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Purpose: Compared with healthy subjects (HS), patients with major depressive disorder

(MDD) exhibit volume differences that affect the volume changes in several areas such as

the limbic, cortical, subcortical, and white matter. Catechol-O-methyltransferase (COMT) is

a methylation enzyme that catalyzes endogenous catecholamines. The Val158Met poly-

morphism of COMT has been reported to affect the dopamine (DA) levels, which plays an

important role in psychiatric diseases. However, the relationships among both DA levels,

COMT genotype, and brain morphology are complicated and controversial. In previous

studies that investigated the hippocampal subfields, the greatest brain abnormalities in

MDD patients were observed in Cornu Ammonis (CA)1 and the subiculum, followed by

that in CA2-3. We have prospectively demonstrated the relationship between the single-

nucleotide polymorphism of the Val158Met COMT gene (rs4680) and the hippocampal

subfields in drug-naive MDD patients.

Patients and methods: In this study, we compared 27 MDD patients and 42 HS who were

divided into groups based on their COMT genotype. The effects of the diagnosis, genotype,

and genotype–diagnosis interaction related to CA1 and the subiculum volumes, as well as the

whole-brain cortical thickness, were evaluated by performing a FreeSurfer statistical analysis

of high-resolution magnetic resonance imaging (MRI) findings.

Results: The results revealed that there was a statistically significant interaction between the

effects of diagnosis and genotype on the right subiculum (a component of the hippocampus).

Conclusion: This Val158Met COMT polymorphism may influence the subiculum volume

in drug-naive, first-episode MDD patients.

Keywords: major depressive disorder, COMT gene, brain morphology, hippocampal

subfields volume, subiculum, surface-based morphometry

Introduction
Catechol-O-methyltransferase (COMT) on chromosome 22q111 is a methylation

enzyme that catalyzes endogenous catecholamines via O-methylation in the pre-

sence of S-adenosylmethionine and magnesium ions.2 The dopamine (DA) levels

are sensitive to the COMT levels; therefore, variations in COMT activity may be

involved in the pathogenesis of various psychiatric and neurological diseases.3

COMT is widely expressed in the hippocampus and prefrontal cortex (PFC)4 and

is involved in basic neuronal functions, such as synaptic plasticity.5

A functional missense mutation of chromosome 22q11 causes a single G-to-A

base-pair substitution, resulting in a single-nucleotide polymorphism (SNP) in exon

Correspondence: Yuka Otsuka
Department of Psychiatry, University of
Occupational and Environmental Health,
1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu,
Fukuoka 8078555, Japan
Tel +8 193 691 7253
Fax +8 193 692 4894
Email yukaharada0810@med.uoeh-u.ac.jp

Neuropsychiatric Disease and Treatment Dovepress
open access to scientific and medical research

Open Access Full Text Article

submit your manuscript | www.dovepress.com Neuropsychiatric Disease and Treatment 2019:15 1537–1545 1537
DovePress © 2019 Otsuka et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.

php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the
work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

http://doi.org/10.2147/NDT.S199598

N
eu

ro
ps

yc
hi

at
ric

 D
is

ea
se

 a
nd

 T
re

at
m

en
t d

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.d

ov
ep

re
ss

.c
om

/
F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.dovepress.com
http://www.dovepress.com
https://www.facebook.com/DoveMedicalPress/
https://twitter.com/dovepress
https://www.linkedin.com/company/dove-medical-press
https://www.youtube.com/user/dovepress
http://www.dovepress.com/permissions.php


4. This morphism changes codons 108/158 from valine

(Val) to methionine (Met),6 which in turn impairs the

thermostability of mature proteins,7 thereby altering the

DA levels in several brain regions8,9 and affects tasks of

executive function, memory, and attention.10 The relation-

ship between DA levels and brain function or morphology

is complicated. The predictability of poor performance on

the cognitive tasks by both deficient and excessive

amounts of DA is best illustrated as an inverted

U-shaped dose–response curve.11,12 An association

between genetic factors and brain morphology seems to

be based on the DA’s ability. However, whether only the

COMT polymorphism affects the brain abnormalities

remains controversial. The brain abnormalities were

recorded from both genetic factors and psychiatric dis-

eases that regulate brain development or

neurodegeneration,13 and not only gene polymorphism.

