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Background: Angioimmunoblastic T-cell lymphoma (AITL) is an aggressive subtype of

peripheral T-cell lymphoma (PTCL) that has a poor 5-year overall survival rate due to its

lack of precise therapeutic targets. Identifying potential prognostic markers of AITL may

provide information regarding the development of precision medicine.

Methods: RNA sequence data from PTCL and patient clinic traits were obtained from the

Gene Expression Omnibus (GEO) database. Differentially expressed gene (DEG) analysis

and weighted gene co-expression network analysis (WGCNA) were performed to identify

DEGs between the different PTCL subtypes and investigate the relationship underlying co-

expression modules and clinic traits. Gene ontology (GO) and protein–protein interaction

(PPI) network analyses based on DAVID and the STRING website, respectively, were

utilized to deeply excavate hub genes.

Results: After removing the outliers from the GSE65823, GSE58445, GSE19069, and

GSE6338 datasets using the results from an unsupervised cluster heatmap, 50 AITL samples

and 55 anaplastic large cell lymphoma (ALCL) samples were screened. A total of 677

upregulated DEGs and 237 downregulated DEGs were identified in AITL and used to

construct a PPI network complex. Using WGCNA, 12 identified co-expression modules

were constructed from the 5468 genes with the top 10% of variance, and 192 genes from the

Turquoise and Brown modules were with a Gene Significance (GS) cut-off threshold >0.6.

Eleven hub genes (CDH1, LAT, LPAR1, CXCL13, CD27, ICAM2, CD3E, CCL19, CTLA-4,

CXCR5, and C3) were identified. Only CTLA-4 overexpressed was found to be a poor

prognostic factor according to survival analysis. Gene set enrichment analysis (GSEA)

identified and validated the intersection of key pathways (T cell receptor, primary immuno-

deficiency, and chemokine signaling pathways).

Conclusion: Our findings provide the framework for the identification of AITL co-

expression gene modules and identify key pathways and driving genes that may be novel

treatment targets and helpful for the development of a prognostic evaluation index.

Keywords: peripheral T-cell lymphoma, angioimmunoblastic T-cell lymphoma,

bioinformatics analysis, weighted gene co-expression network analysis

Introduction
Peripheral T-cell lymphoma (PTCL) is a heterogeneous group of generally aggres-

sive lymphoid malignancies and clinically and biologically heterogeneous lympho-

proliferative disorders that develop in mature blood cells called “T cells” and
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natural killer (NK) cells that account for 15–20% of all

non-Hodgkin lymphomas on the Asian continent.1,2

Angioimmunoblastic T-cell lymphoma (AITL) and ana-

plastic large cell lymphoma (ALCL) are two distinct sub-

types of PTCL. AITL represents 15–20% of all PTCLs.3

The 5-year overall survival rate of AITL is only 25–41%.4

The finding of inappropriate co-stimulation and aberrant

DNA methylation has resulted in a multistep tumorigen-

esis model for AITL that provides us with a theoretical

framework for AITL oncogenesis, which may provide new

therapeutic options for AITL treatment.5 ALCL refers to

a group of CD30-positive T-cell non-Hodgkin lymphomas

that have a better prognosis compared to AITL. Treatment

with an anthracycline-containing regimen promotes differ-

ent outcomes for AITL and ALCL. The 5-year failure-free

survival (FFS) is 12% for AITL, 60% for ALK-positive

ALCL, and 36% for ALK-negative ALCL. In contrast, the

5-year OS for AITL is 14%, but it is 70% for ALK-

positive ALCL and 49% for ALK-negative ALCL.2

Given these statistics, uncovering the molecular mechan-

isms of the two subtypes and identifying molecular bio-

markers will be helpful for the correct diagnosis.

The wealth of molecular information from genomic tech-

nologies, such as The Cancer GenomeAtlas, Gene Expression

Omnibus (GEO) database, and ArrayExpress, provide

a remarkable opportunity for new target discovery.6

Integration and re-analysis of data deposited and stored in

public databases can provide valuable clues for new research.

