purchased from Shanghai

Chunmai biotechnology co. (Shanghai, People's Republic

of China). All reagents were commercially available pro-

ducts with analytical grade purity and used without further

purification.
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Figure S1 FTIR spectra of JGMSNs, FA-PEG-NH2 and FA-JGMSNs.
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Figure S2 Average size of the FA-JGMSNs and JGMSNs in water and 1640 medium supplemented with 10% of FBS for 1, 3 and 5 days. These data represent three separate

experiments and are presented as the mean values ± SD.
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Figure S3 Pore size distribution of FA-JGMSNs.
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Figure S4 Zeta potential of these nanocomplexes in water.
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Figure S5 Size distribution of (A) FA-JGMSNs-Ber, and (B) FA-JGMSNs-Ber after 7-days storage in water.
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Figure S6 Temperature increase in FA-JGMSNs-Ber suspensions at various concentrations under NIR exposure.
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