Structural neuroimaging findings have revealed brain

volume reductions in multiple fronto–striatal–limbic regions

of depressed patients, including the anterior cingulate cortex,

the PFCs, the striatum, the hippocampus, and the

amygdala.14–16 Recently, the hippocampus, a component of

limbic structures, has been reported to be nonuniform in

structure and comprises 26 subfields (13 left and 13 right)

with distinct morphologies.17,18 These areas performed dif-

ferent functions in the memory system,19–22 and the subicu-

lum and Cornu Ammonis (CA)1 plays a role in

disambiguation during the working memory processes,23

CA1 and the subiculum, including its anterior region asso-

ciated with emotional functioning,24 may play an important

role in the pathophysiology of major depressive disorder

(MDD). Owing to the fact that the subiculum plays a role

in the hippocampal output fromCA1 andCA3,25 a secondary

effect was hypothesized to occur in the subiculum that is

mediated by CA1 and CA3 damage owing to the high corti-

sol levels.26,27 Furthermore, female monkeys with depres-

sive-like behaviors form a nonhuman primate model and

have been reported to display smaller anterior CA1 and

subiculum volumes than normal monkeys, although the

entire hippocampal volume did not differ.28 The differences

in the PFC and temporal lobe areas are not large enough as

those in the subiculum in individuals with schizophrenia and

mood disorders,29 suggesting that the abnormality may be

localized to a hippocampal subfield.

To date, no studies have examined the comprehensive

association between the COMT Val158Met polymorphism

and hippocampal subfields. Therefore, we hypothesized that

the impact of COMTVal158Met genotype may be localized

in the CA1 and the subiculum, as suggested by previous

studies, regarding the pathophysiology of MDD. The aim

of this neuroimaging study was to comprehensively investi-

gate the relationship between COMTVal158Met polymorph-

ism and morphometric brain abnormalities in drug-naive,

first-episode MDD patients, allowing observations without

the effects of antidepressants.

Materials and methods
Participants
This study was performed in accordance with the

Declaration of Helsinki, and the protocol used in this

prospective study was approved by the Institutional

Review Board of University of Occupational and

Environmental Health in Kitakyushu, Japan. All the parti-

cipants provided written informed consent to participate in

the study. Most of the subjects who participated in this

study also participated in an earlier published study30 that

examined the relationship between cortical thickness and

the serum cortisol levels in MDD by performing a surface-

based morphometry analysis using the FreeSurfer software

program (http://surfer.nmr.mgh.harvard.edu).

Twenty-nine right-handed, treatment-naive patients

experiencing their first episode of MDD were recruited.

A psychiatrist (R.Y. with 28 years of experience in psychia-

try) diagnosed the patients experiencing major depressive

episodes using the Structured Clinical Interview according

to the Diagnostic and Statistical Manual of Mental

Disorders (DSM)-Ⅳ-TR.31 The 17-item Hamilton Rating

Scale for Depression (HAMD17) was used to evaluate the

severity of depression.32 Patients with a HAMD17 score ≤7
were not considered eligible for the study. The exclusion

criteria included any history of neurological diseases or

other physical diseases and the presence of other disorders

(ie, the evidence of schizoaffective disorder, bipolar disor-

der, Axis II personality disorder, or mental retardation).

Forty-seven healthy subjects (HS) were also recruited via

an interview conducted by the same psychiatrist using the

Structured Clinical Interview for the DSM-IV,33 nonpatient

edition. None of the participants had a history of any neu-

ropsychiatric disorders or personality disorders. Of the 29

MDD patients, two were excluded because of change in

diagnosis, and five of the 47 HS were excluded to match

with the patients in terms of age and sex. 27 MDD patients

and 42 HS were divided into groups based on their COMT

genotype as follows: 13 MDD patients with the Val/Val

genotype (Val/Val-carriers), 14 MDD patients with either
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Met genotype (Val/Met n=14, or Met/Met n=0) (Met-

carriers), 22 HS Val/Val, and 20 HS with either Met geno-

type (Val/Met n=17, Met/Met n=3) (Table 1).