Based on the combination of bioinformatics methods with

expression profiling, we can identify tissue-specific biomar-

kers and key-related pathways.

In this study, we have downloaded four original microarray

datasets (GSE65823, GSE58445, GSE19069, and GSE6338)

from the NCBI-Gene Expression Omnibus database (NCBI-

GEO). We selected 50 AITL cases and 55 ALCL cases from

these 4 datasets. We used the R package to analyze the

differentially expressed genes (DEGs); performed Gene

Ontology (GO) and pathway enrichment analysis to screen

the DEGs with the Database for Annotation, Visualization and

Integrated Discovery (DAVID) website; integrated the DEGs

into a protein–protein interaction (PPI) network and performed

modular analysis using the STRING database and Cytoscape

software to identify hub genes. Subsequently, Weighted

Correlation Network Analysis (WGCNA) was performed

with the WGCNA package. Eventually, gene set enrichment

analysis was performed to verify the analysis of the DEGs and

WGCNA described earlier, which will give us deeper under-

standing of AITL and ALCL.

Materials and methods
Microarray information and DEG

identification
GEO is a free public functional genomics data repository

containing array- and sequence-based data. We obtained

four series (GSE65823, GSE58445, GSE19069, and

GSE6338), which were based on the GPL570 platform

([HG-U133_Plus_2] Affymetrix Human Genome U133

Plus 2.0 Array, Santa Clara, CA, USA). A total of 55

ALCL cases and 50 AITL cases were included in these

datasets. We chose these four datasets for our integrated

analysis in this study because these datasets, which include

both AITL and ALCL subtypes, were generated from the

same sequencing platform. Thus, we could integrate these

datasets in our subsequent processing steps.

The Robust Multi-array Average (RMA) algorithm in the

affy Bioconductor package was utilized to analyze the raw

data to construct the expression matrix profile,7 including

background correction, quantile normalization, and probe

summarization. The linear models for microarray data

(LIMMA) package in Bioconductor were applied to mine

statistically significant DEGs based on differences in their

expression between the AITL and ALCL subtype samples.8

After performing the Student's t-test, we defined a P-value

<0.01 and a |log2FC (fold change)| ≥1 as the cut-off criteria.

Next, we removed the outliers based on the results from an

unsupervised cluster heatmap to build the expression matrix

profile for subsequent analysis. Principal component analysis

(PCA) was performed so that we could conduct dimensional

reduction analysis with the purpose of providing a visual data

feature. All of the above operations were run with scripts in R.

GO terms and PPI network, key genes,

and pathway analysis
The DEGs were input into the DAVID database (http://

david.ncifcrf.gov/summary.jsp) and the molecular function

expressed in the gene profile was identified. Upregulated

and downregulated genes were analyzed separately. We

used the online analysis website ImageGP (http://www.

ehbio.com/ImageGP/) to display the GO analysis results

and the ClueGO software in Cytoscape to visualize the

relationship between the genes and GO terms.9

The STRING (Search Tool for Retrieval of Interacting

Genes/Proteins, http://string-db.org/)10 online database was

applied to construct the PPI network. The Cytoscape11 soft-

ware was applied to visualize the protein interaction network

relationships and analyze the hub proteins, which are important
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nodes with many interaction partners. Molecular Complex

Detection (MCODE),12 a plug-in used to produce the best

results for calculating correlation levels, was subsequently

utilized to identify clusters in the network. Two other add-ins,

CytoHubba and CytoNCA, which supplied numerous algo-

rithms, were employed to discover the hub genes in the net-

work with the highest linkage among the tremendous network.

Weighted gene co-expression network

analysis (WGCNA)
An RNA sequence data expression matrix profile processed

by unified disposal was produced by several DEG screening

procedures for the subsequent co-expression network con-

struction. The clinical traits were classified into two sub-

types, AITL and ALCL, with the purpose of constructing

module–trait relationships. Sample clustering was used to

detect outliers and match the samples with their character-

istics. The soft thresholding power was set as 7 for subse-

quent co-expression module establishment. Module–trait

associations were applied to detect the co-expression module

with the highest correlation with the clinical phenotype. For

each expression profile, the gene significance (GS) and mod-

ule membership (MM) were defined as the correlation value

for each trait and each module eigengene, respectively. All

the intersection analyses were performed online and the

WGCNA algorithm was screened using R.13

Gene set enrichment analysis (GSEA)
GSEA is a computational method that assesses whether an

a priori defined set of genes shows statistical significance or

concordant differences between two biological states.14 The

method uses the GSEA framework and considers a published

DEG as a pathway or gene set to quantify how well the up-

and downregulated genes rank by fold change for all genes in

a data. If the majority of a gene set exhibits high expression

accompanied by a high risk score, the gene set will present

a positive enrichment score and will be referred to as

‘enriched’.15 GSEA was downloaded from GSEA HOME

and run in a Java environment. Significant gene sets with an

FDR <25% and a nominal P-value <0.05 were identified.

GSEAwas conducted between AITL and ALCL subtypes.

Survival analysis
The key genes were identified as intersecting between the

Turquoise and Brown modules from the WGCNA and

DEGs. We also collected the survival time of the patients

in our study based on the information provided from the

GSE58445 GEO database. Then, ROC analysis was per-

formed on continuous variables to determine optimal cut-

off values. The effect of individual parameters on the OS

was studied with Kaplan–Meier (KM) survival analysis

using dichotomous grouping based on the ROC analysis.

The data were analyzed using the SPSS software (IBM

SPSS Statistics for Windows, Version 22.0.) and a P-value

<0.05 was considered statistically significant.

Results
Identification of DEGs between the AITL

and ALCL subtypes and DEG enrichment

analysis
In total, 914 DEGs were obtained after removing the batch

differences and performing data normalization, including

677 upregulated and 237 downregulated DEGs in AITL

based on the cut-off criteria (P<0.05 and |logFC|>1). All

the aberrantly expressed genes with log2 FC score and –

log10 P-values were used to generate a Volcano plot in R,

which is a visual tool for showing the overall gene expression

levels of the DEGs (Figure 1A). The hierarchical cluster

analysis of the post-treatment data demonstrated that the

DEGs accurately distinguished the AITL samples from the

ALCL samples (Figure 1B). The principal component ana-

lysis was utilized for a dimension reduction process to visua-

lize the spatial distribution of the samples, which determined

whether there were two distinct groups (Figure 1C).

In the GO analysis, the upregulated genes associated with

AITL significantly enriched for protein binding, plasma

membrane, and integral component of membrane. The down-

regulated genes significantly enriched for integral component

of membrane, plasma membrane, and extracellular region

(Figure 2A–C). In the KEGG analysis, the upregulated

genes were mainly enriched for cytokine–cytokine receptor

interaction, T-cell receptor signaling pathway, and chemo-

kine signaling pathway (Figure 2D). Only a small fraction of

the genes extracted from the downregulated AITL genes

were mainly enriched for PI3K-Akt signaling pathway,

focal adhesion, and ECM–receptor interaction. The signifi-

cantly enriched terms and pathways may help us further

investigate the role that the DEGs play in AITL.

Co-expression network construction
After removing the batch effect, we analyzed the data with

WGCNA to identify the modules containing highly corre-

lated genes. Using sample clustering to detect outliers

(Figure 3A) and setting the power at 7, 12 modules were

Dovepress Li et al

Cancer Management and Research 2019:11 submit your manuscript | www.dovepress.com

DovePress
5211

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


excavated (Figure 3B). We then constructed a co-expression

network to detect genes within the same module that dis-

played similar trends (Figure 4A). Among the modules, the

Turquoise and Brown modules were the most relevant for

AITL (Figure 4B); thus, 1,000 genes were selected at random

for the heatmap (Figure 4C). The eigengene dendrogram and

heatmap were used to identify groups of correlated eigen-

genes, and the dendrogram indicated the modules that were

significantly associated with PTCL clinical phenotypes

(Figure 4D). We next performed an intramodular analysis

of the GS and MM for the genes in the 12 modules. The GS

and MM showed a very significant correlation, indicating

that the genes in the Turquoise module tend to be highly

correlated with AITL and those in the Brown module tend to

be highly correlated with ALCL (Figure 4E). The genes in

these modules with a correlation cut-off ≥0.6 were then

selected as hub genes. In total, there were 192 hub genes

from the Turquoise and Brown modules that were chosen for

further analysis.