Genotyping
Each of the 69 participants evaluated in the neuroimaging

study provided a blood sample from which DNA was

extracted, and the COMT DNA was amplified using stan-

dard laboratory protocols. DNA was isolated from the per-

ipheral blood mononuclear cells using the QIAamp DNA

Mini-Kit (QIAGEN, Tokyo, Japan). The human COMT

gene was amplified from the genomic DNA by performing

PCR. The PCR products were purified enzymatically. The

Big Dye Terminator v3.1 Cycle Sequencing Kit (Life

Technologies Corporation, Waltham, MA, USA) was used

to perform the sequencing reactions. The sequencing pri-

mers used were the same as the PCR primers. The sequences

were read using the Applied Biosystem 3730xl DNA

Analyzer (Life Technologies Corporation). Then, the

sequencing output data were compared with a reference

sequence (NC-000007.13). Each participant was homozy-

gous for the Val allele (Val/Val genotype), heterozygous

(Val/Met genotype), or homozygous for the Met allele

(Met/Met genotype).

Magnetic resonance imaging (MRI)

acquisition
The MRI data were obtained using the 3T MR System

(Signa EXCITE 3T; GE Healthcare, Wankesha, WI, USA)

with an 8-channel brain phased-array coil. The original T1

images were acquired using a 3D fast-spoiled gradient

recalled acquisition with a steady state. The acquisition

parameters were as follows: repetition time in ms/echo

time in ms/inversion time in ms=10/4.1/700; flip

angle=10; field-of view=24 cm; section thickness=1.2 mm,

and resolution=0.9×0.9×1.2 mm. All the images were

corrected for image distortion owing to gradient nonlinear-

ity using the Grad Warp software program34 and intensity

inhomogeneity using the “N3” function.35

Image processing
Whole-brain analyses using surfaced-based

morphometry (SBM)

The regional cortical thickness was estimated using the

FreeSurfer software version 6.0 (http://www.freesurfer.net/

fswiki/FreeSurferWiki), which has been well documented

and is freely available online. The technical details of the

cortical thickness analysis have been previously described

elsewhere.36 The entire cortex of each participant was

visually inspected, and the topological defects were manu-

ally corrected. The cortical thickness measurements were

performed by reconstructing representations of the gray

matter–white matter boundary36,37 and the pial surface.

Then, the distance between these surfaces at each point

across the cortical mantle was calculated. For each parti-

cipant, the regional thickness value at each vertex was

mapped onto the surface of an average brain template.

This procedure enabled the visualization of the data across

the entire cortical surface. The data were resampled for all

the participants onto a common spherical coordinate

system.37 The cortical map of each participant was

smoothed using a 10-mm kernel in full width at half-

maximum (FWHM) for the cortical analyses.

Volumetry of hippocampal subfields

Because the SBM analysis could not analyze the hippo-

campus, we performed a hippocampal subfield analysis

using the automated hippocampal subfield segmentation

method. The FreeSurfer software version 6.0 was used to

calculate the hippocampal subfield volumes (www.freesur

fer.net/fswiki/HippocampalSubfields).38 The calculated

subregions included the CA1, CA3, and CA4; granule

cell layer of the dentate gyrus (GC-DG); fimbria;

Table 1 Demographic and clinical characteristics among 4 groups

MDD patients Healthy subjects p-value

Val/Val (n=13) Met-carrier (n=14) Val/Val (n=22) Met-carrier (n=20)

Male/female 8/5 8/6 16/6 15/5 p=0.657

Age (years) 41.92±11.06 49.29±13.18 41.45±12.79 40.1±10.74 p=0.153

HAMD17 21.08±7.1 21.57±5.26 p=0.884

HWE p=0.0690 p=0.908

Abbreviations: MDD, major depressive disorder; HAMD17, 17-item Hamilton Rating Scale for Depression; HWE, Hardy–Weinberg equilibrium; Met, methionine; Val,

valine.

Dovepress Otsuka et al

Neuropsychiatric Disease and Treatment 2019:15 submit your manuscript | www.dovepress.com

DovePress
1539

Powered by TCPDF (www.tcpdf.org)

http://www.freesurfer.net/fswiki/FreeSurferWiki
http://www.freesurfer.net/fswiki/FreeSurferWiki
http://www.freesurfer.net/fswiki/HippocampalSubfields
http://www.freesurfer.net/fswiki/HippocampalSubfields
http://www.dovepress.com
http://www.dovepress.com


subiculum; presubiculum; parasubiculum; hippocampal

fissure; molecular layer; hippocampus-amygdala-

transition-area (HATA); hippocampal tail; and whole hip-

pocampus (Figures 1–3). We calculated the volumes of

CA1 and subiculum. The technical details of these proce-

dures have been described previously.39

Statistical analysis
To analyze the demographic and clinical characteristics of

the patients, an ANOVA was performed to test for

differences in the age among the HS with Val/Val, HS

with either Met, MDD patients with Val/Val, and MDD

patients with either Met. Fisher's exact test was performed

to evaluate the differences in sex among the groups.