PPI network, cluster analysis, and key

genes identified
Using the STRING online database, 914 DEGs were fil-

tered into the DEG PPI network complex containing nodes

Figure 1 DEG visualization analysis. (A) Volcano plot of the differentially expressed genes between the AITL and ALCL subtypes; the hub genes are obviously marked. (B)
Heatmap of the top 100 DEGs with the highest fold change in R. (C) Dimensionality reduction analysis was performed on the data through PCA to examine the enrichment

levels of different samples.

Abbreviations: AITL, angioimmunoblastic T-cell lymphoma; ALCL, anaplastic large cell lymphoma; DEG, differentially expressed genes; PCA, principal component analysis;

DW, down; NoDiff, no significant difference.
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and edges with parameters including a minimum required

interaction score>0.4 (medium confidence) and only query

proteins being displayed. The Cytoscape software was

employed to analyze the interactive relationships between

the candidate proteins (Figure 5A) and then two clusters

containing 23 nodes and 20 nodes were selected with

a cut-off k-score=12 based on the MCODE scoring system

(Figure 5B and C). The data were imported into Cytoscape

and the CytoHubba application was run. We observed the

intersections from the five calculations methods (EPC,

MCC, DMNC, MNC, and Stress) and generated a Venn

plot to identify 74 significant hub genes. After running the

CytoNCA application, we obtained 118 significant hub

genes according to five algorithms (Subgraph, Degree,

Eigenvector, Betweenness, and Closeness). The initial

key genes were discovered from the top 100 genes in

CytoHubba and CytoNCA. In total, 59 key genes were

identified. We firmly believe that the hub genes are the

intersections between the initial key genes screened from

the PPI network and the two modules highly correlated

with phenotypes from the WGCNA analysis (Figure 6A).

We finally identified 11 hub genes (CDH1, LAT, LPAR1,

CXCL13, CD27, ICAM2, CD3E, CCL19, CTLA-4,

CXCR5, and C3). Pathway enrichment for these genes

was performed with ClueGO, a Cytoscape plug-in

(Figure 6B). Further survival analysis was performed on

these key genes to evaluate their effects on PTCL survival.

Following all the analyses, only CTLA-4 was clearly

related to patient prognosis (P<0.05) (Figure 6C).

Gene set enrichment analysis
We also employed GSEA as an effective approach to identify

pathways related to the differences in the AITL and ALCL

subtypes. The results revealed that several pathways enriched

for AITL at an FDR<25%, including T-cell receptor, primary

immunodeficiency, and chemokine signaling pathway, which

Figure 2 DEG GO and KEGG pathway enrichment. (A) GO enrichment of Biological process with the DEGs. (B) GO enrichment of Cellular component with the DEGs.

(C) GO enrichment of Molecular function with the DEGs. (D) KEGG pathway enrichment using the DEGs.

Abbreviations: GO, gene ontology; DEG, differentially expressed gene; KEGG, Kyoto encyclopedia of genes and genomes.
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have been validated in the above analysis (Figure 6D).

However, there was no significant enrichment for ALCL-

related pathways with the same cut-off criteria. Some of the

hub genes were shown in the gene sets with core enrichment

for LAT, CXCL13, CD3E, and CTLA-4, which once again

confirmed their importance.

Discussion
In this study, 11 hub genes and several pathways were identi-

fied by the methods of DEGs and WGCNA, all key genes

were excavated and chosen for survival analysis. Interestingly,

only CTLA-4 was clearly related to the prognosis of patients

diagnosed with PTCL, with a P-value<0.05, which may serve

as biomarker for treatment and prognosis.

As an aggressive lymphoma, PTCL represents approxi-

mately 12% of all lymphoid neoplasms. Compared with

more common aggressive B-cell lymphomas, more patients

with PTCLwill be refractory to initial therapy, and those who

achieve responses will often have a shorter progression-free

survival (PFS); complete response rates of 50–70% have

been previously reported.2 Five-year overall survival (OS)

rates are generally below 30%.16–18 Previous studies have

focused on identifying genes that could be used as prognostic

factors for PTCL. ALK expression is known to greatly

impact prognosis.19,20 According to the gene expression

results, PTCL-NOS can be divided into twomajor subgroups

(high GATA3 expression group and higher TBX21 (T-bet)

and EOMES expression group) with significantly different

Figure 3 Sample clustering and soft threshold screening. (A) Sample clustering to detect outliers and the trait heatmap to display the sample traits. (B) Analysis of the
network topology for various soft thresholding powers. The left panel shows the scale-free fit index (y-axis) as a function of the soft-thresholding power (x-axis). The right

panel displays the mean connectivity (degree, y-axis) as a function of the soft-thresholding power (x-axis). The power was set as 6 for further analysis.
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outcomes. The TBX21 group [5-year OS of 38% (25–56%;

95% CI)] and GATA3 subgroup [19% (9–38%; 95% CI)]

showed significant (P=0.01) differences in survival.20

According to our analysis, DEGs which cause differences

in the prognosis of AITL and ALCLwere filtered out. So, we

could conduct prognostic evaluation of PTCL patients and

even modify these DEGs to treat lymphoma in the future.

The result of GO analysis proved that the key genes

mainly associated with protein binding, plasma membrane,

and integral component of membrane. And after KEGG

pathway analysis, the upregulated genes were also

enriched for cytokine–cytokine receptor interaction,

T-cell receptor signaling pathway, and chemokine signal-

ing pathway.

Linker for activation of T cells (LAT) is

a transmembrane adaptor protein that plays an essential

role in linking T cell receptor (TCR) engagement to down-

stream signaling events, such as Ras-Erk activation and

calcium mobilization.21 Upon T cell activation, LAT-

mediated signaling intricately regulates CTL cytotoxicity

at multiple steps.22,23 The CD3E was a T cell co-receptor

complex essential for TCR signaling and T cell

differentiation.24 A high complete CD3E gene copy num-

ber could block very early thymocyte and NK-cell devel-

opment with or without the truncated gene that codes for

the transmembrane and cytoplasmic regions.25 Both of

these genes belong to T-cell receptor signaling pathway

and participate in crosstalk with CTLA-4 to influence the

Figure 4 WGCNA of the PTCL samples. (A) Clustering dendrograms for the 5468 genes with dissimilarity based on the topological overlap together with the assigned

module colors. Twelve co-expression modules were constructed with various colors. The relationship between gene dendrogram and gene modules was up and down of the

image. (B) Module–trait relationships. Each row corresponds to a module eigengene, each column corresponds to a trait, and each cell consists of the corresponding

correlation and P-value, which are color-coded by correlated according to the color legend. Among them, the Brown and Turquoise modules were the most relevant

modules to the PTCL clinical subtypes. (C) Visualizing 1,000 random genes from the network using a heatmap plot to depict the TOM among the genes in the analysis. The

depth of the red color is positively correlated with the strength of the correlation between the pairs of modules on a linear scale. The gene dendrogram and module

assignment are shown along the left side and the top. (D) The eigengene dendrogram and heatmap identify groups of correlated eigengenes termed meta-modules. The

dendrogram indicated that the Turquoise module was highly related to the AITL subtype and the Brown module was highly related to the ALCL subtype. The heatmap in the

panel shows the eigengene adjacency. (E) A scatter plot of the GS for the PTCL classification versus the MM in the Brown and Turquoise modules; the correlation and

P-value are under the title.

Abbreviations: WGCNA, weighted gene co-expression network analysis; PTCL, peripheral T-cell lymphoma; AITL, angioimmunoblastic T-cell lymphoma; ALCL, anaplastic

large cell lymphoma; TOM, topological overlap matrix; GS, gene significance; MM, module membership.
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development of T-cell lymphoma and lead to poor prog-

nosis. In our study, these genes were highly expressed in

AITL which could explain the poor prognosis of AITL.