Mann-Whitney U test was performed to compare the

total HAMD17 scores between the MDD patients with

Val/Val and those with either Met.

A voxel-wise statistical analysis was performed using

a surface-based analysis with the FreeSurfer statistical tool

QDEC after performing a 10-mm FWHM kernel smoothing.

Then, a general linear model was applied at each vertex. The

morphological changes in the cortical thickness were

assessed by establishing a full factorial model with the diag-

nosis and genotype status as independent variables. Age and

sex were included as covariates of no interest in all analyses

to control for confounding variables. The following t-test

comparisons for 2×2 factorial designs were performed: (a)

diagnosis effects (MDD versus HS), (b) genotype effect, and

(c) genotype–diagnosis interaction. In addition, age and sex

were included as “nuisance factors” to control for the con-

founding variables. Because the controls subjects and MDD

patients showed different cortical evolution rates, different

offsets and different slopes were employed in this study. To

correct for multiple comparisons, a Monte-Carlo simulation

was performed for the cluster analysis. The cluster-forming

threshold was set at p<0.05. Then, the clusters were tested

against an empirical null distribution of a maximum cluster

size generated using synthesized Z-distributed data across

Figure 1 Representative subdivision of the hippocampal subfields. The mask of

each region was overlapped on the coronal T1-weighted images. Color classifica-

tion: parasubiculum = yellow; presubiculum = black; subiculum = blue; Cornu

Ammonis (CA) 1 = red; CA3 = dark green; CA4 = brown; granule cell layer of

dentate gyrus (GC-DG) = sky blue; hippocampus-amygdala-transition-area (HATA)

= green; fimbria = purple; molecular layer hippocampus (HP) = dark brown;

hippocampal fissure = dark purple; hippocampal tail = gray.

Figure 2 Representative subdivision of the hippocampal subfields. The mask of

each region was overlapped on the coronal T1-weighted images. Color classifica-

tion: parasubiculum = yellow; presubiculum = black; subiculum = blue; Cornu

Ammonis (CA)1 = red; CA3 = dark green; CA4 = brown; granule cell layer of

dentate gyrus (GC-DG) = sky blue; hippocampus-amygdala-transition-area (HATA)

= green; fimbria = purple; molecular layer hippocampus (HP) = dark brown;

hippocampal fissure = dark purple; hippocampal tail = gray.

Figure 3 Representative subdivision of the hippocampal subfields. The mask of

each region was overlapped on the coronal T1-weighted images. Color classifica-

tion: parasubiculum = yellow; presubiculum = black; subiculum = blue; Cornu

Ammonis (CA)1 = red; CA3 = dark green; CA4 = brown; granule cell layer of

dentate gyrus (GC-DG) = sky blue; hippocampus-amygdala-transition-area (HATA)

= green; fimbria = purple; molecular layer hippocampus (HP) = dark brown;

hippocampal fissure = dark purple; hippocampal tail = gray.
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10,000 permutations to produce cluster-wise p-values that

were fully corrected for multiple comparisons.

We used two-way ANOVA to evaluate the effects of the

diagnosis, genotype, and genotype–diagnosis interaction on

CA1 and subiculum volumes, followed by Bonferroni test for

correcting multiple comparisons. The individual hippocam-

pal subfield volumes were normalized for intersubject varia-

tion for head size by dividing the hippocampal subfield

volumes by the total intracranial volume. Moreover, because

only the genotype–diagnosis interaction was identified using

two-way ANOVA, we compared each pair of combinations

divided based on genotype and diagnosis, and we confirmed

simple main effects.

The statistical analyses were considered significant at

p<0.05. All statistical analyses were performed using the

EZR software version 1.35 (Saitama Medical Center, Jichi

Medical University, Saitama, Japan),40 which is a graphical

user interface in R (The R Foundation for Statistical

Computing, Vienna, Austria). Specifically, EZR is

a modified version of R commander with additional statisti-

cal functions that is frequently used in biostatistics.