Chemokines are a group of small, secreted molecules

that signal through G protein-coupled receptors to promote

cell survival and proliferation and provide directional

guidance for migrating cells.26 CXCL13, CXCR5,

CCL19, and CD27 were all included in cytokine–cytokine

receptor interaction and chemokine signaling pathway.

The chemokine CXCL13 is constitutively expressed in

secondary lymphoid organs (spleen, lymph nodes, and

Peyer’s patches) by FDC and macrophages.27 CXCL13

Figure 5 PPI network cluster analysis. (A) A PPI network containing 604 nodes and 3576 edges was constructed by filtering the 914 DEGs using the STRING website. (B)
Cluster 1 consists of 23 nodes and 253 edges and (C) cluster 2 consists of 20 nodes and 161 edges. These clusters had the highest scores among the clusters. The red

quadrangle and blue circular nodes represent highly expressed genes in AITL and ALCL, respectively.

Abbreviations: PPI, protein–protein interaction; DEG, differentially expressed gene; STRING, search tool for retrieval of interacting genes/proteins; AITL, angioimmuno-

blastic T-cell lymphoma; ALCL, anaplastic large cell lymphoma.
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primarily acts through the G-protein-coupled CXCR5

receptor (Burkitt’s lymphoma receptor 1) expressed on

mature B lymphocytes.28,29 In a previous study, CXCL13

was identified as a unique marker for AITL, as it is not

expressed at significant levels in other T-cell subsets.30

Together with IL-10, these genes could be potentially

important biomarkers for central nervous system

lymphomas.31 High levels of CXCL13 may contribute to

AIDS-NHL risk, and the levels depend on genetic varia-

tion in CXCL13 and CXCR5.32 CXCR5 is a receptor for

CXCL13 and plays a role in B-cell and follicular T helper

cell migration.33 A previous report indicated an associa-

tion of several CXCR5 single nucleotide polymorphisms

(SNPs) with NHL risk in a Chinese population.

Additionally, CXCR5 has been identified as a promising

target for antibody-based therapies in the treatment of

B-cell malignancies.34 Several CXCR5 polymorphisms

are related to a risk of NHL subtypes and prognosis in

FL.35 So high levels of CXCL13 and CXCR5 might be

one of the reasons for the poor prognosis of AITL. CCL19

is a CCR7 chemokine receptor ligand that is involved in

the chemokine signaling pathway. Together with CCL19

and CCL21, CCR7 is involved in organizing thymic archi-

tecture and function, lymph node homing of naive and

regulatory T cells via high endothelial venules, and the

steady-state and inflammation-induced lymph node-bound

migration of dendritic cells via afferent lymphatics.36

CD27, a member of the TNF receptor superfamily, is

a type I transmembrane protein with extracellular, intra-

membranous, and intracellular domains.37 It could act as

a tumor marker for NHL.38 These cytokines could play an

important part in the chemokine signaling pathway to

induce T-cells into tumorigenesis.

The expression of CDH1 was frequently absent in

a variety of epithelial tumors, and loss of normal inter-

cellular junctions results in the promotion of cancer

invasion and metastasis and is correlated with several

types of cancers.37,39,40 CDH1 mutations can be found
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Figure 6 Hub genes and key pathway screening and analysis. (A) A Venn diagram was utilized to screen the hub genes between the DEGs and WGCNA. (B) Enrichment

analysis for pathways with the hub genes was performed in Cytoscape with the ClueGo plug-in. (C) Survival analysis indicated that CTLA-4 is a poor prognosis factor in

PTCL samples. Patients with higher CTLA-4 expression have a significantly shorter overall survival compared to those with lower expression (P<0.05). (D) GSEA revealed
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Abbreviations: WGCNA, weighted gene co-expression network analysis; PTCL, peripheral T-cell lymphoma; GSEA, gene set enrichment analysis; AITL, angioimmuno-

blastic T-cell lymphoma.
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in gastric cancer (GC). The cumulative lifetime risk of

GC ranges from 40% to 67% and 63% to 83% in male

and female carriers, respectively.41–43 CDH1 methylation

is also associated with an increased risk of lung cancer

and primary gastric diffused large B cell lymphoma.44,45

E-cadherin, the CDH1 gene product, is a calcium-

dependent cell adhesion molecule that is essential for

maintaining the integrity of cell-cell adhesions.46 CDH1

promoter hypermethylation was due to the loss of

E-cadherin.47 A previous study indicated that CDH1

was remarkably correlated with and frequently methy-

lated in human lymphomas, and its methylation could

not be solely explained by DNA methyltransferase

mRNA expression levels.48 ICAM2 is a member of the

immunoglobulin superfamily that binds to β2 leukocyte

integrin, and ICAM2/LFA1 interactions play a critical

role in lymphocyte recirculation and trafficking, antigen-

specific immune responses, and other cellular interactions

important for immune response and surveillance.49,50

Decreased ICAM2 expression is associated with poor

survival in patients with various cancers.51,52 So, high

level of ICAM2 was a good factor for prognosis.

Unfortunately, the survival between high expression and

low expression of ICAM2 was not statistically different.

Further researches were needed to determine the value of

ICAM2. LPAR1 is a lysophosphatidic acid receptor.

Previous studies have indicated that LPAR1 is the

major mediator of LPA-induced ovarian cancer invasion

and metastasis and a novel susceptibility gene for human

essential hypertension, which increases the susceptibility

of patients with a risk allele for essential hypertension.53

It also associated with metastatic neuroblastoma and lung

fibrosis induced by irradiation.54,55 However, no research

has shown that it is associated with lymphoma. It could

be obtained that LPAR1 was a risk factor for AITL and

could be verified in future research from our research.

Many of these genes have never been investigated in

PTCL or lymphoma, but all of them are key molecules

for studying tumorigenesis, prognosis and the develop-

ment of precise treatments.

CTLA-4, which is expressed exclusively on T-cells,

acts as a negative co-stimulatory signal, inhibiting T-cell

activation and proliferation to maintain self-tolerance and

protect against autoimmunity.56 CTLA-4 is a particularly

important immune checkpoint receptor and the first to be

clinically targeted in oncology.57 CTLA-4 signaling has

been implicated in tolerance induction in vivo and may

also augment suppressor CD4+ T-cell activity, thereby

downregulating the immune response.37,58,59 Blockade of

CTLA-4 by administration of anti-CTLA-4 monoclonal

antibodies has been shown to enhance T-cell responses in

a variety of settings and enhance anti-tumor

responses.37,60–62 In previous studies, CTLA-4 has been

regarded as a candidate susceptibility gene for T-cell

lymphoma.60 Additionally, polymorphisms in the CTLA-

4 gene have been shown to have a role in the occurrence of

NHL.63 However, the connection between CTLA-4 and

AITL remains unclear. Considering our results and pre-

vious studies, we found that CTLA-4 was expressed

higher in AITL than in other PTCL types; thus, CTLA-4

could be considered as a poor prognosis factor according

to the survival analysis performed earlier.

In conclusion, the results obtained using four PTCL

microarray datasets from GEO and WGCNA demonstrate

that the Turquoise and Brown modules had the highest

correlation with PTCL subtypes, and 11 hub genes

(CDH1, LAT, LPAR1, CXCL13, CD27, ICAM2, CD3E,

CCL19, CTLA-4, CXCR5, and C3) were identified. These

genes were significantly enriched in several different sig-

naling pathways, mainly associated with T cell receptor,

primary immunodeficiency, and chemokine signaling path-

ways. Survival analysis reveals that CTLA-4 overexpres-

sion in AITL may be a poor prognosis marker. Although

some of these genes were found before, our study could

validate and explain the expression status of these genes

and their impact on prognosis in AITL again. These find-

ings provide the framework for the identification of AITL

co-expression gene modules and identify key pathways

and driving genes that may be novel treatment targets

and helpful for the development of a prognostic evaluation

index.
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