Results
Demographic and clinical data
Table 1 shows the demographic and clinical data of the

enrolled subjects. In this sample, the distributions of the

genotypes in the HS and MDD patients were in agreement

with the Hardy–Weinberg equilibrium (Table 1). No sig-

nificant differences were observed among the 4 groups

(HS with Val/Val, HS with either Met, MDD with Val/

Val, and MDD with either Met) in the age and sex dis-

tributions between the HS and MDD patients. Analyses

showed no significant interaction between genotype and

sex nor between genotype and age terms, implying that

genotype effects were stable across the age range. No

significant differences were observed in the HAMD17

scores between the MDD patients with Val/Val and those

with either Met.

Whole-brain analysis using SBM
In any brain area, no significant differences were noted in

the cortical thickness between the 42 HS and 27 MDD

patients, that is, no diagnosis effects were observed (HS

with Val/Val and Met carriers versus MDD with Val/Val

and Met carriers), and no COMT genotype effects were

observed (MDD and HS with Val/Val versus MDD and HS

with Met carriers). Regarding the COMT genotype–diag-

nosis interaction (diagnosis effects in Val/Val individuals

versus diagnosis effects in Met-carrier individuals), we did

not identify any brain area wherein a genotype effect

differed significantly between the diagnosis groups

(p<0.05, FWE corrected).

Volumetry of hippocampal subfields
In two-way ANOVA, there was a statistically significant

interaction between the effects of diagnosis and genotype

on the right subiculum (p<0.05) (Table 2) (Figure 4).

Bonferroni adjustment p-value for multiple comparisons of

interaction was 0.042. The right subiculum volume affected

both diagnosis and genotype; however, the directionality of

effects was different. Val/Val individuals more decreased the

volume than Met carriers when they developed MDD.

Moreover, Tukey’s HSD post hoc tests were carried out to

confirm simple main effects. However, we did not observe

any simple main effects of diagnosis and genotype asso-

ciated with the right subiculum volume (Table 3).

Discussion
To the best of our knowledge, this study provides the first

evidence of a relationship between the hippocampal subfield

Table 2 The diagnosis effect, genotype effect, and genotype–diagnosis interaction on CA1 and subiculum

Hippocampal subfields Disgnosis effect Genotype effect Genotype–diagnosis interaction

F-value Adjusted p-value F-value Adjusted p-value F-value Adjusted p-value

Left CA1 0.0058 3.76 0.0882 3.07 0.853 1.44

Subiculum 0.977 1.31 0.0982 3.02 3.334 0.29

Right CA1 0.113 2.95 0.136 2.85 3.634 0.24

Subiculum 0.515 1.904 0.105 2.99 6.926 0.042*

Note: *Significant genotype–diagnosis interactions (p<0.05). Adjusted p-value: adjusted p-value by Bonferroni method.

Abbreviation: CA, Cornu Ammonis.
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volumes and COMT in first-episode, drug-naive MDD

patients. In this study, there was a statistically significant

interaction between the effects of diagnosis and COMT

Val158Met polymorphism on the right subiculum of the

hippocampus despite the lack of change in the whole-brain

cortical thickness. Thus, the brain changes that are likely

associated with COMT Val158Met polymorphisms in

MDD patients occur in localized hippocampal subfields.

Our results also support the hypotheses that the subiculum

may be involved in the pathophysiology ofMDD and that the

hippocampal subfields abnormality does not always appear

in parallel with whole-brain abnormality.

In this study, no main effect of the genotype was

observed in the brain abnormalities. However, whether

the COMT genotype directly affects the brain volume

remains controversial. Previous studies among healthy

volunteer have demonstrated such diverse results. Some

researchers have reported that carriers of Met alleles

within the Val158Met COMT polymorphism have exhib-

ited increased volume/cortical thickness in the frontal and

temporal cortices41,42 and posterior cingulate cortex.43

Cerasa et al reported similar notion about the existence

of this relationship; however, Honea et al found that Val

alleles and not Met alleles were associated with increased

volume in the frontal cortex and that Met alleles affected

greater tissue volume of the hippocampus.44,45 In contrast,

no data revealed statistical association between gray mat-

ter volume and COMT genotype in whole-brain

analysis,46,47 and no such association has been found in

the frontal cortex48 or hippocampal volume49 and COMT

genotype in studies performing the region of interest ana-

lyses. Thus, the relationship between the COMT genotype

and brain morphology remains controversial. The discre-

pancies among these previous reports41–45,49 may be due

to the differences in the image analysis methods and study

design.

0.00029

The right subiculum volume
dividing by the total intracranial volume

0.000285
0.00028

0.000275
0.00027

0.000265
0.00026

0.000255
0.00025

0.000245
HS

Val/Val individuals Met carriers

MDD patients

Figure 4 The visualization of the association between diagnosis and genotype in right subiculum volume.

Abbreviations: HS, healthy subjects; MDD, major depressive disorder.

Table 3 The comparison of each pair of combinations divided based on genotype–diagnosis groups in the right subiculum

Groups being

campared

Difference in

means

Lower CI Upper

CI

Adjusted

p-value

difference lower upper p adjusted

Comparisons with MDD with Val/

Val

MDD with Met carriers 1.77⨰10−5 −1.38⨰10−5 4.92⨰10−5 p=0.456

HS with Val/Val 2.56⨰10−5 −5.42⨰10−5 2.96⨰10−6 p=0.0945

HS with Met carriers 3.01⨰10−6 −2.61⨰10−5 3.21⨰10−5 p=0.993

Comparisons with MDD

with Met carriers

HS with Val/Val 7.98⨰10−6 −3.59⨰10−5 2.00⨰10−5 p=0.875

HS with Met carriers 1.47⨰10−5 −1.38⨰10−5 4.32⨰10−5 p=0.531

Comparisons with HS with Val/Val HS with Met carriers 2.26⨰10−5 −4.79⨰10−5 2.63⨰10−6 p=0.0948

Abbreviations: CI, confidence interval; HS, healthy subjects; MDD, major depressive disorder.
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Regarding the main effect of the diagnosis, the

volumes of all hippocampal subfields did not significantly

differ between the MDD and HS. The hippocampus is

believed to play an important role in MDD. For instance,

the hippocampus is involved in verbal memory functions

and other complex behaviors, including stress responses,

emotions, sensory-motor integrations, and goal-directed

activity, all of which may be disrupted in mood disorder.

Previous studies have reported that the volume of the

hippocampus is reduced in both MDD and anxiety

disorders,50–53 and a reduction in the hippocampal volume

has been related to the severity and duration of depression

disorder.54,55

Among the hippocampal subfields, the subiculum is

located in the inferomedial area of the hippocampus and,

thus, serves as a connection between the CA1 and the

entorhinal cortex. The CA1 and the subiculum, which

belong to the anterior region, play an important role in

emotional functioning24 and may be associated with the

pathophysiology of MDD. Our results did not support

those of previous studies because MDD patients exposed

to chronic stress exhibit structural alternations in the hip-

pocampal and PFC regions;56–59 therefore, the brain

abnormalities in MDD might be due to both genetic and

epigenetic factors, although we did not involve the epige-

netic factors.

Based on the above-mentioned results, there is neither

the main effect of diagnosis nor the main effect of geno-

type, but we found a statistically significant interaction

only between the effects of diagnosis and COMT

Val158Met polymorphism on the right subiculum of the

hippocampus. The directionality of effects to subiculum

volume was different from diagnosis and genotype. The

volume reduction observed in certain regions of the hip-

pocampus in MDD patients could be explained by the

variation in COMT gene, which partially affects the patho-

physiology on MDD. Certain other genes, hormones, neu-

rotrophic factors, and cytokines are likely to affect the

hippocampal volume in MDD patients.

This study has several limitations, and the results of the

study are preliminary. First, the sample size was small as

patients from only one institution were recruited, and the

sample was heterogeneous because the HS group consisted

of staff from our institution, their relatives (by marriage),

and close friends. Biologically related relatives were

excluded. Second, we combined Val/Met and Met/Met as

Met carriers because only a few subjects were Met/Met

homozygous. In the rs4680 SNP, the frequency of Met-

allele Asian individuals was low, which is a common

occurrence in the study of a particular polymorphism

(global: G=0.53748, A=0.46252; Asian: G=0.6199,

A=0.3801). Thus, we could not evaluate the differences

in the subiculum volume between the Val/Met and Met/

Met-carriers. Further studies including epigenetic factors,

such as present stressors involving larger and homoge-

neous samples, are expected to produce robust results

regarding volume reduction in the subfields of the hippo-

campus and the COMT Val158/Met genotype in first-

episode, drug-naive MDD patients.

In conclusion, the COMT Val158Met polymorphism

was associated with differences in several areas of the

hippocampus in first-episode, drug-naive MDD patients.

The different results for the diagnosis effect, genotype

effects, and genotype–diagnosis interaction by each hippo-

campal subfield observed in the present study may play an

important role in the pathogenesis of MDD.
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